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Abstract. This work summarizes the results of a set of executions completed on 

three fat-tree network supercomputers: Stampede at TACC (USA), Helios at IFERC 

(Japan), and Eagle at PSNC (Poland). Three MPI-based, communication-intensive 

scientific applications compiled for CPUs, have been executed under weak-scaling 

tests: the molecular dynamics solver LAMMPS; the finite element-based mini-kernel 

miniFE of NERSC (USA); and the three-dimensional Fast Fourier Transform mini-

kernel bigFFT of LLNL (USA). The design of the experiments focuses on the 

sensitivity of the applications to rather different patterns of task location, to assess 

the impact on the cluster performance. The accomplished weak-scaling tests stress 

the effect of the MPI-based application mappings (concentrated vs. distributed 

patterns of MPI tasks over the nodes) on the cluster. Results reveal that highly 

distributed task patterns may imply a much larger execution time in scale, when 

several hundreds or thousands of MPI tasks are involved in the experiments. Such a 

characterization serves users to carry out further, more efficient executions. Also 

researchers may use this experiments to improve their scalability simulators. In 

addition, these results are useful from the clusters administration standpoint since 

tasks mapping has an impact on the cluster throughput.  
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1. INTRODUCTION 

 

Current High Performance Computing (HPC) architectures span thousand of nodes, 

basically following two major trends: clusters based on nodes with processors 

(CPUs) plus accelerators and multi-level memory; and clusters based on nodes with 

groups of equal low-power cores with a single-level memory. The first trend usually 

has fewer nodes compared to the second one and it allows more allocated parallel 

tasks per node. Anyway, both scenarios exhibit a huge amount of cores (see the 

TOP500 list [1] of the most powerful supercomputers). The evolution of CPUs over 

the last years has driven the inclusion of an increasing degree of parallelism within 

the codes executed by the final users. 

 

Extreme computing demands the optimization of performance, cost and power 

consumption. Hardware and software stacks must be built and operated bearing in 

mind the applications that will run as well as the next available computing 

infrastructure. This approach is known as codesign [2], in which the different 

elements involved in supercomputing are tightly integrated.  

At present these issues are being tackled by a variety of initiatives in the USA 

(Exascale Computing Project) [3], Europe (EuroHPC [4] and PRACE [5]), China 

(Tianjin Supercomputer Center) [6], and Japan (Post K) [7]. In particular, they are 

boosting the further development of MPI libraries, not only to take advantage of new 

technologies, but to address the current networks complexity in supercomputers with 

thousands of nodes. However, a careful implementation of a message passing 

strategy is not enough since the computing platform topology (in particular the way in 

which the cluster interconnections have been designed) may contribute to traffic 

bottlenecks and network contention, which leads to the speed down of the system. 

This turns to be problematic for massive parallel applications, as far as inter-node 

communication asymmetries may develop, thus contributing to a performance drop. 

Causes of performance degradation must be analyzed in detail (even 
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supercomputers designed with either InfiniBand or OmniPath can exhibit a worse 

behavior as the number of involved nodes and cores increases) following an 

adequate setup of experiments. Therefore, it is cornerstone to assess the 

performance sensitivity to the MPI-tasks mapping for a given application executed on 

the cluster under weak-scaling with an approximately constant workload –per-node, 

in order to assess the effect of task spreading over the nodes for increasing degree 

of parallelism of the running application. 

 

Applications may be CPU-intensive, memory-bandwidth demanding (communication-

intensive) and/or I/O-intensive, such that leads the scalability and speedup to 

stagnate. Typically, users have access to finite resources and constrains derived 

from several factors. The maximum degree of parallelization attainable or the total 

execution time granted in a computing resource, arise in practical cases. The context 

is complex and scheduling decisions in HPC systems have also an impact on the 

applications performance. For instance, one situation could be a given job which only 

uses some of the CPUs of a node, or just a subset of the cores of a CPU. An 

opposite scenario would be having the resources shared by two or more different 

jobs, so it may lead to a competition in terms of memory-bandwidth and, 

consequently, to slow down the whole execution. Unlike, executing some other job at 

the same time on the same node/CPU could imply a more intensive usage of the 

cluster. Anyway, what it is expected independently of sharing CPUs of a node or 

performing executions with dedicated nodes, is the existence of colliding network 

traffic to some extent, due to its concurrent usage by the supercomputer community. 

To this regard, the supercomputer topology plays a major role on the network traffic 

effects. 

 

The present work extends our previous investigation [8] and explores the behavior of 

three communication-intensive applications (that is, a benchmark of the production 

solver LAMMPS; and two mini-kernels miniFE and bigFFT) executed on three fat-tree 

network based supercomputers under a weak-scaling perspective. The results show 

that runtime strongly depends on the chosen task-mapping pattern and that optimal 

task-mapping at extreme scale deserves careful attention to attain a better 

computational efficiency of the communication-intensive applications. Besides, the 

conducted experiments are useful to assess the correctness of scalability simulators 
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at predicting performance drop or cluster efficiency in these types of executions. The 

article is structured as follows. The related work is summarized in the next section, 

whereas the description of the HPC clusters is briefly presented in Section 3. After 

that, a description of the experiments conducted with the miniFE, LAMMPS and 

bigFFT codes, including the major statistical data of the experiments, is provided in 

Section 4. Section 5 summarizes the results and discussion. Finally some 

conclusions are given. 

 

2. RELATED WORK 

 

MPI task mapping effects have been investigated in [9] with scientific mini-kernels 

and application codes. They show that an execution time saving of up to 25% is 

possible by grouping the tasks. In [10] machine topology is taken into account and 

the results show that it is beneficial to map tasks onto as many sockets per node as 

possible (the bigger savings in execution time, up to 30%, are obtained precisely for 

those cases). Similar experiments are done in [11], reporting an improvement of 

about 15%. In particular, in [12] multicore architectures show the gain attained in 

computational efficiency of a MPI-based production application, which exhibits a 

performance peak improvement of about 9%, attributed to a better use of cache-

sharing at the same node and to the high intra- to internode communication ratio of 

the cluster. Although it seems a modest speedup, it is noticed that it is obtained with 

minor source code modifications and mostly using an optimized task mapping over 

the nodes.  

