
Nature-Inspired Computation: two cases

University of Seville

Supervised by:

Miguel Ángel Gutiérrez-Naranjo

Miguel Cárdenas-Montes

Pedro García Victoria

December 7, 2021

Acknowledgements

I would like to thank all those people who have helped me throughout this academic
year, either directly or not.

In the first place, the authors of this master’s thesis, Miguel Ángel and Miguel.
They have been available for any consultation even on their free time. Thanks to
them, I have felt like a researcher, and that is something for which I will always be
grateful.

To Matteo Cavaliere, another great source of inspiration.

To Nicole, who still has the infinite patient to live with me.

To Marta and Alberto, my best friends, who always have the right advice.

And last but not least, I have to thank my parents infinitely, who have been (and
still are) the main promoters of what I am today.

Thanks to all.

1

Abstract

This work contains the result of two research lines that have ended up being sub-
mitted (one of them accepted and the other one is still under revision) to journals.
On the one hand, Optimizing neural networks architectures with PBIL proposes a
methodology to optimize the hyperparameters of the Inception-A block of Incep-
tion network. The main contribution is a special codification for the individuals
being evolve that allows to skip the creation (hence, the evaluation) of non-valid
individuals based on the requirements of this problem. Thus, this methodology is
aware of the carbon footprint produced by many AI applications. In order to train
and validate models, MNIST dataset is used. Results show this methodology can
generate high-quality hyperparameters without explicitly search the complete space
defined by the hyperparameters.

On the other hand, Evolutionary Game Theory in a Cell: A Membrane Com-
puting Approach proposes a general way to encode Evolutionary Game Theory into
Membrane Computing and a novel computational framework which can be used
to study, analyze and simulate the spreading of behaviours in structured popula-
tions organized in communicating compartments. In order to test the framework,
two classic EGT games are used: Prisoner’s dilemma and Snowdrift game. The
proposed approach allows to simulate populations organized in different compart-
ments, allowing the study of the dynamics of populations that interact with each
other. Results shows the spreading of behaviours in three cases: Prisoner’s dilemma,
Snowdrift game and both games encoded in different membranes. As expected, re-
sults show that different behaviours (cooperators and defectors) can co-exists in the
Snowdrift game, while in the Prisoner’s dilemma, the population is mostly composed
by defectors.

2

Motivation

This work was to be titled Optimizing neural networks architectures with PBIL.
Nevertheless, thanks to the opportunities that have been presented to me this year,
this master’s thesis includes the work carried out in two research projects in which
I have been involved. On the one hand, the original purpose of this master’s thesis:
Optimizing neural networks architectures with PBIL. On the other hand, the research
in which Evolutionary Game Theory and Membrane Computing are combined to
propose a family of P Systems to simulate population dynamics. The work have been
titled: Evolutionary Game Theory in a Cell: A Membrane Computing Approach.

When I started my master’s studies, I decided to choose as my thesis the topic
entitled Optimizing neural networks architectures with PBIL. Mainly, I made the
decision for be a topic inspired by nature. Since I had my first contact with genetic
algorithms, nature-inspired computing has always been of my interest.

In December 2020, we started working on the selected topic. After several months
of hard work, we were able to complete the job with satisfactory results, so we
decided to submit it for publication in the Logic Journal of the IGPL. The paper
has been reviewed and accepted for publication.

After a few weeks, Miguel Ángel and Miguel, together with Matteo Cavaliere,
suggested that I work with them again on a new topic. The idea was to some-
how combine Evolutionary Game Theory and Membrane Computing. After several
meetings and brainstormings, we managed to shape ideas into something that could
be interesting for the community. Thanks to the efforts made, we were able to im-
plement those ideas and decided to send this work for publication to the special issue
about Membrane Computing of the journal Information Sciences. At the moment,
this work is being reviewed, but we trust it will end up being accepted.

Why Nature-Inspired Computation: two cases as title? Both articles have (at
least) one thing in common: they use nature-inspired methods. PBIL algorithm be-
long to the so-called evolutionary algorithms (like Genetic Algorithms or Evolution
Strategies) which are based on the id

Finally, this master’s thesis collects the content of the two articles proposed to
present: PBIL for optimizing Inception Module in Convolutional Neural Networks
and Evolutionary Game Theory in a Cell: A Membrane Computing Approach. In
addition, methods used throughout the works are extended with relevant information
about the problems.

Without a doubt, for me it has been one of the best experiences I have had, I
have learned a lot, both from the topics covered and the way in which investigation
is done.

3

Contents

1 Introduction 5

2 Optimizing neural networks architectures with PBIL 6

2.1 Introduction . 6
2.2 Methods . 7

2.2.1 Convolutional Neural Networks 7
2.2.2 Inception Network . 8
2.2.3 Population-based Incremental Learning 9
2.2.4 Gray Coding . 13
2.2.5 Gray-Code of Hyperparameters of Inception Module 14
2.2.6 Statistics . 17

2.3 Results . 19
2.3.1 Evolving Inception . 19
2.3.2 Results Comparison and Statistical Tests 23

2.4 Conclusions . 24

3 Evolutionary Game Theory and Membrane Computing 26

3.1 Introduction . 26
3.2 Methods . 27

3.2.1 Probabilistic P systems . 27
3.2.2 Evolutionary Game Theory in P Systems 28
3.2.3 MeCoSim . 43

3.3 Experimentation and Results . 43
3.4 Conclusions . 48

4 Final thoughts 50

Referencias 51

4

1 Introduction

Since the beginning of time, humans have needed nature to survive. In order to feed
themselves, humans first had to learn to gather aliments and hunt animals, later,
to till the land. In order to get water to places where the rain was not enough, had
to learn to channel it in a proper way. For thousands of years, human knowledge
has been extracted directly from nature. For this reason, the human being is not
just another natural being, the intellectual capacity together with the knowledge
obtained thanks to its relationship with nature has allowed it to evolve in a more or
less good way.

Humans of all ages have been inspired by nature to carry out their work and
research. Today it is easy to see the mark they have left just by looking around us.
Some of the modern transports, such as the train or the plane, are clearly inspired
by animals. In addition, buildings structures and materials are in part deriving
from nature. In computer science, there are tons of algorithms or methodologies
inspired by nature. Maybe, the area of meta-heuristic algorithms could be the most
influenced: Genetic Algorithms, Particle Swarn Optimization, Cuckoo Search, and
so on.

In this work, the main methods used are clearly inspired by nature. On the one
hand, Population-based Incremental Learning (PBIL) is inspired by the evolution-
ary process present in nature and proposed by Darwin. PBIL is an optimization
method which combines genetic algorithms with competitive learning [1] [2]. Instead
of evolve individuals like in Genetic Algorithm (GA) or similar evolutionary algo-
rithms in which a population is generated by specific operators (e.g. reproduction,
crossover, etc) over the individuals, the probability distribution of information ap-
pearance in genes is made evolve. On the other hand, Membrane Computing uses as
a source of inspiration the plasma membrane structure present in cells. Membrane
Computing is the result of the effort by many scientists for surpassing the barrier of
the electronic computers. Bio-inspired computational models have proven to be an
important alternatives that allow solving NP-complete problems in a linear time.

The PBIL for optimizing Inception Module in Convolutional Neural Networks
paper proposes an attempt to optimize the architecture of the Inception module
(presented in Inception neural networks). PBIL algorithm is used as the metaheuris-
tic to optimize such architecture and MNIST dataset as benchmark to validate the
resulting models. The main contribution is a special codification applied to the
individuals in order to not process some deep learning architectures that are not
considered in this work. For instance, another contribution is the awareness of the
carbon footprint trying to save CPU cycles.

The paper Evolutionary Game Theory in a Cell: A Membrane Computing Ap-
proach proposes a general way to encode Evolutionary Game Theory into Membrane
Computing. The main contribution is a novel computational framework which can
be used to study, analyze and simulate the spreading of behaviours in structured
populations organized in communicating compartments. To develop the proposed

5

model and to simulate it, P-Lingua programming language and MeCoSim are used.
This work is organized as follows: Section 2 develops the PBIL for optimizing

Inception Module in Convolutional Neural Networks paper. In Section 3, the paper
Evolutionary Game Theory in a Cell: A Membrane Computing Approach is depicted.
In the last Section 4 the final thoughts are commented and future work proposed.

2 Optimizing neural networks architectures with PBIL

2.1 Introduction

Computer vision is one of the areas with a larger portfolio of successful applications
in Deep Learning. Part of this success stems from the use of relatively simple
convolutional structures which are in turn repeated with small variations, until very
deep architectures are built. One of the most used structures is the Inception module
[3].

From the first implementation, Inception module has been altered by new pro-
posals, which maintain the essential of the module: several parallel branches of
convolutional blocks, including stack of blocks, with different kernel sizes and a
maxpooling or average pooling layers (see [4] for a review). In all the cases the
choice of the kernel sizes and the number of kernels are inherited from the refer-
ence publications and in few times alternative sizes are evaluated. In part, this is
restricted for the computational cost of the hyperparameters optimization process.
Inception network will be introduced with details in Section 2.2.2.