 

Most of the above mentioned studies are limited to a moderate number of CPUs and 

additional research is needed to be conclusive about what happens with many 

participating processors in weak-scaling benchmarking. In particular, various 

scientific kernels and production codes have been tested in scale in [13] under weak-

scaling. It is observed that runtime degradation greater than 120% occurs when the 

same number of MPI tasks are distributed massively (typically, one task per node).  

 

The work in [14] points to the same direction by evaluating the impact of multi-core 

architectures in a set of benchmarks. Their characterization of the inter- to intranode 

communications ratio throws a figure of 4 to 5 in the worst case. The impact of the 
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different internode and intranode latencies is analyzed in [15] for an InfiniBand-based 

cluster running a MPI-based scientific application. Aiming at improving the 

computational efficiency, [16] analyzes how many cores per node should be used for 

applications execution. These studies identify that performance degradation in multi-

core machines is rather dependent on task mapping, being the memory bandwidth 

per core the primary source of performance drop when increasing the number of 

cores per node that participate in the computation. Indeed, by distributing the tasks 

over the nodes, they do not have to compete for node local resources (a scenario 

that seems to occur when running tasks are sharing a slot of the same node).  The 

influence of this resource sharing by different jobs is focused in [17] using a set of 

scientific kernels. The results show significant dependence to the cluster setup 

(further details on the clusters setups used in those tests are given in [18]). Several 

studies points at this performance sensitivity to the cluster architecture [19] and 

specifically to the inter- to intranode communication ratio [20], hence according to 

their experiments, they recommend to distribute the MPI tasks over the nodes to 

attain the best results from a computational standpoint (an improvement of about 

20% for most of the experiments). 

 

Previous work on assessing communication-intensive scientific applications 

examines the role played by the network topology and communication bandwidth on 

speeding performance up at scale. This is analyzed in [21] with two benchmarks of 

the solver LAMMPS (one of them corresponds to the rhodopsin, focused on the 

present investigation), executed with a range of parallelization up to 1024 cores in 

three clusters. The strong-scaling behavior of the same benchmarks executed in 

three clusters but for a small number of cores, is analyzed in [22]. This investigation 

quantifies the variation of the execution time to re-configuring the topology of the 

clusters, which is of about 9%. The effect of changing the cluster interconnections 

has been also examined in [23-25]. In particular, the comparison of the attained 

speedup by means of improving the bandwidth using multi-rail InfiniBand networks 

[26], as well as implementing variants of the fat-tree topology [25] is investigated. 

These quantifications performed with micro-benchmarks and scientific applications 

like LAMMPS and three-dimensional FFTs libraries, are helpful in the sizing process 

of a cluster, bearing in mind that the attained performance will be quite dependent on 

the type of benchmarked application. Other promising via to quantify the expected 
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performance given a suite of codes is the usage of cluster emulators, which take into 

account the network topology in detail, as it is described in [27] with a modeled HPC 

resource. Since access to computing time and range of parallelization constrains 

may be scarce, a methodology to gather large-scale simulation statistics is the usage 

of emulators to shed light onto the effect of varying the supercomputer topology on 

the performance and on the communication requirements of scientific applications. 

Besides emulators, trace-based simulation has been applied to study the impact of 

MPI communications on the performance of LAMMPS and miniFE [28], which are 

two of the three codes analyzed in the present investigation. Corresponding data of 

executions in clusters, feed these kind of simulations and the discussion on major 

aspects of the abovementioned approaches (accuracy and feasibility, to mention 

some). 

It is clear that an adequate cluster topology is a key element to improve applications 

performance and it remains an open arena in the frame of optimizing the computing 

resources. Besides and from the standpoint of exploiting a given cluster (that is, a 

given topology) it is important to identify the best way of mapping tasks of parallel 

applications, hence to speed the execution up. In [29], a topology-aware resource 

allocation policy is analyzed, to optimize the allocation of nodes to jobs with different 

communication-intensive patterns in a fat-tree cluster. It shows that topology-aware 

node allocation for production workloads can provide interference-free executions 

with a minimum deterioration of the cluster’s quality of service when isolated job 

partitions are implemented.    

To this respect, the behavior of a suite of communication-intensive MPI-based 

scientific applications, among others, have been analyzed in scale in [13, 23, 30].  A 

large variation of the execution time when executed highly distributed and 

concentrated over the nodes is reported and the identification of the weight of the 

point-to-point and collective operations is pointed out as a major cause of the 

performance drop in those highly distributed scenarios. 

 

All these previous investigations show that the execution time varies significantly 

because there is a large sensitivity to the MPI tasks mapping over the nodes, driven 

by multiple architectural factors. It is stressed that most of these experiments have 

been conducted in clusters with hyperthreading disabled (one thread per core), as 

our present investigation does, so they do not analyze possible advantages derived 
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from multiple-thread based executions, which is a topic analyzed in [31]. 

Nevertheless, one major objection related to multi-threading is the likely lack of an 

efficient implementation of the applications (both full-fledge and mini-applications) to 

improve scalability. In addition, the selection of a group of production applications as 

representative benchmarks remains nowadays a hot topic: many suites are available 

for benchmarking, albeit no unified, metric-based procedure of HPC systems has 

been clearly stated [32].  