In this work, an implementation of Population-based Incremental Learning (PBIL)
[1, 2] is used to choose the hyperparameters of the Inception-v4 module. The final
objective is to evaluate the suitability of the kernel and filter configurations in this
module, and alternatively to propose other high-quality configurations. The classifi-
cation of the MNIST dataset [5] of handwritten digit images is used as a benchmark
for this purpose. The choice of this classification benchmark comes from its wide
diffusion in the Deep Learning community. Thus, the use of MNIST as benchmark
allows to explore suitable configurations found by the evolutionary algorithm used
to optimize the Inception module, moreover, the use of a well-known dataset as
MNIST will help to an easy dissemination among the community proposals.

PBIL is a population-based evolutionary algorithm, in which the probability of
presence of certain information in genes (e.g. in a binary sequence the probability
of appearance of a ’1’ in genes) is evolved. In the current problem, this informa-
tion includes the three kernel sizes (among branches in the Inception block), the
filter sizes, the max-pooling size in the Inception block, as well as the number of
consecutive Inception blocks (see Section 2.2.5 and Fig. 4 for further details).

Hyperparameters under optimization by PBIL evolutionary process are binary
encoded. In order to avoid Hamming cliffs1, Gray coding is used to encode the

1Hamming cliff is a problem presented in some evolutionary algorithms in which adjacent dec-

6

hyperparameters to be optimized (see Section 2.2.5). With Gray coding, adjacent
numbers differ only in one, in terms of Hamming distance. Thus, Gray coding aims
at removing barriers in the hyperspace searched by the evolutionary process. Some
of this concepts will be detailed in the next sections.

Green artificial intelligence pledges for reducing the carbon footprint of their
algorithms [6]. The scientific literature alerts that the training of deep architectures
involves the emissions of the equivalent five times the lifetime of an average car,
including its manufacturing [7]. Our proposal is aware of AI carbon footprint, and
for this reason, policies for minimizing the unwanted evaluations of individuals are
implemented.

Inside the Inception rationale, the branches are configured with different kernel
sizes. The different sizes of the receptive fields in Convolutional Neural Networks
(CNN) aim to capture information at different scales: the larger the receptive field,
the more generic are the features extracted from the images; whereas in the opposite
sense, the smaller the kernel sizes, the more local are the features extracted.

For this reason, it is reasonable to avoid the evaluation of individuals with du-
plicated kernel sizes. For avoiding the evaluation of these individuals with repeated
kernel sizes in different branches, policies have been implemented in association with
the Gray coding (see Section 2.2.5).

This proposal is inspired by previous efforts for improving the performance of
the forecasting of the 222Rn time series at Canfranc Underground Laboratory (LSC)
and air quality. In the past, diverse machine learning algorithms have been used for
this purpose, including Multilayer Perceptron, Convolutional Neural Networks, and
Recurrent Neural Networks [8, 9, 10, 11, 12].

In [9], an implementation using STL decomposition and CNN for improving the
forecasting capacity is presented with promising results, but penalized by the large
number of hyperparameters to select based on the practitioners expertise. In order
to select the most suitable hyperparameters set, an optimization process based on
PBIL was proposed in [13]. Due to the positive results achieved, in the current work
we proposed to adapt the methodology to the optimization of the Inception module.

This section is organized as follows: Section 2.2 gives a brief description of the
techniques used in this work. In Section 2.3 the results are shown and analysed.
Finally, Section 2.4 contains the conclusions of this work.

2.2 Methods

2.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are Neural Networks with special emphasis
in image processing [14] [15], although they are also used in time series analysis and
forecasting [8, 9, 16, 17].

imal numbers have a large Hamming distance. For example, 7 and 8 have binary representations
0111 and 1000, respectively, and have a Hamming distance of 4

7

The CNN consist of a sequence of convolutional layers, the output of which is
connected only to local regions in the input. These layers alternate convolutional,
non-linear and pooling-based layers which allow extracting the relevant features of
the class of objects, independently of their placement in the data sample. The CNN
allows the model to learn filters that are able to recognize specific patterns, and
therefore they can capture richer information.

One of the main characteristics of convolutional layers is local connectivity. In a
multilayer perceptron, each input is connected with every neuron of the first layer.
When processing images, every pixel is connected to every neuron, so each neuron
is getting information of the whole image. This is impractical and highly expensive
computationally. Instead, convolutional layers connect each neuron to local regions
of the input. The spatial size (width and height) of this local regions is called kernel
size and extents along the depth axis which is equal to the depth of the input.
In order to control the number of parameters, convolutional layers use parameter
sharing. Parameter sharing constraint the number of parameters in every local
connectivity of the same depth, so the number of parameters is shared by each
spatial position in every 2d-dimensional depth.

In classification problems, the last layer of a CNN is usually one or more fully-
connected layers that end up in a dense layer with softmax function as the activation
of neurons. In this way, the output of the network is the probability distribution
over the classes.

2.2.2 Inception Network

Inception network is a deep neural network architecture with a focus on efficient
rather than only accuracy. This makes the architecture suitable to use it in real
world problems and devices with limited resources. Nevertheless, Inception network
has been the state of the art for many mainstream problems, like classification and
detection problems in the ImageNet Large-Scale Visual Recognition Challenge 2014
(ILSVRC14) [3]. Inception was proposed by Christian Szegedy et al. in [3] with a
main objective: to maintain constant a previously defined computational budget.

Before Inception, the state of the art for problems like classification, object
detection or human pose estimation, usually stacked convolutional, pooling and
fully connected layers. In larger datasets such as Imagenet, the trend has been to
increase the number of layers and its size, resulting in an increased accuracy but also
adding computational cost. To address the problem of overfitting dropout layers or
batch normalization layers are mandatory. Although stacking layers allow to obtain
a very high precision, the number of parameters is too high and the training becomes
inefficient.

The Inception architecture is organized in modules or blocks. Each module is
formed by convolutional and pooling layers, organized in parallel. In that way, the
output of every layer is represented as a tensor that will be the input for the next
module (or layer).

8

The first version of Inception module could capture the optimal sparse struc-
ture, but it was computationally expensive. It was formed by convolutions of 5x5,
3x3 and 1x1, resulting in a high number of parameters. Guided by this problem,
the authors added 1x1 convolutions before the 3x3 and 5x5 convolutions and after
pooling layers. The 1x1 convolution allows to reduce the dimension of the input in
the filter dimension. This was based on the success of embeddings: even low dimen-
sional embeddings might contain a lo of information [3]. One of the main beneficial
aspects of the Inception architecture is that it allows for increasing the number of
layers at each stage without an uncontrolled blow-up in computational complexity
[3].

In the last version, Inception-v4, the 5x5 convolutional layer is replaced by two
3x3 convolutional layers concatenated. The reason behind this change is that con-
volutions with larger spatial filters are much more computationally expensive. The
two 3x3 concatenated convolutions can be seen as a mini-network that can capture
relevant information — similar to 5x5 convolution — but a lower number of pa-
rameters [18]. Another change incorporated in Inception-v4 was a different stem
module. The stem module refers to the initial operations performed over the input
data before the Inception blocks. Usually, stem module is customize depending on
the problem being solve, but, in the original Inception-v4 implementation use in [4],
the stem module is composed by a concatenation of some convolutional and max
pooling layers (see Figure 1). In this work, stem module is only one 3x3 convolution
with 32 filters (will be depicted in the next sections).

There are four types of Inception modules. Inception-A block has four branches:
average pooling layers followed by 1 × 1 convolution, 1 × 1 convolution, 1 × 1 con-
volution followed by 3× 3 convolution and 1× 1 convolution followed by two 3× 3
convolutional layers. This is the module used throughout the work and it will be op-
timized using PBIL algorithm. Inception-B block uses asymmetrical configurations
of the kernels sizes, such as: 1 × 7 followed by 7 × 1. Inception-C block also uses
asymmetrical configurations, but with kernel size 3 × 3. In the original Inception
network, this modules are combined and formed the whole network. In [4] authors
proposed a good configuration regarding the number of filters.

2.2.3 Population-based Incremental Learning

Population-based incremental learning (PBIL) is an optimization method which
combines genetic algorithms with competitive learning [1] [2]. It belongs to the
so-called estimation of distribution algorithms (EDAs). Instead of making evolve
individuals like in Genetic Algorithm (GA), the probability distribution of informa-
tion appearance in the genes is made evolve. The specific operators of PBIL operate
over these probability distributions.

In order to represent the probability distribution, PBIL algorithm uses a prob-
ability vector. In the case of a binary encoded individual, the probability vector
specifies the probability of appearance of a ’1’ in each bit position. The probability

9

Figure 1: Stem module of the original implementation of Inception-v4 network.
Figure extracted from [4].

of appearance of a ’0’ is just 1.0 minus the probability of a ’1’. Instead of managing
a population of individuals and transforming them every generation to obtain a new
population as in GA, the probability vector defines the population from which new
individuals can be drawn. Hence, the operations of PBIL are not defined on the
population, but over the probability vector. As the population represented by the

10

probability vector is not unique, the diversity in search is maintained in successive
generations.