 

The present work extends the analysis conducted in [8] and explores the speedup 

sensitivity to varying the MPI-tasks of three communication-intensive benchmarks 

mapped over the nodes and executed under a weak-scaling approach. The scientific 

applications are the production code LAMMPS and the mini-kernels miniFE and 

bigFFT, compiled for CPUs in three modern computing infrastructures (Stampede at 

TACC (USA), Helios at IFERC (Japan), and Eagle at PSNC (Poland)) with different 

fat-tree topology configurations.  

 

These results pave the way for further and deeper studies regarding not only cluster 

throughput, but also energy consumption. Furthermore, this information can then be 

useful to build usage criteria to proceed in a systematic manner with the execution of 

an application in a specific cluster. Also it aims at feeding better scheduling strategies 

to support scientific groups.  

 

3.  SUPERCOMPUTER ARCHITECTURES 

 

Next, a brief description of the supercomputers involved in the executions of the 

scientific application LAMMPS and the kernels miniFE and bigFFT is provided. It is 

noted that these three supercomputers rely on the fat-tree network, which is partly a 

consequence of its easily extensible assembly from off-the-shelf commodity 

components. Furthermore, the fat-tree topology gives high bisection bandwidth and a 

relatively low diameter among the available options for a given node count. It is 

noticed that these topologies necessarily are constrained by technological, room and 

economic factors, resulting in tapered networks with extra hops. These are 

distinguishing features among the supercomputers, which imply an impact on the 
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weak-scaling behavior of every application. Nevertheless, it is not the only aspect to 

consider. Memory and processor’ cache availability, bus clocking or the intra-node 

communication among processors are architecture-related issues which drive the 

global performance. 

 

3.1 Stampede at TACC (USA) 

Stampede supercomputer [33] was ranked 6th in the TOP500 list (June 2013) by 

achieving 5168 TFlop·s-1 and was still ranked 20th in June 2017. In 2017, this 

machine got upgraded and a portion available during its deployment. At present it is 

decommissioned and has evolved towards Stampede-2 architecture. The Stampede 

platform consisted of 6400 Sandy Bridge EP nodes, each with two 8-core Xeon E5-

2680v1, which offers 2.7GHz (3.5GHz with Turbo Boost) connected between them 

through two Intel QuickPath links. At least 2GB or memory per core is guaranteed. 

Additionally, every node had one Intel Xeon Phi KNC MIC co-processor (not used in 

the experiments of this study).  

The nodes were interconnected through a 56 Gbit s-1 FDR InfiniBand two-level Clos 

fat-tree topology built on Mellanox switches. This fat-tree had a blocking factor of 

1,25:1 and its network topology is sketched in Figure 1. The 6400 nodes are divided 

into groups of 20, with each group being connected to one of the 320 36-port 

switches (4 Tbit·s-1 capacity), which are themselves connected to 8 648-port core 

switches (each with a capacity of 73 Tbit·s-1). The peak performance of the 2 Xeon 

CPUs per node was approximately 346 GFlop·s-1. The theoretical peak performance 

of the platform was therefore 8614 TFlop·s-1. 

 

3.2 Helios at IFERC (Japan) 

Helios supercomputer [34] was owned by the Computational Simulation Centre 

(CSC) and ranked 38th in the TOP500 list when it was in full operation status in 

November 2014 as it provided a performance peak value of 1524 TFlop s-1. After 

several upgrades, it finally counted on 4500 nodes (72 000 CPU cores), which were 

complemented with 180 MIC nodes (21600 co-processors cores).  

The tests presented in this work were carried out on the major Helios general 

purpose configuration, i.e. without Xeon Phi included. The nodes were based on the 

Sandy-Bridge configuration with two Xeon E5-2680v1 processors (16-core nodes). In 
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contrast to Stampede, Helios nodes were connected to QDR InfiniBand fat-tree with 

a  blocking factor 1:1 (that is, non-blocking), but nodes exhibited  double latency and 

half bandwidth compared to Stampede. A sketch of its topology is in Fig.1. This 

connection grouped the computing nodes in sets of 18 which were connected to 

storage to either 109 Gbit·s-1 (direct storage) or 24 Gbit·s-1 (medium storage). The 

InfiniBand network also comprised the 8 login nodes and their bandwidth 

characteristics were 3.2 Gbit·s-1 throughput and 30 million message/s rate. The 

whole cluster connected to auxiliary servers such as backup, NFS, etc. via an 

Ethernet backbone provided of 10 Gbit·s-1 links. Helios supercomputer is already 

decommissioned. 

 

3.3 Eagle at PSNC (Poland) 

Eagle cluster [35] was deployed in late 2015 at new PSNC Data Center facility. 

Initially, the machine consisted of 1032 nodes, each with two 14-core Xeon E5-

2697v3 (Haswell-EP) CPUs and 56 Gbit·s-1 FDR InfiniBand interface.  

Albeit these processors are the third evolution of the ones installed in Stampede and 

Helios, they offer a little improvement: 2.6GHz (3.6GHz with Turbo Boost); same L2 

cache per core; nearly double L3 cache; and at about 15% and 33% of acceleration 

through QPI links and main memory, respectively.      

It was ranked at the 79th position on TOP500 in November 2015. The main 

difference with the other two clusters is its InfiniBand network, which comprises a 

variable tapering. All worker nodes are divided into 6 groups (e.g. islands or pods, 

similar to [13, 36]). which are connected with off-the-shelf 1U 36-port FDR InfiniBand 

switches, which give 4:1 (inside pods) and 24:1 (inter-pod) blocking factors. Thus, it 

depends on the tree depth (see Fig. 1). After the upgrade, which took place in 

December 2016 and consisted of additional 55 nodes with two Xeon E5-2682 

(Broadwell) CPU, the peak performance of the Eagle cluster is 1.4 PFlop·s-1.  