Population #1

Representation

0011

1100

1100

0011

[0.5, 0.5, 0.5, 0.5]

Population #2

Representation

1010

1100

1100

1100

[1.0, 0.75, 0.25, 0.0]

Population #3

Representation

1010

0101

1010

0101

[0.5, 0.5, 0.5, 0.5]

Figure 2: The probability representation of 3 small populations of 4 individuals. No-
tice that the first and third representation for the population are the same, although
the populations each represents are entirely different [1].

The optimization process performed by PBIL has four crucial steps:

1. Generate population: M individuals are generated according to probabil-
ities in the probability vector. The probability vector is initialized with 0.5
values, so every individual is randomly chosen. This is similar to the first step
in GAs, where a population of individuals is randomly initialized, ensuring the
exploration of the solutions space.

2. Evaluate individuals: Every generated individual is evaluated using a fitness
function defined according to the problem requirements. The best individual
(or top N individuals) are selected based on their fitness score.

3. Update probability vector: The probability vector is updated using the
best individual (or the top N individuals). The update rule is shown in equa-
tion 1. The top N individuals is a parameter of the algorithm. Some imple-
mentations also uses the N worst individuals to update the probability vector,
receding from them.

4. Mutate probability vector: if mutation is applied, the probability vector
is shifted by an amount in a randomly chosen direction. This amount is one
of the parameters of the algorithm.

These steps are repeated until stopping criterion is satisfied. Usually, the stop-
ping criterion is defined as the number of iterations or generations. But others, like
a minimum fitness score, could be used.

The probability update rule is similar to the weight update rule in a competitive
learning network when an output is moved towards a particular sample point [1].
The probability update rule is defined as follows:

11

probabilityi = (probabilityi × (1.0− lr)) + (lr × individuali) (1)

where probabilityi is the probability of generating a ’1’ in position i, lr is the learning
rate and individuali is the ith position in the solution vector. As it can be observed,
when there is a ’1’ in the ith position of the solution vector, the probability is moved
towards 1.0 and when there is a ’1’ in the ith position, the probability is moved away
from 1.0. One of the problem of GA is the premature convergence and it is also
presented in PBIL. Nevertheless, the learning rate parameter helps to avoid the
premature convergence controlling how fast the probabilities are moved towards 0.0
or 1.0 (similar to the learning rate in neural networks).

Algorithm 1 Population-based Incremental Learning
p← initialize probability vector with 0.5 values
while Generations 6= 0 do

individuals← generate individuals according to probabilities in p
evaluations← evaluate individuals using the fitness function
best← find individual with maximum evaluation
for i← 0 to length(p) do

pi ← pi × (1.0− lr) + besti ∗ lr . update probabilities
end for
for i← 0 to length(p) do

if apply mutation then
pi ← pi × (1.0−ms) + random(0.0 or 1.0) ∗ms

end if
end for

end while

In order to perform extensive search, PBIL implements mutation. Mutation can
be performed on the individuals drawn from the probability vector, in a similar way
as GAs does. Another method is to perform mutation directly in the probability
vector, shifting the probability of every position by an small amount. Mutation is
only applied sometimes, using a parameter to decide it.

In our proposal, the individuals are represented by binary sequences of a fixed
length and they are randomly initialized with a probability of 0.5. The binary
sequence is formed by the concatenation of the binary codification of every hyper-
parameter under optimization. After their evaluation, the most suitable individuals
are selected for updating the probability distribution, which represents the informa-
tion under optimization. Then, based on the update probability distribution, a new
generation of individuals is created, and again evaluated. The cycle is repeated and
after some generations, the population converges to a set of high-quality individuals.

The fitness function is defined as the Sparse Categorical Crossentropy of a single
execution over the validation set of the CNN defined with the hyperparameters
codified by the individual. The evaluation of the individual, and hence of the CNN, is

12

performed with a single epoch. Although this seems to be prone to underfit the deep
architecture, later it is shown as an appropiate strategy to save computational time,
at the same time that it does not critically penalize the performance of the network.
In this work, PBIL is configured as follows: population size of 10 individuals evolving
during 20 generations, and the mutation probability is 0.05. When mutation is
applied, the probability vector is shifted by an amount of 0.1 in a randomly chosen
direction. The three best and the three worst individuals are selected for updating
the probability distribution. The updated probability distribution approaches the
configuration of the best individuals, at the same time that it recedes from the
worse ones. Thus, the individuals of the next generation inherit more likely high-
performance configurations. The choice of the population size and the number of
generations stems from the computational intensity of the problems. Larger values of
these parameters made the evolutionary strategy unfeasible with the computational
resources available (Google Colab Free). The mutation probability and the shifted
amount have been established taking into account two information sources, on the
one hand the previous work with PBIL in [13], and on the other hand a restricted
greedy search around the previous best parameters. Finally, the choice of the three
worst and best individuals for updating the probability distribution comes from the
previous choice of the population size with only 10 individuals.

2.2.4 Gray Coding

Gray coding is a type of binary coding proposed by the physicist Frank Gray. It is
usually used in order to avoid Hamming cliffs. A Hamming cliff is formed when two
numerically adjacent values have bit representations that differ in more than one
by using the Hamming distance. For example, numbers 3 and 4 have a Hamming
distance of 3 in binary representation: 0011 and 0100.

Decimal Binary Gray

0

1

2

3

4

5

6

7

0000

0001

0010

0011

0100

0101

0110

0111

0000

0001

0011

0010

0110

0111

0101

0100

Figure 3: Gray coding for the first eight numbers.

Evolutionary algorithms that deal with discrete spaces can struggle if two consec-
utive individuals have bit representations that are far apart by using the Hamming
distance, degrading the performance of the algorithm. The change of one unit —

13

involving diverse bits— in a parameter under optimization requires a large amount
of simultaneous modifications of the binary coding, but not in Gray coding.

In order to avoid Hamming cliffs, the Inception-module parameters are Gray-
coded before the optimization process.

2.2.5 Gray-Code of Hyperparameters of Inception Module

In Fig. 4 the schema of the Inception-v4 module is depicted. In this schema, the
elements that are handled by the PBIL algorithm, and therefore could be altered,
are pointed with red rectangles. As it can be observed, in all layers the number of
filters can be modified by PBIL.

In our approach, most of the kernel sizes are optimized by PBIL although some
kernels with size 1 × 1 are kept frozen. Behind this decision is the own nature of
1 × 1 convolutional operation. It allows to reduce the computational intensity by
shrinking the number of channels of the tensor of data, at the same time that capture
image features at a very local scale.

Some constraints are implemented in the evolutionary algorithm. For instance, in
the right-hand branch the kernels sizes of the two convolutional layers have the same
configuration. Besides, except for the left-hand branch for which only the average
pooling size is evolving, for the other three branches the kernel sizes are forced to be
different. Thus, configurations with equal kernels sizes in any of these three branches
are excluded. This aims at capturing features at different scales. Asymmetrical
configurations of the kernels sizes, such as: 1 × 7 used in some Inception modules
(see [3]) are not considered in this work (though are part of future work).

An additional hyperparameter controls the number of Inception-A blocks that
are stacked in the final architecture. This hyperparameter is also handled by PBIL,
and it can take values from 1 to 3.

As it has been mentioned, the three right convolutional branches of the Incep-
tion module are forced to have different kernels sizes. They are identified by a
Gray-coded 3-tuple. In order to reduce the carbon footprint of the invalid tuples
(i.e. tuples with repeated kernels sizes), a codification that avoids its generation is
implemented. This could be done by penalizing their fitness score after their evalu-
ation, but the computational cost would be higher and those configurations would
still be processed.

The range of the possible kernels sizes is restricted to {3,5,7,9,11}. By avoiding
the repetitions the search space is drastically reduced. Since 5 different kernels sizes
are allowed, if repetitions are allowed, 53 = 125 3-tuples should be considered. If no
repeated sizes are allowed, only 5× 4× 3 = 60 3-tuples are considered.

The key point for avoiding Hamming cliffs by Gray coding is to order the binary
sequences in such a way that two consecutive sequences are at Hamming distance
one. In this work, the same idea is considered for ordering the 3-tuples of the
kernel sizes of the Inception blocks. The idea is the following: If C1 and C2 are two

14

Figure 4: Schema of Inception-v4 module. Red rectangles indicate the elements of
the configuration of this module that are being manipulated by the PBIL algorithm.
This schema can be replicated up to 3 times for conforming the final architecture.

consecutive Gray codings, then their associated 3-tuple of sizes T1 and T2 are also at
Hamming distance 1.

In order to reach this target, an abstract general graph G is constructed. The
nodes of the graph are the 60 possible 3-tuples of sizes and there is an edge between
two nodes if the corresponding 3-tuples are at Hamming distance 1 (see Fig. 5).
Any possible Hamiltonian path in this graph provides an ordering of the 60 3-tuples
satisfying that two consecutive tuples are at Hamming distance 1. In particular,
the ordering shown in Table 2 is one of the possible Hamiltonian paths and satisfies
such condition.