 

4. SCIENTIFIC APPLICATIONS  

 
A short description of the MPI applications whose sensitivity to different task mapping 

pattern is examined, is given. The chosen applications implement communication-

intensive algorithms (basically, multidimensional Fast Fourier Transforms (FFTs) and 
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implicit discretization of partial differential equations) to test their effect on runtime 

variability caused by network traffic when the MPI tasks are highly concentrated and 

highly distributed over the nodes. A priori, their performance will depend to a high 

extend on the available bandwidth provided by the links and switches of the network. 

   

4.1 LAMMPS 

LAMMPS (acronym for Large-scale Atomic/Molecular Massively Parallel Simulator) is 

a well-established molecular dynamics research code that models an ensemble of 

particles in a liquid, solid, or gaseous state. Its capabilities span atomic, polymeric, 

biological, metallic, granular, and coarse-grained systems using a variety of force 

fields and boundary conditions. It is available as open source code written in C++ 

and supports the MPI message-passing library (see [37] for further reference). The 

installed LAMMPS version in the three clusters corresponds to the November 2016 

distribution for CPU and MPI (it is noticed that, in order to check the sensitivity to the 

LAMMPS release, additional tests have been carried out with the February 2015 

distribution in Stampede, for comparison purposes). 

 

Among the various benchmarks provided in LAMMPS distribution, the one analyzed 

in this work is the rhodopsin, which simulates a protein in a solvated lipid bilayer. It is 

complemented with the chemistry molecular simulation module CHARMM [38] to 

tackle the force field, besides the long-range Particle-Particle Particle-Mesh (PPPM) 

solver [39, 40] of LAMMPS to include the Coulombics interaction for accurate results. 

The 32,000 atom system is made up from counter-ions and a reduced amount of 

water. This benchmark models a long-range interaction of Coulombic nature at the 

atomistic level, which needs from frequent FFTs transformations. Both force field and 

long-range solver differ from those short-range interaction benchmarks, also 

available in LAMMPS (for instance, see the LJ-benchmark, that models the 3D rapid 

melting of an atomic fluid, in which atomistic forces follow a Lennard-Jones (LJ) 

potential), in the atoms interaction, here based on a short-range potential and a small 

number of involved neighbors per atom. This rather small number of atoms inside 

each computational bin implies that the information exchange does not impact to a 

great extent the network traffic during the time-integration, so reasonable good weak-

scaling properties remains in scale [21]. 



Manuscript  –  CIEMAT, December 2019 

11 

 

On the contrary, the inclusion of a long-range interaction leads to many more particle 

neighbors (each rhodopsin atom is surrounded by 440 neighbors, that is, at about 

one order of magnitude greater than the short-range case) to be taken into account 

at each time-step of the integration, which means a more communication-intensive 

problem to compute (force interactions are computed very quickly and they are a 

small contribution to the total execution time. In addition, network traffic cost linked to 

a bin is mainly caused by the operations performed with its immediate neighboring 

bins). The consequence of this local physics is a strong algorithmic coupling, which 

implies higher network traffic among the MPI tasks, linked to the cubic bins of atoms 

in the partitioned computational domain across processors using spatial 

decomposition. 

 

4.2 miniFE 

Release 1.4 of this scientific mini-application, developed at Sandia National 

Laboratory (USA), comprises the algorithm complexities of the unstructured implicit 

finite elements or finite volume solvers, within a size of less of 8,000 lines of code.  

It simulates the steady-state heat conduction on a brick-shape problem domain. The 

discretization of the involved partial differential equation is accomplished with linear 

8-node hex-elements, assembled as a sparse linear system.  

 

The numerical approach follows a simple un-preconditioned conjugate-gradient (CG) 

algorithm [41], which implies sparse matrix-vector products during the CG iteration. 

These data are set in local memory over the participating nodes. Implicitness of the 

numerical method and data locality leads to a communication-intensive scenario as 

the problem size increases [23, 30]. The miniFE has support for OpenMP (not used 

in the present computations) and it is parallelized with MPI. The physical brick-shape 

size (discretized into a prescribed number of grid cells per spatial dimension in the 

setup of the problem) serves to control the weak-scaling properties for a given 

number of participating cores in the simulation.  

 

4.3 bigFFT 

Three-dimensional FFTs are one of the most compute- and communication-intensive 

schemes in applications from a variety of fields, ranging from direct numerical 
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simulations of turbulence, astrophysics, molecular dynamics, material sciences or 

tomography, among others. 

Release 1.0 of this scientific mini-application [42] developed at Lawrence Livermore 

National Laboratory (LLNL, USA), implements a real-to-complex MPI-based parallel 

3D FFT using a 2D virtual grid in which the tasks are arranged (an alternate version 

with OpenMP threading is available from the developers on request, not analyzed in 

the present work). The code itself is a test of a pencil-based algorithm, which is a 2D 

domain-decomposition FFT, in which each core / task is responsible for a rectangular 

column (pencil) of the data array. The kernel exploits the FFTW library [43] to 

perform the 1D FFT needed for the three dimensions in turn. The pencil-based 

implementation theoretically allows scaling up to the number of tasks squared. 

Initialization of the 3D data array of specified dimensions (NxxNyxNz, being Nx the 

pencil length) is done by Gaussian randomization. A sequence of forward and 

backward 3D FFT is completed at execution with a processor grid of specified size 

(nprow x npcol, equal to the total number of MPI tasks). Communications are driven by 

transposes of large arrays. 

 

5. EXECUTIONS 

 
5.1 LAMMPS 

Rhodopsin benchmark has been selected as an example of strongly-coupled 

behavior, in contrast to other short-range algorithms included in the LAMMPS 

release, The inclusion of long-range Coulombic interactions requires building the 

code with the KSpace package as it provides the PPPM solver (it executes the FFT 

operator). In this sense, instead of using the native FFT available in LAMMPS [34], 

the portable FFTW library has been installed and linked to accomplish the 

executions. Compilation is carried out with the Intel compiler.  