Finally, both sequential orderings, the six-bits Gray codings and the Hamiltonian
path of 3-tuples satisfy that any the pairs of consecutive elements are at Hamming
distance one. In order to compute the fitness value during the evolutionary process,
each six-bit Gray coding has associated a 3-tuple and hence a neural network with
a particular Inception-A configuration. In this work, 64 six-bits encodings and 60
3-tuples are considered. The approach is to map the three first six-bits encodings to

15

the first tuple of the Hamiltonian path and to map the three last six-bits encoding to
the last 3-tuple (i.e., we consider that ’000000’, ’000001’ and ’000011’ are encodings
of the tuple ’(11,5,7)’ and ’100011’, ’100001’ and ’100000’ are encodings of the tuple
’(5,3,9)’ (see Tables 1 and 2, and Fig. 5). The remaining 58 six-bit codings are
bijectively mapped to the 58 3-tuple in natural order.

Table 1: Since 60 tuples must be encoded in binary form, at least six bits are
necessary to reach 26 = 64 encodings. This Table shows such 64 encodings ordered
according to the Gray algorithm to avoid Hamming cliffs. Let us note that for each
n, the n-th and the n+ 1-th codings are at Hamming distance 1.

[000000, 000001, 000011, 000010, 000110, 000111, 000101, 000100, 001100,
001101, 001111, 001110, 001010, 001011, 001001, 001000, 011000, 011001,
011011, 011010, 011110, 011111, 011101, 011100, 010100, 010101, 010111,
010110, 010010, 010011, 010001, 010000, 110000, 110001, 110011, 110010,
110110, 110111, 110101, 110100, 111100, 111101, 111111, 111110, 111010,
111011, 111001, 111000, 101000, 101001, 101011, 101010, 101110, 101111,
101101, 101100, 100100, 100101, 100111, 100110, 100010, 100011, 100001,
100000]

Once decided the codification of the kernel sizes, the remaining hyperparameters
must also be encoded. Each individual encodes all the hyperparameters needed to
describe a neural network with the Inception-A module. Beyond the kernel sizes,
the remaining hyperparameters to be encoded are the following (bX represents the
branch X in the Inception-A module scheme —from left to right— and lY stands
for the layer Y in the corresponding branch —from bottom to top— (see Figure 4).

• Branch 1: b1_l1_pool_size, with allowed values from 2 to 5 and
b1_l2_filters, with allowed values the pairs from 32 to 256.

• Branch 2: b2_l1_filters, with allowed values the pairs from 32 to 256 and
b2_l1_kernel with allowed values the odds from 3 to 11.

• Branch 3: b3_l1_filters, with allowed values the pairs from 32 to 256,
b3_l2_filters, with allowed values the pairs from 32 to 256 and
b3_l2_kernel with allowed values the odds from 3 to 11.

• Branch 4: b4_l1_filters, b4_l2_filters, and b4_l3_filters, with allowed
values the pairs from 32 to 256; and b4_l2_kernel and b4_l3_kernel with
the same value from odds from 3 to 11.

• Number of inception modules concatenated: num_inception_modules, with
allowed values [1,2,3].

16

Table 2: Ordering of the 60 3-tuples of kernel sizes obtained as a Hamiltonian path.
Let us remark that each pair of consecutive 3-tuples are at Hamming distance 1.

[(11, 5, 7), (11, 9, 7), (11, 9, 5), (11, 9, 3), (11, 7, 3), (11, 7, 9), (11, 7, 5),
(11, 3, 5), (11, 3, 9), (11, 5, 9), (11, 5, 3), (9, 5, 3), (9, 11, 3), (9, 11, 7),
(9, 11, 5), (9, 7, 5), (9, 7, 11), (9, 7, 3), (5, 7, 3), (5, 11, 3), (7, 11, 3),
(7, 11, 9), (7, 11, 5), (7, 9, 5), (7, 9, 11), (7, 9, 3), (7, 5, 3), (7, 5, 11),
(9, 5, 11), (9, 5, 7), (9, 3, 7), (11, 3, 7), (5, 3, 7), (5, 11, 7), (5, 11, 9),
(5, 7, 9), (5, 7, 11), (5, 9, 11), (5, 9, 3), (5, 9, 7), (3, 9, 7), (3, 11, 7),
(3, 11, 9), (3, 11, 5), (3, 9, 5), (3, 7, 5), (3, 7, 9), (3, 7, 11), (3, 9, 11),
(3, 5, 11), (3, 5, 7), (3, 5, 9), (7, 5, 9), (7, 3, 9), (7, 3, 11), (7, 3, 5),
(9, 3, 5), (9, 3, 11), (5, 3, 11), (5, 3, 9)]

As pointed above, each individual of the population consists on the concatena-
tion of the Gray coding of these hyperparameters. For example, if the following
hyperparameters are chosen:

b1_l1_pool_size : 3, b1_l2_filters : 116
b2_l1_filters : 118, b2_l1_kernel : 7
b3_l1_filters : 228, b3_l2_filters : 210
b3_l2_kernel : 5, b4_l1_filters : 120
b4_l2_filters : 160, b4_l2_kernel : 3
b4_l3_filters : 184, b4_l3_kernel : 3
num_inception_modules : 3

then, the concatenation of the Gray codings of the sequence [3, 116, 118, 228, 210,
120, 160, 184, 37, 3] is the corresponding individual, namely

101001110100110110010110101110111000100111100001110010011011110

It should be noted that kernel sizes are not present in the sequence in an explicit
way. They are encoded as the index of the 3-tuple (7, 5, 3) in the Hamiltonian path
considered. Particularly, the former individual is the best individual produced by
the evolutionary process (see Tabular).

In order to decode the individuals, they are divided into hyperparameters and
each of them is decoded by using the Gray decoding algorithm (see Figure 7).

2.2.6 Statistics

In order to ascertain if the proposed forecasting methods applied to the test set
improve the prediction, two different types of tests can be applied: parametric and
non-parametric. The difference between both relies on the assumption that data

17

(3, 5, 7)

(3, 5, 9)

(3, 5, 11)

(3, 7, 5)

(3, 7, 9)

(3, 7, 11)

(3, 9, 5)

(3, 9, 7)

(3, 9, 11)

(3, 11, 5)

(3, 11, 7)

(3, 11, 9)

(5, 3, 7)

(5, 3, 9)

(5, 3, 11)

(5, 7, 3)

(5, 7, 9)
(5, 7, 11)

(5, 9, 3)

(5, 9, 7)

(5, 9, 11)

(5, 11, 3)

(5, 11, 7)
(5, 11, 9)

(7, 3, 5)

(7, 3, 9)

(7, 3, 11)

(7, 5, 3)

(7, 5, 9)

(7, 5, 11)

(7, 9, 3)

(7, 9, 5)

(7, 9, 11)

(7, 11, 3)

(7, 11, 5)

(7, 11, 9)

(9, 3, 5)

(9, 3, 7)

(9, 3, 11)

(9, 5, 3)(9, 5, 7)

(9, 5, 11)

(9, 7, 3)

(9, 7, 5)

(9, 7, 11)

(9, 11, 3)

(9, 11, 5)

(9, 11, 7)

(11, 3, 5)

(11, 3, 7)
(11, 3, 9)

(11, 5, 3)(11, 5, 7)

(11, 5, 9)

(11, 7, 3)

(11, 7, 5)

(11, 7, 9)

(11, 9, 3)

(11, 9, 5)

(11, 9, 7)

Figure 5: Graph with 60 nodes, where the nodes are labelled with the 3-tuples of
kernel sizes (without repeated sizes). There is an edge between two nodes if and only
if the corresponding 3-tuples are at Hamming distance 1. Any Hamiltonian path in
this graph provides a sequence of the 60 3-tuples where two consecutive ones are at
Hamming distance 1 (see Table 2).

are normally distributed for parametric tests, whereas non explicit conditions are
assumed in non-parametric tests. For this reason, the latter is recommended when
the statistical model of data is unknown [19] [20]. The Kruskal-Wallis test is a
non-parametric test used to compare three or more groups of sample data. For this
test, the null hypothesis assumes that the samples are from identical populations.
The procedure when using multiple comparison to test whether the null hypothesis
is rejected implies the use of a post-hoc test to determine which sample makes the
difference. The most typical post-hoc test is the Wilcoxon signed-rank test. The
Wilcoxon signed-rank test belongs to the non-parametric category. For this test, the
null hypothesis assumes that the samples are from identical populations, whereas
alternative hypothesis states that the samples come from different populations. It is

18

Kernel tuples
generation Graph creation Hyperparameters

coding

Best promising model
selection

Training with early
stopping

Hamiltonian path
selection

Individual formationPBIL optimization

Model evaluation

Figure 6: Steps performed by the proposed approach to reach a high quality model
over the MNIST dataset.

101001110100110110010110101110111000100111100001110010011011110

10 1001110 1001101 10010110 10111011 1000100 11110000 11100100 110111 10

3 116 118 228 210 120 160 184 37 3

Gray coding to decimal

Figure 7: Decodification of an individual. The process to decode an individual
perform Gray coding to decimal decodification. Particularly, this individual is the
best individual produced by the evolutionary process in this work.

a pairwise test that aims to detect significant differences between two sample means.
If necessary, the Bonferroni correction can be applied to control the Family-Wise
Error Rate (FWER). FWER is the cumulative error when more than one pairwise
comparison (e.g. more than one Wilcoxon signed-rank test) is performed.

2.3 Results

2.3.1 Evolving Inception

In this work, several hyperparameters of the Inception-A module are optimized using
PBIL algorithm. As mentioned above, each combination of hyperparameters inde-
tifies a particular neural network using this module. The first layer is a simple 2D
convolutional layer that plays the role of the stem module of the Inception network.
The stem module refers to the first operations performed before the Inception-A
blocks. After the stem module, 1 to 3 Inception-A blocks are concatenated based on
the hyperparameters represented by an individual. The output of the last block is
flattened and connected to a dropout-dense-dropout-dense group of layers. The out-
put is a dense layer with softmax as the activation function. In Figure 10 the neural

19

network architecture proposed is detailed. The hyperparameters of the proposed
network (not including Inception-A block ones) are the same for every individual
evaluated (see Section 2.2.5). In this way, can compare the effect of the hyperpa-
rameters of Inception-A block on the network performance.

Due to computational intensity, during the execution of the PBIL algorithm, a
reduced data set — composed of 104 examples — are used as the training set. The
validation and test sets are composed of 104 examples for the evolutionary strategy.
The same validation and test sets are also used during the production (i.e. when
the final individual is trained and evaluated on the complete training set). This
helps to avoid data leaks, namely that examples could be in the training set in the
evolutionary process and in the test or the validations sets in the production. During
the production, the best individual (the most promising model) is trained using the
complete training set, containing a total of 5 · 104 examples.

During the evolutionary process performed by PBIL algorithm, every model (i.e.
an individual) is evaluated in the validation set which is a subset of the training set.
Test set is separated and reserved before the process in order to avoid data leaks.
As stated before, the validation loss is used as fitness value to measure the quality
of an individual, whereas the accuracy of the test set — not seen before by the
evolutionary process — is used as the final quality criterion (Fig. 8). Each box-plot
presents the accuracy of all individuals through generations. Each individual of the
PBIL algorithm is a configuration for the Inception-A module, and the accuracy of
the test set is used as the final quality criterion. As it can be appreciated, the first
generations contain already good individuals, while along the generations these good
individuals are concentrated and new ones created. When the evolutionary process
is finished, the best individual is trained with early stopping and applying a learning
rate scheduler in the complete training set. The validation loss is used as a monitor
metric to perform early stopping with patience 5. Results presented in Table 4 are
the mean accuracy and the standard deviation on the test set of 20 independent
training sessions. As it can be appreciated, the best hyperparameters obtained by
PBIL produce the highest accuracy, similar to those produced by original hyperpa-
rameters of Inception-A block with three concatenated blocks. This demonstrates
that hyperparameters presented in [4] are already a high quality configuration for
the Inception-A module. More detail about the best configuration obtained is shown
in tabular at the end of Section 2.2.5. It should be underlined that the best config-
uration is fully compatible with the usual Inception-A configuration, differing only
in a larger number of filters (see Table 3).

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generations

0.88

0.90

0.92

0.94

0.96

0.98
Te

st
 a

cc
ur

ac
y

Figure 8: Evolution of the Accuracy in test set per generation.

21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generations

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
Va

lid
at

io
n

lo
ss

Figure 9: Evolution of the Sparse Categorical Crossentropy loss in validation set per
generation.

Table 3: Comparative between original hyperparameters of Inception-A module
proposed in [4] and best hyperpameters optimized by PBIL algorithm.

Hyperparameter Original implementation Optimized by PBIL
b1_l1_pool_size 3 3
b1_l2_filters 96 116
b2_l1_filters 96 118
b2_l1_kernel 1 7
b3_l1_filters 64 228
b3_l2_filters 96 210
b3_l2_kernel 3 5
b4_l1_filters 64 120
b4_l2_filters 96 160
b4_l2_kernel 3 3
b4_l3_filters 96 184
b4_l3_kernel 3 3
num_inception_modules - 3

22

2.3.2 Results Comparison and Statistical Tests

In Table 4 the mean and standard deviation of accuracy for 20 independent evalu-
ations on MNIST test set is shown. The results include 20 runs of the best hyper-
parameters set trained with early stopping; and the results of the original hyper-
parameters of Inception-A block (presented in [4]) with a number of blocks ranging
from 1 to 3.

The application of the Kruskal-Wallis test to the accuracy shown in Table 4
indicates that the differences between the medians of the best result obtained in
the independent runs are significant for a confidence level of 95% (p− value under
0.05) is used in this analysis. This means that the differences are unlikely to have
occurred by chance with a probability of 95%.

The statistical analysis using the Wilcoxon signed-rank test with Bonferroni cor-
rection of the results obtained with the 20 independent runs (Table 4) indicates that
the differences between the best hyperparameter set obtained by PBIL (trained with
early stopping) and the original hyperparameters with 1 or 2 blocks are significant
for a confidence level of 95% (p−value under 0.05). The corresponding p-values are
p−value = 0.0001 for 1-block configuration, and p−value = 0.003 for 2-blocks con-
figuration. This means that the differences are unlikely to have occurred by chance
with a probability of 95%. Otherwise, the comparison with original hyperparame-
ters and 3-blocks configuration (p− value = 0.35) indicates that the differences are
not significant for a confidence level of 95% (p-value under 0.05).

This last comparison demonstrates that our approach with a single epoch in the
evaluation of the population of PBIL does critically not penalize the performance
of the CNN, at the same time that diminish the computational intensity of the
evolutionary algorithm.

The mean accuracy achieved, 0.9922 ± 0.0008, with this architecture is among
the best ones reported at https://paperswithcode.com/sota/image-classification-on-
mnist for deep architectures in the order of 105 trainable parameters. Two compar-
isons are emphasized with the implementations reported in this repository.

• On the one hand, the one with the highest quality implementation reported on
the web. This implementation is a CapsNet one, with more than 1.5 millions
of trainable parameters and a reported accuracy of 0.9987.

• On the other hand, the one with highest quality implementation with a num-
ber of trainable parameters similar to our implementation, in the order of
105 trainable parameters [21]. This is also a CapsNet implementation with a
reported accuracy of 0.9984.

• In comparison to our implementation, the cited implementations are trained
with more than two orders of magnitudes of epochs. In our implementation
the early stopping does not progress beyond 10 epochs, with the best accuracy
around 5 epochs. This underlines the low carbon footprint of our work, at the
same time that achieves a competitive accuracy.

23

Table 4: Mean and standard deviation of accuracy for 20 independent runs on
MNIST test set. The values correspond to the results of the best individuals of
PBIL separated by the configuration of the number of blocks, and the execution of
the overall best hyperparameters set raised from PBIL.

Hyperparameters Accuracy
Best Inception-A 1-block individual 0.9899 ± 0.0014
Best Inception-A 2-blocks individual 0.9913 ± 0.0009
Best Inception-A 3-blocks individual 0.9920 ± 0.0011
Best hyperparameters set with early stopping 0.9922 ± 0.0008

2.4 Conclusions

In this work, a first attempt to optimize the architecture of the Inception module
has been proposed. For this purpose, Population-based Incremental Learning as
optimizer and MNIST as benchmark are used. The relevance of this task stems
from the wide use of the Inception module in computer vision, where it holds a large
number of success cases.

Regarding the contributions of this proposal, it is aware of a low carbon footprint
in the artificial intelligence area. Unacceptable deep learning architectures are no
longer evaluated thanks to the codification of these architectures. This allows saving
CPU cycles, and therefore, reducing their carbon footprint. Of course, this allows
to obtain high quality networks in a reasonable time.

The analyses of results demonstrate that the optimized architecture of Inception-
A module using only 3 blocks, and therefore a low number of trainable parameters,
achieves an excellent performance. This performance supports the use of evolution-
ary strategies for optimizing deep architectures while reducing the carbon footprint
through the use of a single epoch during the parameters optimization. Furthermore,
the best configuration is fully compatible with the usual configuration of Inception-A
module.

As part of the Future Work, more elements of the Inception architecture are in-
tended to be handled by the evolutionary algorithm. This will allow to propose novel
architectures for this module. Use the evaluation after more than one epoch as fitness
value could be interesting, although the optimizer used should also be considered.
The use of simpler architectures with a lower number of parameters and the same
(or better) performance is a good thing to try. This will reduce the execution time of
the optimization process and the carbon footprint. Although the impact should be
studied, the use of another metaheuristics like Integer-Particle Swarm Optimization
could be of interest. Other benchmarks, such as Fashion MNIST, CIFAR-100 or
The Street View House Numbers (SVHN) are suggested for in-depth evaluation of
the best hyperparameters set, and for the evolutionary algorithm proposal as a deep
architecture optimizer.