Weak-scaling tests imply the periodic replication of the rhodopsin database (atoms 

system inside a computational bin), then each core manages 32,000 atoms at the 

simulation start. This is done by scripting a replication pattern for the three spatial 

dimensions in the input file. To balance the load, the replication pattern has been 

shaped as a cubic computational domain. Parallelization ranges from 23 to 133 (2197 

MPI tasks). The set of experiments carried out is shown in Table 1.  
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Table 1. List of LAMMPS experiments executed. The range of parallelization is equal 

to the total number of replicated bins (each assigned to a dedicated core). 

 

Range of 
parallelization 

Bins replication        
(in each spatial dim.) 

Number of 
participating nodes 

8 2 1, 4, 8 

64 4 16, 32, 64 

125 5 25, 75, 125 

216 6 16, 32, 108 

512 8 64, 128, 256 

1000 10 50, 125, 250 

2197 13 140, 200, 256 

 

 

 

Table 2. List of miniFE experiments executed. Brick-shaped computational domains 

of size N x N x N are specified. 

 

Range of 
parallelization 

Grid size                   
N x N x N 

Number of 
participating nodes 

8 504 x 504 x 504 1, 4, 8 

16 635 x 635 x 635 1, 8, 16 

32 800 x 800 x 800 4, 8, 32 

64 1008 x 1008 x 1008 8, 16, 32 

128 1270 x 1270 x 1270 16, 32, 64 

256 1600 x 1600 x 1600 32, 64, 128 

512 2016 x 2016  x 2016 64, 128, 256 

1024 2540 x 2540 x 2540 128, 256, 512 (1) 

2048 3200 x 3200 x 3200 128, 256, 512 (1) 

(1) Limited to 256 nodes in Stampede. Participating nodes: 128, 169, 256 because of 
queue constrains. 
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5.2 miniFE 

Finite-element discretization implies to assemble a sparse system of equations, 

implicitly solved. The physical domain corresponds to a cube. The cube sizing for two 

consecutive ranges of parallelization (RP) is: RPi+1 / RPi = 2 ≈ (Ni+1/Ni)
3,  to fulfill the 

load balance in the weak-scaling tests (see Table 2).    

 

5.3 bigFFT 

Each pencil of the 2D domain-decomposition FFT is assigned to a dedicated core. 

Theoretical load-balance of the weak-scaling tests is enforced by doubling the NyxNz 

dataset size following the doubling of the range of parallelization. As in the previous 

cases, the grouping pattern (strongly-concentrated, intermediate and strongly-

distributed) is identified in Table 3 with the number of participating nodes. 

 

 

 

Table 3. List of bigFFT experiments executed. Datasets correspond to NxxNyxNz (the 

range of parallelization is equal the number of pencils nprow x npcol). 

 

Range of 
parallelization 

Size  Pencils Number of 
participating nodes Nx Ny Nz  nprow npcol 

8 1024 512 512  4 2 2, 4, 8 

16 1024 1024 512  4 4 4, 8, 16 

32 1024 1024 1024  8 4 8, 16, 32  

64 1024 2048 1024  8 8 16, 32, 64 

128 1024 2048 2048  16 8 32, 64, 128 

256 1024 4096 2048  16 16 64, 128, 256 

512 1024 4096 4096  32 16 82, 128, 256 

1024 1024 8192 4096  32 32 128, 169, 256 

2048 1024 8192 8192  64 32 128, 167, 256 
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Due to computing time restrictions followed by the decommissioning of the Helios 

supercomputer, bigFFT tests have been completed only in Stampede and Eagle.  

 

5.4 Setup and Statistical Issues 

The MPI library used in Stampede and Helios is MVAPICH2. MPIch v3.1.2 has been 

used in the Eagle tests. Their compilation was done with the Intel compiler. 

The set of executions for every range of parallelization encompasses three different 

grouping patterns regarding how the MPI tasks have been mapped over the available 

nodes: strongly concentrated (all the MPI tasks are allocated within as few nodes as 

possible, with no more than one task per core); strongly distributed (when possible, 

the number of nodes involved matches the number of MPI tasks); and something in 

between or "intermediate". 

 

Executions have been accomplished requesting nodes in exclusivity, so allocated 

tasks are not perturbed by resource-competing jobs running within them. The 

participating nodes and task-to-core mapping are chosen automatically by the 

resource manager (Slurm in the three supercomputers), hence the cores and nodes 

of an experiment are set according to the resource manager setup parameters, not 

requesting neither excluding specific node locations. The maximum participating 

number of nodes in the experiments has been 256 in Stampede and 512 in Helios 

and Eagle supercomputers. 

 

These supercomputers have been exploited by multiple users while the tests of the 

present investigation have been completed and gathered, such that a variety of 

applications with diverse requirements, have been executed at the same time. 

Average workload has been frequently over 90%, thus affecting the applications 

performance. It seems clear that this high resource occupacy scenario implies that 

communications among distributed tasks of a given application, will be affected to 

some extent by the instantaneous traffic (mostly in those applications that spend a 

significant portion of communication time). Furthermore, sensitivity to system noise 

will be also an issue.  
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Therefore, a number of repetitions, set to 30 in the present study, have been 

accomplished for every specified case (see Tables 1-3) in order to quantify the 

variations among runs and to obtain average execution times as a metric. Table 4 

shows an example of the observed variability for the LAMMPS benchmark ranges of 

parallelization ran in Stampede. More details on this issue will be discussed in the 

results section.    

 

 

Table 4. Execution time variability with LAMMPS driven by the network traffic in 

Stampede. 

Number of MPI tasks 216 512 1000 2197 

Release Nov. 2016 ± 11.8% ± 11.2% ± 10.7% ± 12.8% 

Release Feb. 2015 ± 11.0% ± 9.9% ±  11.2% ± 12.3% 

 

 

Table 5. Intranode execution time (in seconds) for the application LAMMPS, miniFE 

and bigFFT in the three clusters.  

 Stampede Helios Eagle 

 LAMMPS 

 8 MPI tasks     
 

579 654 548 

                         miniFE 

 4 MPI tasks     
 

         84         127         219 

 8 MPI tasks     
 

        123         343         266 

                         bigFFT 

 8 MPI tasks     
 

        289     -         133 
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Table 6. Execution time for bigFFT, parallelized with 16 and 2048 processes (tasks) 

in cluster Eagle. PPN stands for processes (MPI tasks) per node. 

16 processes 2048 processes 

PPN Time (s) PPN Time (s) 

1 153 8 3219 

2 205 
12 -13  

(167 nodes) 

 

1982 4 251 

8 411 

16 446 16 1410 

 

 

6. RESULTS  

 

Table 5 shows the attained execution time of the benchmarks in the three clusters, 

ran under a small parallelization (8 tasks). It corresponds to the job mapped within 

one dedicated node, so inter-node communications are avoided. This execution time 

is taken as the reference execution time and used to non-dimensionalize the 

respective range of parallelizations tested. Table 5 shows that the reference 

execution time exhibits a significant dependence with the involved supercomputer. 

Interestingly, the variation of the reference execution time is notably smaller in the 

case of the production code LAMMPS, than for the mini-kernels miniFE and bigFFT, 

which exhibit a wider sensitivity to the local environment where have been compiled 

under identical optimization flags. Besides, supercomputers are multi-user 

environments and as a result, their network traffic superimposed to the system noise 

affects the benchmarks execution to some extent, which must be quantified. Since in 

most cases it is unfeasible to have access to a supercomputer in exclusivity, a set of 

repetitions of a given benchmark execution should be done to estimate average 

runtimes of the scientific applications under analysis. Following some initial tests, the 

number of repetitions has been set to 30 times, which turns to be adequate to 

estimate the average execution time and variability. An example of the sensitivity of 
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this approach is shown in Fig. 2 for the rhodopsin benchmark of LAMMPS ran in 

Stampede. Albeit scalability behavior is not homogeneous for this subset of scientific 

applications, which will be shown in what follows, the sensitivity of miniFE and 

bigFFT to the number of repetitions of the tests is similar to LAMMPS, hence 30 

repetitions is also prescribed as adequate and balanced with the available computing 

time in these platforms for the required accuracy. 

 

The statistical dispersion observed for the runtime of the three applications is mostly 

attributed to the network traffic and congestion. Also switches hops are a plausible 

cause to explain this variability. To this respect, fat-tree network visualization tools 

[45] and traffic simulation [46] (it should be stressed that performance depends on 

the job placement and network rooting on fat-tree clusters, besides it is driven by the 

application communication pattern), may provide insight in the involved fat-tree 

network congestion and job interference by other communication-heavy jobs in highly 

utilized HPC clusters.  

The examination of the LAMMPS executions on Stampede, reveals that the 

maximum variability is of about ± 13%. Table 4 includes estimates of the variability 

for the largest ranges of parallelization tested with two releases of LAMMPS. 

Execution of LAMMPS benchmark on the other clusters Helios and Eagle implies an 

interval of variability (see Fig. 3) of about ±17.6% and ±21.6%, respectively. 

 

The combination LAMMPS-Stampede shows that those tests corresponding to the 

largest ranges of parallelization, run with a strongly-distributed pattern, are faster by 

17-22% according to Fig. 4 (above) and the more recent version of LAMMPS tested. 

Comparing this speedup with the variability interval, these are numbers of the same 

order, so a cancellation of such speedup advantage might occur in some runs. 

However, there is a net gain of about 20% in average, as it is shown in Fig. 4. It is 

noted that a set of analogous runs have been carried out with the native version of 

LAMMPS available in Stampede for the users community, in order to check the 

sensitivity of the results to the code version and compilation options. In that case, 

even a faster execution takes place (see Fig. 4, below). 

 

LAMMPS executions in Helios and Eagle show that the strongly-concentrated pattern 

runs faster for large ranges of parallelization (>512 and >216, respectively. See Figs. 
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5 and 6). This is opposite to the behavior observed in Stampede (see Fig. 4). That is, 

Helios and Eagle results imply that it is better to allocate the job within as few nodes 

as possible. For both clusters, an abrupt deterioration of scalability occurs at the 

same time the tendency observed in Stampede is reversed. This sensitivity of the 

runtime to changes in the cluster topology has been reported in [22] also for the 

rhodopsin benchmark, which gives an estimate of about 9%. 

 

A more detailed information is provided in Fig.7, where the averaged contribution of 

the computing cost of the major algorithmic sections of LAMMPS to the total, is 

shown. It is important to notice that the KSpace-section comprises the FFTs, so its 

contribution to the communications must be added to the Comm-section, to correctly 

size the total communications cost. It is seen for Stampede that total communications 

contribution is significant at the largest ranges of parallelization, nevertheless it 

remains bounded under ∼30%. Indeed, the strongly-distributed pattern exhibits a 

quite scalable total communications contribution, which explains the shape of the 

corresponding curve in Fig. 4 (on the contrary, the communication deterioration 

which happens in the strongly-concentrated case from 512 nodes on, justifies the 

observed rise of its execution time). The greater weight of communications, visible in 

Fig. 7 for Helios (∼60%) and Eagle (over 90%), explains the quick drop of 

performance at the higher ranges of parallelization. A straightforward implication of 

such communication-intensive behavior is that task concentration over fewer nodes 

means shorter runtimes and a better scaling of the benchmark.          