24

inception-A block

input:

output:

[(None, 28, 28, 1)]

[(None, 28, 28, 1)]

input:

output:

(None, 28, 28, 1)

(None, 13, 13, 32)

input:

output:

(None, 13, 13, 652)

(None, 110188)

input:

output:

(None, 110188)

(None, 110188)

input:

output:

(None, 110188)

(None, 64)

input:

output:

(None, 64)

(None, 64)

input:

output:

(None, 64)

(None, 32)

input:

output:

(None, 32)

(None, 10)

inception-A block

inception-A block

input_1: InputLayer

conv2d: Conv2D

flatten: Flatten

dropout: Dropout

dense: Dense

dropout_1: Dropout

dense_1: Dense

dense_2: Dense

Figure 10: Model architecture. Stripped lines indicate that the number of blocks
varies from 1 to 3.

25

3 Evolutionary Game Theory and Membrane Com-
puting

3.1 Introduction

Evolutionary Game Theory (EGT, for short) is a mathematical and computational
framework which is used to study the spreading of behaviours (strategies) in evolving
populations [22, 23]. While classical game theory is used to describe the behaviour
of completely rational players, in EGT, the individual strategies are not associated
to rational choices, but they are assumed to be encoded into inherited programs
that can be passed to the offsprings [23].

The main driving principle of EGT is that individuals that perform better (they
get a higher payoff/fitness) will tend to replicate more often, so their encoded strat-
egy will spread in the population [23]. The success (fitness) of an individual depends
not only on its own adopted strategy but also on the strategies of the other individu-
als with whom is interacting in the population [23]. This means that there could not
be an universal optimal strategy but the optimal choice may depend on the strategies
that are adopted by the other components of the population (this makes EGT dif-
ferent from standard optimization and is technical referred as frequency-dependent
selection in the area of evolutionary dynamics [23]).

An important problem studied using EGT is the resilience of cooperation and
the conflict between cooperative and non-cooperative (cheating/defecting) individ-
uals [24]. This issue is present in many systems, at different scales ranging from
technological systems [25] to microbial systems [26] and human societies [27] and it
is considered one of the most relevant problems in science [28]. The study of the
resilience of cooperation in structured populations has received a strong attention
[29, 30, 31, 32, 33, 34], suggesting that the population structure (e.g., the social
network) is a crucial part of the problem [31, 33]. Therefore the search of appropri-
ate, efficient and general mathematical and computational frameworks to study the
interplay of population structure and spreading of certain strategies has become an
important research area [29, 30, 35, 36].

The dynamics of an EGT model can be studied analytically [22] but very often
is simulated using ad-hoc agent-based computational models [36]. In these models,
the replication and death of individuals (agents) are explicitly simulated using a
system updated by a series of discrete events [36].

In the paper Evolutionary Game Theory in a Cell: A Membrane Computing
Approach, we propose a novel computational approach to study the spreading of
behaviours in structured populations by combining EGT and membrane comput-
ing. Using the proposed approach, we show that there is an effective and general
way to encode EGT into probabilistic membrane computing and P-Lingua [37, 38].
This work therefore enhances the area of membrane computing, extending the line
of research focused on the simulation and study of population/ecological dynamics
[38, 39] allowing the study of the spreading of strategies in populations organized

26

in compartments using probabilistic simulators such as P-Lingua [38]. At the same
time, the proposed combination enriches the EGT area with a novel cellular-inspired
framework to study, analyze and simulate the spreading of behaviours in structured
evolving populations organized in communicating nested compartments. Our pro-
posal will make possible to tackle further systems and, for instance, those related to
the cooperation concerns.

To sum up, the main contributions of this work are the following:

• A novel approach to study the spreading of behaviours in structured popula-
tions by combining Evolutionary Game Theory and Membrane Computing is
proposed.

• We show that there is a general way to encode Evolutionary Game Theory into
Membrane Computing, leading to a computational framework which can be
used to study, analyze and simulate the spreading of behaviours in structured
populations organized in communicating compartments.

• The proposed approach allows to extend the works on membrane systems,
population and ecological dynamics, and, at the same time, suggests a novel
bio-inspired framework, based on formal languages theory, to investigate the
dynamics of evolving structured populations.

The next sections are organized as follows: Section 3.2.1 recall some basics of the
P system model used along the paper. Among the possible models, our choice has
been probabilistic P systems, since probability (in replication, deletion or migration)
is one of the pillars of EGT. In Section 3.2.2, we present the design of a family of
probabilistic P systems which simulates the behaviour of EGT and a short overview
of the computation. It deserves to be remarked that all the simulation is performed
by P system rules, without considering oracles or external functions. In this way,
MeCoSim simulator [40] has been used for the experiments. Section 3.3 show some
examples of EGT cases and how the compartmental structure of P systems can help
in the development of the interaction among populations. Finally, some conclusions
and hints for future work are presented.

3.2 Methods

3.2.1 Probabilistic P systems

Since Gh. Păun introduced in 1998 the first model of membrane computing [41]
till now, many different variants of P systems have been presented. Among them,
spiking neural P systems (SNPS) [42] is one of the most widely extended. From the
starting model of SNPS, many other features have been added and explored. Among
the most recent, the articles Homogeneous spiking neural P systems with structural
plasticity [43], Delayed Spiking Neural P Systems with Scheduled Rules [44] or Spiking
neural P systems with autapses [45]. Among the recent contributions we can cite

27

the SNP systems with communication on requests [46, 47] or SNP systems variant
used in optimization and for building an arithmetic calculator [48, 49, 50].

Beyond SNPS, many other P system variants have proved their efficiency in order
to model real life problems. In particular, probabilistic/stochastic models [37] have
shown its efficiency in problems from biological processes.

In this work, it is considered the so-called Probabilistic P systems [38] introduced
by Cardona et al. in 2011. Next, it is briefly summarized some of the main features.

Considering a working alphabet Γ and a membrane structure where different
membranes have different labels. Membranes have electrical charges from the set
{0,+,−} and R is a finite set of evolution rules of the form

u [v]αi → u′ [v′]α
′

j

where u, u′, v and v′ are multisets over Γ, i and j are labels2 and α, α′ ∈ {0,+,−}.
The representation of information as multisets placed on a membrane struc-

ture and the use of biologically inspired rules for performing the evolution of such
multisets of objects is common to many P system variants. The main feature of
probabilistic P systems is that the rules are endowed with a computable func-
tion fr, (r ∈ R) such that dom(fr) ⊆ {1, . . . , T} (with T a natural number) and
range(fr) ⊆ [0, 1] verifying that if r1, . . . , rz are the rules from R with the same left-
hand side (i.e., u [v]αi) then

∑z
j=1 frj(a) = 1 for a = 1, . . . , T . Intuitively, such fr(a)

represents the probabilistic constant associated with rule r. In general, it is written
as r : u [v]αi

fr(a)−−−→ u′ [v′]α
′
j . If fr(a) = 1, then it is denoted by r : u [v]αi → u′ [v′]α

′
j .

The key point is that in this P systems applicable rules are non-deterministic
chosen as usual, but, in this case the probability of each rule can be fixed at the
beginning of the computation.

The semantics of the P system follow the next principles:

I1 When an object cross a membrane, its polarization may change. In such way,
the electrical charges can act as traffic lights, i.e., rules can only be applied if
the polarization of the rule is the appropriate.

I2 If a rule can be applied inside a membrane and, in the same step a send-in
or send-out rule which changes the polarization of the membrane can also be
applied, both rules are applied. In a certain sense, we can consider that the
change of the polarization is performed after the application of the evolution
rules.

3.2.2 Evolutionary Game Theory in P Systems

In this section, the description of a P system which computes the evolution of
a population according to Game Theory is provided. The main contribution of

2In the original description of probabilistic P systems i = j.

28

this approach is that different sub-populations can be encapsulated in P system
membranes. Individuals inside such membranes evolve according to Game Theory
principles:

• Each individual gets a fitness value obtained by meetings with other individuals
according to a chosen strategy (cooperator or defector).

• One of the individuals is replicated. The probability of replication of an indi-
vidual is proportional to its fitness value.

• In order to keep constant the total number of individuals, after replication one
individual is randomly chosen to be deleted.

Each sub-population evolves following these principles in a membrane. After the
execution of these steps, one individual in each membrane is randomly chosen to
migrate to another membrane. These migration between membranes is possible due
to the intrinsic nature of P systems and it represents a big chance for exploring the
behaviour of other populations. Next, the technical details of the proposed model
are described.

Let consider a population of n × Q individuals distributed on Q membranes.
In each membrane, there are n individuals identified by 1, . . . , n. Due to technical
reasons, in this proposed model, n must be even. Each individual choose between
two different strategies to follow: cooperator or defector. When a cooperator meets
another cooperator, they both get R (Reward). If a cooperator meets a defector,
the cooperator gets S (the Sucker’s payoff) and the defector T (Temptation). If two
defectors meet, they both get P (Punishment). This can be encoded in a payoff
matrix

cooperate defect
cooperate R S

defect T P

or in a 4-tuple 〈R, S, T, P 〉. In this model, each compartment (which is represented
by an elementary membrane) has a different payoff matrix. As said previously, in-
dividuals can move between compartments (i.e. between sub-populations). In this
way, the evolution of the different populations can be studied according to the differ-
ent payoff matrices and the influence of the communication among compartments.
In this version, the number of individuals in each compartment keeps constant along
the computation, but the proportion of defectors and cooperators in each compart-
ment can change due to the processes of replication, deletion and migration.