    

Out of this behavior observed in Helios and Eagle, one strategy to fight against the 

drop in computational efficiency (as the range of parallelization increases), is to 

enforce concentrated-task mappings. Doing so, the faster runtime will compensate a 

portion of the weak-scaling deterioration. As an example, the parallelization of 2197 

tasks with the LAMMPS-Helios combination shows that applying the strongly-

concentrated mapping leads to a ∼52% speedup in runtime. It is visible in the plots 

that the slower execution due to the weak-scaling drop is the dominant effect in net 

performance loss, but the faster execution by applying a more efficient task-mapping, 

palliates this deterioration to some extent. Computational efficiency of the rhodopsin 

benchmark in several clusters has been already reported in the literature [37], but 
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this study includes its sensitivity to the task-mapping pattern for the first time, to the 

authors’ knowledge. 

 

Prior to introduce the results obtained with the code miniFE executed on the three 

supercomputers, some interesting results inferred from the executions addressed in 

[13] deserve attention. That work, which encompasses the mini-application miniFE 

among a bunch of solvers, is circumscribed to the context of sensitivity to system 

noise. The key aspect is to rebuild the executions information to focus on the 

sensitivity to task-mapping and to show evidence of the tight dependence between 

the execution time and the task-mapping pattern. Figure 8 shows the miniFE 

executed in the CAB cluster (LLNL, USA) [24] under almost ideal conditions (the 

cluster is dedicated and it counts with 1296 compute nodes, so highly distributed 

task-mappings can be achieved). The two curves in Fig. 8 show the weak-scaling 

behavior of miniFE in two opposite scenarios: 2 Processes (tasks) Per Node (in 

short, 2-PPN) and 16-PPN (this last corresponding to a strongly-concentrated 

pattern). At small range of parallelization both curves remain close, but for a large 

number of MPI-tasks, the 2-PPN case experiences a quick rise of the runtime, so a 

performance drop is linked to strongly-distributed patterns. For a 2048-task 

execution, a difference of more than 200% in runtime occurs and the tendency of the 

curves indicates that it would be even bigger at greater scales.  

 

Besides it should be noted that miniFE is an application that weak-scales poorly and 

heavily relies on collective communications [13]. Thus, an adequate task-mapping 

must be identified for the best computational efficiency. Comparison of the 

executions of miniFE carried out on Stampede, Helios and Eagle (see Figs. 9, 10 and 

11) shows that only Eagle exhibits similar behavior to the CAB cluster. On the 

contrary, Stampede and Helios show that strongly-distributed patterns provide higher 

computational efficiency. In Eagle, for a range of parallelization over 128 tasks, 

concentration of task over fewer nodes leads to an improvement. In particular, the 

2048-task experiment shows that the concentrated pattern leads to 250% faster 

executions in average. 

 

Analogous results are obtained with the mini-kernel bigFFT (see Figs. 12 and 13): 

the weak-scaling behavior differs in Stampede and Eagle at scale and as with the 
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miniFE kernel, it runs faster by mapping the jobs (of >256 tasks) in as few nodes as 

possible in Eagle supercomputer. Interestingly, tests in Stampede show that weak-

scaling deteriorates very quickly when the range of parallelization goes over 512 

tasks, as it is visible in Fig. 12. This local, abrupt rise in slope of the curves – quite 

close for the three mappings- may be explained by the inefficient management of 

such number of pencils in the FFTs, or even the participation of extra switch hops 

during runtime.         

 

Executions of bigFFT in Eagle exhibit a steeper loss of computational efficiency over 

the range of parallelization (more evident for the strongly-distributed pattern), which 

peaks over 256 tasks. The strongly-distributed pattern overpasses the runtime of the 

strongly-concentrated pattern in more than ∼140%. Sensitivity to the mapping is 

summarized in Table 6 for two scenarios: very small and large range of 

parallelization, say 16 and 2048 MPI-task jobs.  

 

While the 16-task jobs scenario exhibits an increase of about 200% in the execution 

time when a strongly-concentrated pattern is applied (16-PPN), the opposite behavior 

happens for the 2048-task jobs, which saves more than half the computing time 

when the same strongly-concentrated pattern (16-PPN) is imposed. This runtime 

overhead at scale is mostly linked to the two major communications bottlenecks 

inherent to the pencil-based FFT algorithm, that is: heavy All-to-All communications 

and Point-to-Point calls, which dominate the computing cost.  

 

A clarification must be done regarding the initial slope of the weak-scaling curves  

computed in the bigFFT-Stampede combination. The theoretical computational 

intensity of the 3D FFT is O(N3log(N)). That is, weak-scaling requires, in a first 

approximation, to increase the core count 8 times with each two-fold increase in the 

grid side for each dimension. Or a core count of 2 times for one two-fold increase in 

one dimension of the 3D dataset, which is the strategy here adopted. It is clear that 

the factor log(N) of the scaling rule impedes an ideal weak-scaling and explains the 

non-flat slope shown in Stampede over the range 8 to 512 tasks.   

 

The possibility of applying strongly-concentrated patterns to attain shorter runtimes in 

clusters within some ranges of the parameters involved, suggests a generalization in 
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terms of two major parameters, say the dataset size (domain, grid…), managed by 

each core under weak-scaling; and the range of parallelization. This would lead to a 

kind of characterization for each given application-cluster combination, as shown in 

Fig.14.  This information results to be useful at both users and administrator levels, to 

improve the applications performance and throughput of a cluster.          

 

 

7. CONCLUSIONS 

 

Weak-scaling tests have been used to analyze the role of MPI communications on 

the performance of scientific applications and to identify execution bottlenecks. Three 

applications have been into focus: LAMMPS and two mini-kernels (miniFE and 

bigFFT). Experiments have been designed and run in three fat-tree topology-based 

supercomputers: Stampede at TACC (USA), Helios at IFERC (Japan) and Eagle at 

PSNC (Poland).  

 

The results show that applications runtime strongly depends on the chosen task-

mapping pattern, being the results non-homogeneous for the three clusters. Factors 

that drive this behavior are the cluster topology (rather different regarding the fat-tree 

levels, count of nodes connected to the switches or number of switches), scale of 

execution, network traffic leading to congestion, and load imbalance among others. 