For each compartment k ∈ {1, . . . , Q}, we have a payoff matrix represented by
〈Rk, Sk, Tk, Pk〉. In this approach, each individual have exactly M meetings per
cycle. In that way, a cooperator in the compartment k will have, after A meetings,
an accumulated payoff which can be calculated as the sum of A values taken from Rk

29

and Sk in all the possible ways, i.e., the possible accumulated payoff of a cooperator
after A meetings in the membrane k is one of the values of

Vc,k,A = {(r × Sk) + ((N − r)×Rk) | r ∈ {0, . . . , A}}

Analogously, the possible accumulated payoff of a defector after A meetings in
the membrane k is one of the values of

Vd,k,A = {(r × Tk) + ((N − r)× Pk) | r ∈ {0, . . . , A}}

In EGT, the fitness F of an individual depends on: (1) The accumulated payoff
Ac; (2) The number of meetings of the individual M and; (3) A parameter w which
we call influence. The fitness is computed by the formula

F = (1− w) + w × Ac

M
(2)

In this way, each individual will obtain a fitness depending on Ac, M and w and
its probability of replication will be proportional to its fitness. In our model, the
number of meetings M is fixed and also the influence w and therefore, the fitness Fi
of an individual i with accumulated payoff Aci is computed as

Fi = (1− w) + w × Aci
M

(3)

From this equation we have

M × Fi = M × (1− w) + w × Aci (4)

We can consider that New_Fi = M × Fi is the fitness Fi scaled by a constant M
and then

New_Fi = M + w × (Aci −M) (5)

Since P systems deal with integer numbers, we can approximate Eq. 5 by considering

New_Fi = M + bw × (Aci −M)c (6)

where bxc is the greatest integer less than or equal to x. We define the following
set LFc,k of pairs (Ac,New_Fi), where Ac is the accumulated payoff obtained by
a cooperator after M meetings in the membrane k and New_Fi the fitness value
obtained from Ac according to Eq. 6,

LFc,k = {(Ac,New_F) |Ac ∈ Vc,k,M}

We will denote by MaxFc the maximum value of the fitness that can be reached
by a cooperator in any membrane, i.e.,

MaxFc = max{B | (A,B) ∈ ∪k=Qk=1 LFc,k }

30

In order to formally define a P system which simulates the evolution of the Game
Theory, we will consider different type of objects:

• An individual will be represented by a tuple 〈Id, t, Am,Ap〉 where

– Id ∈ {1, . . . , n} is the identifier of the individual;

– t ∈ {c, d} is the strategy of the individual: cooperator (c) or defector (d);

– Am is the number of meetings in the current configuration;

– Ap is the accumulated payoff in the current configuration.

At the beginning of the computation, each compartment has n individuals
with identifiers 1, . . . , n and each individual has a strategy. After each cycle,
each compartment has again n individuals with identifiers 1, . . . , n, but the
proportion of defectors and cooperators can change due to the processes of
deletion, replication and migration.

• Two special kind of objects are pId,j and qId,j. Each of these objects represent
a payoff unit of the individual with identifier Id: pId,j if it is a cooperator and
qId,j if it is a defector.

• Other auxiliary objects will also be used: zi, fi, hi, K, L, La, Lb, V , def , coop
. . .

Broadly speaking, the computation is performed according to the following stages:

1. Meetings stage. Each individual haveM meetings with other randomly cho-
sen individuals. It can have more than one meeting with the same individual.
Each meeting modifies the accumulated payoffs of the individuals according to
their strategies and increases by 1 the number of meetings of the individuals.
From a P system point of view, these meetings will be performed along M
steps. In order to be sure that all individuals can be paired and have a meet-
ing in each step, we will consider that the number of individuals n in each
compartment is even. The end of this stage will be controlled by changing
the polarization of the membrane where the meetings occur. This stage is
performed in parallel along the Q elementary membranes.

2. Replication and killing stage. After M steps, the meetings between indi-
viduals stop and the replication stage begins. In each elementary membrane,
only one individual is chosen to replicate. The probability of an individual
to be chosen is proportional to its fitness. As pointed out above, the corre-
spondence between the accumulated payoff and the fitness is stored in the sets
LFc,k and LFd,k. Each of the pairs (A,B) in these sets will produce rules of
type

[〈Id, c,M,A〉 → pId,1 . . . pId,B 〈Id, c, 0, 0〉]+k

31

[〈Id, d,M,A〉 → qId,1 . . . qId,B 〈Id, d, 0, 0〉]+k

Rule [〈Id, c,M,A〉 → pId,1 . . . pId,B 〈Id, c, 0, 0〉]+k takes a cooperator with iden-
tifier Id such that, after M meetings, has obtained an accumulated payoff A
and produces B different objects pId,1 . . . pId,B, where B is the fitness asso-
ciated3 to the accumulated payoff A, according to the corresponding LFc,k.
This rule also resets to 0 the accumulated payoff and the number of meetings.
Finally, the rule produces 〈Id, c, 0, 0〉. The case of a defector is analogous.

In parallel with the production of objects pId,j and qId,j, a set of rules is applied
in order to compute the mutation process. A unique object L (L for life) is
produced in each elementary membrane. In the next step of computation, one
and only one of the following rules is triggered:

[L→ La]
+
k with probability U (the probability of mutation)

[L→ Lb]
+
k with probability V (the probability of no mutation)

Let us notice that both rules have the same left-hand-side and the sum of the
probabilities is U + V = 1. If La is produced, the replication process inside
membrane k will occur with mutation. If Lb is produced, the replication will
be without mutation.

Let us suppose that Lb is generated, i.e., the replication of the randomly chosen
individual will be performed without mutation. In such case one and only one
of the following rules is applied.

[pId,j Lb → coopK]+k [qId,j Lb → def K]+k

Since the amount of copies of pId,j and qId,j represents the fitness of the indi-
vidual Id (cooperator and defector, respectively), the probability of triggering
one of these rules is proportional to B, i.e., proportional to the fitness of the
individual. Since there is only one object Lb, only one of these rules is applied.
Since Lb denotes no mutation, the object pId,j produces a new object coop and
qId,j produces a new object def . Such objects coop and def can be considered
flags in order to recall that the individual which will be produced at the end
of the replication process will be a cooperator or a defector (respectively).

If La is generated, the replication will be performed with mutation. It means
that La together with a copy of pId1,j (i.e., an object which represents a payoff
unit of a cooperator) will produce a defector or, analogously, La together with
a copy of qId1,j (i.e., an object which represents a payoff unit of a defector)
will produce a cooperator. The rules are the following:

[pId,j La → def K]+k [qId,j La → coopK]+k

3If B = 0, then these rules are simply [〈Id, c,M,A〉〈Id, c, 0, 0〉]+k and [〈Id, d,M,A〉 →
〈Id, d, 0, 0〉]+k .

32

In any case, the application of one of these replication rules produce an object
K (K for killer). In the next step, K chooses randomly one of the individuals
and delete it by application of one of the rules

[K 〈Id, c, 0, 0〉 → KId]
+
k

[K 〈Id, d, 0, 0〉 → KId]
+
k

The application of such rule produces an object KId which can be considered a
flag for recalling the identifier of the object which has been deleted. Finally we
combine the flag KId with the flag coop or def and produce a new individual
with the strategy obtained by the probabilistic process of mutation and with
the identifier of the deleted individual. The rules are

[KId coop → 〈Id, c, 0, 0〉]+k
[KId def → 〈Id, d, 0, 0〉]+k

In any case, after the replication and killing stage, in each compartment k
there are n individuals with identifiers 1, . . . , n.

3. Migration stage. At the end of the replication and killing stage, a new
object V (V stands for voyager) appears in each elementary membrane k. In
parallel, each of these objects V chooses randomly one of the individuals of the
compartment and sends it out of the elementary membrane, by the application
of one of the rules

[V 〈Id, c, 0, 0〉]+k → Vk,Id 〈Id, c, 0, 0〉 []−k

[V 〈Id, d, 0, 0〉]+k → Vk,Id 〈Id, d, 0, 0〉 []−k

One of these rules is applied in parallel in each of the Q membranes and there-
fore, after the application, there are Q individuals in the membrane surround-
ing the Q elementary membranes. Objects Vk,Id can be considered as flags for
remembering that the individual sent out from membrane k had identifier Id.
In the next step of computation, each of these individuals is randomly paired
to an object Vk,Id2 and one of the following rules is randomly applied

〈Id1, c, 0, 0〉Vk,Id2 []+k → [〈Id2, c, 0, 0〉]−k
〈Id1, d, 0, 0〉Vk,Id2 []+k → [〈Id2, d, 0, 0〉]−k

Object Vk,Id2 brings the individual 〈Id1, c, 0, 0〉 inside the membrane k and
modifies the identifier in order to keep the unicity of the identifiers in the
membrane. Let us notice that sending 〈Id1, c, 0, 0〉 inside the membrane k
changes its identifier to Id2, but the individual keeps its strategy. With this
step, the migration process finishes.