This leads the application to behave in a particular manner in terms of performance.  

In addition, it is difficult to maintain scalable sustained bandwidth on clusters as scale 

goes further because of the topology and network traffic. One plausible cause of the 

differences found in scalability and runtime, is the number of switch hops during 

execution: the larger the number of hops at execution, the higher the runtime 

variation across the tests. The observed effect, which the present investigation 

shows to occur at hundreds of nodes and in the range a couple of thousands of MPI-

tasks for communication-intensive algorithms, is likely to be exacerbated in the 

coming exascale era.  

 

Hence, optimal mappings at extreme scale deserve careful attention to attain better 

computational efficiency in the runs of communication-intensive applications. In this 
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context, topology-aware mapping of tasks is an idea to explore in more detail, to seek 

for the cause of performance drop at scale. Hence, tools for sophisticated job placing 

and task mapping, tailored at particular cluster topologies, would be an asset to 

improve the computational efficiency. In particular, cluster throughput could benefit 

from the implementation of task live-migration in the scheduling policies, which will 

help to clarify if it is worth or not to concentrate the tasks on as few nodes as 

possible. In either case, the conducted experiments are useful to assess the 

correctness of scalability simulators at predicting performance drop or cluster 

efficiency in these types of executions. Further investigation must address a better 

quantification of the compute-to-communication ratio with profilers, as well as the 

weight of the all-to-all and point-to-point communications calls contributions. 

 

Last but not least, LAMMPS is an example of a full-fledged application in comparison 

to the kernels miniFE and bigFFT. These last are very informative since they, 

besides being building blocks of larger, production codes, serve to guide hardware 

and software components decisions. However, the behavior observed in the mini-

applications should be taken cautiously and not to extrapolate it to a production code 

which incorporate the mentioned algorithm as part of its design.  
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Fig. 1 Fat-tree network of supercomputers Stampede (up) at TACC (USA) [27]; Helios 
(middle) at IFERC (Japan) [34]; and Eagle (bottom) at PSNC (Poland) [35].  
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Fig. 2 Mean execution time over the number of executions of LAMMPS in Stampede. 
Execution time is non-dimensionalized with the final mean execution time corresponding to 
30 realizations. Maximum and minimum non-dimensional execution time boundaries are 
plotted. 

 
 
 

                  
 
 
Fig. 3 Variation of the mean execution time when a concentrated pattern is mapped instead 
of a distributed pattern for LAMMPS benchmark in the three clusters: Stampede, Helios and 
Eagle.      
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Fig. 4 Relative mean execution time of LAMMPS in Stampede corresponding to MPI ranges: 
8, 27, 64, 125, 216, 512, 1000 and 2197. The MPI processes have been allocated over the 
nodes with three different mapping patterns (see legend). Execution time is compared for two 
versions of the code: release of November 2016 (up) and release of February 2015 (bottom). 
Reference execution time: 500sec. 
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Fig. 5 Relative mean execution time of LAMMPS in Helios, corresponding to the MPI ranges: 
4, 8, 27, 64, 125, 216, 512, 1000 and 2197. The MPI processes have been allocated over the 
nodes with three mapping patterns (see legend). Reference execution time: 500sec. 

 

          
 
 
Fig. 6  Relative mean execution time of LAMMPS In Eagle, corresponding to MPI ranges: 8, 
27, 64, 125, 216, 512, 1000 and 2197. The MPI processes have been allocated over the 
nodes with three mapping patterns (see legend). Reference execution time: 500sec. 
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Fig. 7  Relative mean contributions of the major algorithmic sections (Pair, Neigh, KSpace 

and Comm) to the execution time of the LAMMPS benchmark in the 3 clusters. 
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Fig. 8 Relative mean execution time of mini-application miniFE in cluster CAB at LLNL (USA) 
corresponding to two process (MPI-tasks) mappings: concentrated pattern (of 16 process-
per-node: 16 PPN); and distributed pattern (2 PPN). (Data post-processed from [13]. 
Reference execution time: 25sec). 

 
 
 
 

               
 
 
Fig. 9 Relative mean execution time of miniFE in Stampede, corresponding to MPI ranges: 4, 
8, 16, 32, 64, 128, 256, 512, 1024 and 2048. The MPI processes have been allocated over 
the nodes with three mapping patterns (see legend). Reference execution time: 84sec. 
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Fig. 10 Relative mean execution time of miniFE in Helios, corresponding to MPI ranges: 4, 8, 
16, 32, 64, 128, 256, 512, 1024 and 2048. The MPI processes have been allocated over the 
nodes with three mapping patterns (see legend). Reference execution time: 343sec 

 
 
 
 

             
 
 
Fig. 11 Relative mean execution time of miniFE in Eagle, corresponding to MPI ranges: 8, 
16, 32, 64, 128 256, 512, 1024 and 2048. The MPI processes have been allocated over the 
nodes with three mapping patterns (see legend). Reference execution time: 266sec. 
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Fig. 12 Relative mean execution time of bigFFT in Stampede, corresponding to MPI ranges: 
8, 16, 32, 64, 128 256, 512, 1024 and 2048. The MPI processes have been allocated over 
the nodes with three mapping patterns (see legend). Reference execution time: 289sec. 

 
 
 

       
 
 
Fig. 13 Relative mean execution time of bigFFT in Eagle, corresponding to MPI ranges: 8, 
16, 32, 64, 128 256, 512, 1024 and 2048. The MPI processes have been allocated over the 
nodes with three mapping patterns (see legend). Reference execution time: 133sec. 
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Fig. 14 Schematic characterization map of a generic combination Application-Cluster under 
weak-scaling. Task-mapping based on strongly concentrated or distributed patterns for 
performance improvement is indicated (point A is set for illustration purposes, it corresponds 
to the LAMMPS-Helios case tested).   
 