33

Algorithm 2 Summary
The following cycle of three stages is performed C times
Stage 1 (Meeting stage):
• It is performed in parallel in the Q elementary membranes;
• It takes M steps of the P system;
• Each meeting modifies the accumulated payoff of the involved individuals.
Stage 2 (Replication and killing stage):
• In each elementary membrane:

? One individual is chosen with probability proportional to its fitness;
? The individual is replicated (maybe with mutation in its strategy).
? An individual is removed (killed).

Stage 3 (Migration stage):
• In each elementary membrane, one individual is randomly chosen and sent into
another membrane;
The algorithm finishes with a Stopping stage.

After computing these stages Meeting, Replication/Killing and Migration, the
P system is again ready for a new Meeting stage.

4. Stopping stage. The cycle of the previous three stages is performed C times.
After these C cycles, the computation stops.

These stages are summarized in Algorithm 2 and a diagram is shown in Figure
11.

Meetings
stage

Replication and
killing stage

Migration
stage

Stopping
stage

Repeat C times

Figure 11: Diagram of the four stages performed in the P System.

Definition of the P system

Let us consider a EGT system with the following parameters4:

For each compartment i:
4Let us remark that the choice of these parameters (number of compartments Q, number of

individuals in each compartment n, etc.) depends on the concrete instance of the problem to be
simulated. Once fixed these parameters, the P system Π is completely defined and its evolution,
and hence the simulation of the EGT problem, follows the membrane computing principles.

34

Ri : Reward Si : Sucker’s payoff
Ti : Temptation Ri : Punishment

Other parameters:

n : Number of individuals in each compartment
M : Number of meetings per cycle
w : Influence
U : Prob. of mutation
V : Prob. of no mutation
C : Number of cycles
Q : Number of compartments

Let us also consider the finite sets of tuples LFc,k and LFd,k. In these conditions,
let us consider the following P system

Π = 〈Γ, H,EC, µ, w1, . . . , wQ, wg, ws,R〉

where

• The alphabet Γ of objects is

Γ = {〈Id, t, Am,Ap〉 | Id ∈ {1, . . . , n}, t ∈ {c, d},
Am ∈ {0, . . . ,M}, Ap ∈ ∪i=Qi=1 }

∪ {pId,j | Id ∈ {1, . . . , n} j ∈ {1, . . . ,MaxFc}}
∪ {qId,j | Id ∈ {1, . . . , n} j ∈ {1, . . . ,MaxFd}}
∪ {zk | k ∈ {0, . . . ,M + 3}}
∪ {L,La, Lb, K, V, coop, def}
∪ {fi,k | i ∈ {1, . . . , 7} k ∈ {1, . . . , Q}}
∪ {Vk,Id | Id ∈ {1, . . . , n} k ∈ {1, . . . , Q}}
∪ {hs | s ∈ {0, . . . , CM + 7C − 3}}

• H = {1, . . . , Q} ∪ {g, s} is the set of labels;

• EC = {0,+,−} is the set of electrical charges;

• The membrane structure has Q elementary membranes with labels 1, . . . , Q;
the skin with label s; an intermediary membrane with label g;

µ = [[[]01 . . . []0Q]0g]0s

• The initial multisets are wj = z0 〈Id, tjId, 0, 0〉 for j ∈ {1, . . . , Q}, Id ∈ {1, . . . , n}
and tjId ∈ {c, d} is the strategy followed by the Id-th individual in the j-th
elementary membrane in the initial configuration. We also have wg = ∅ and
ws = h0.

35

We will also consider the following sets of rules R (λ represents the empty mul-
tiset)

Meeting rules: Let 〈Rk, Sk, Tk, Pk〉 is the encoding of the payoff matrix inside
the compartment k ∈ {1, . . . , Q}.

RS1 ≡ [〈Id1, c, A,B〉〈Id2, c, A, C〉 → 〈Id1, c, A+ 1, B+Rk〉〈Id2, c, A+ 1, C +Rk〉]0k
for k ∈ {1, . . . , Q}, Id1, Id2 ∈ {1, . . . , n}, A ∈ {0, . . . ,M − 1}, B,C ∈ Vc,k,A

RS2 ≡ [〈Id1, c, A,B〉〈Id2, d, A, C〉 → 〈Id1, c, A+ 1, B+Sk〉〈Id2, c, A+ 1, C +Tk〉]0k,
for k ∈ {1, . . . , Q}, Id1, Id2 ∈ {1, . . . , n}, A ∈ {0, . . . ,M − 1},
B ∈ Vc,k,A, C ∈ Vd,k,A

RS3 ≡ [〈Id1, d, A,B〉〈Id2, d, A, C〉 → 〈Id1, d, A+ 1, B+Pk〉〈Id2, d, A+ 1, C+Pk〉]0k
for k ∈ {1, . . . , Q}, Id1, Id2 ∈ {1, . . . , n}, A ∈ {0, . . . ,M − 1}, B,C ∈ Vd,k,A

Replication rules:

RS4 ≡ [〈Id, c,M,A〉 → pId,1 . . . pId,B〈Id, c, 0, 0〉]+k for k ∈ {1, . . . , Q}, Id ∈ {1, . . . , n},
A ∈ Vc,k,M and (A,B) ∈ LFc,k

RS5 ≡ [〈Id, d,M,A〉 → qId,1 . . . qId,B〈Id, d, 0, 0〉]+k for k ∈ {1, . . . , Q}, Id ∈ {1, . . . , n},
A ∈ Vd,k,M and (A,B) ∈ LFd,k

RS6 ≡ [L
U−→ La]

+
k , i.e., [L→ La]

+
k with probability U (for k ∈ {1, . . . , Q})

RS7 ≡ [L
V−→ Lb]

+
k , i.e., [L→ Lb]

+
k with probability V (for k ∈ {1, . . . , Q})

RS8 ≡ [pId,j La → def K]+k for k ∈ {1, . . . , Q},
Id ∈ {1, . . . , n} and j ∈ {1, . . . ,MaxFc}

RS9 ≡ [qId,j La → coopK]+k for k ∈ {1, . . . , Q},
Id ∈ {1, . . . , n} and j ∈ {1, . . . ,MaxFd}

RS10 ≡ [pId,j Lb → coopK]+k for k ∈ {1, . . . , Q},
Id ∈ {1, . . . , n} and j ∈ {1, . . . ,MaxFc}

RS11 ≡ [qId1,j Lb → def K]+k for k ∈ {1, . . . , Q},
Id ∈ {1, . . . , n} and j ∈ {1, . . . ,MaxFd}

RS12 ≡ [KId coop→ 〈Id, c, 0, 0〉]+k for k ∈ {1, . . . , Q} and Id ∈ {1, . . . , n}
RS13 ≡ [KId def → 〈Id, d, 0, 0〉]+k for k ∈ {1, . . . , Q} and Id ∈ {1, . . . , n}

Killing rules:

RS14 ≡ [K 〈Id, t, 0, 0〉 → KId]
+
k for k ∈ {1, . . . , Q}, t ∈ {c, d} and Id ∈ {1, . . . , n}

Migration rules:

36

RS15 ≡ [V 〈Id, t, 0, 0〉]+k → Vk,Id 〈Id, t, 0, 0〉 []−k
for k ∈ {1, . . . , Q}, Id ∈ {1, . . . , n}, t ∈ {c, d}

RS16 ≡ 〈Id1, t, 0, 0〉Vk,Id2 []−k → [〈Id2, t, 0, 0〉]−k
for k ∈ {1, . . . , Q}, Id1, Id2 ∈ {1, . . . , n}, t ∈ {c, d}

Control rules:

For k ∈ {1, . . . , Q}

RS17 ≡ [zi → zi+1]
0
k for i ∈ {0, . . . ,M − 3} ∪ {M,M + 1,M + 2}

RS18 ≡ [zM−2 → zM−1 f0,k]
0
k

RS19 ≡ [zM−1 → zM L]0k
RS20 ≡ [zM+3 → V]+k

RS21 ≡ [f0,k]0k → f1,k []+k
RS22 ≡ [fi,k → fi+1,k]0g for i ∈ {1, . . . , 6}
RS23 ≡ f7,k []−k → [z0]0k

Stopping rules:

RS24 ≡ [hi → hi+1]
0
s for i ∈ {0, . . . , CM + 7C − 4}

RS25 ≡ hCM+7C−3 []0g → [hCM+7C−3]
+
g

Cleaning rules:

RS26 ≡ [pId,j → λ]0k for k ∈ {1, . . . , Q},
Id ∈ {1, . . . , n} and j ∈ {1, . . . ,max{B | (A,B) ∈ LFc,k}

RS27 ≡ [qId,j → λ]0k for k ∈ {1, . . . , Q},
i ∈ {1, . . . , n} and j ∈ {1, . . . ,max{B | (A,B) ∈ LFd,k}

RS28 ≡ [La → λ]0k for k ∈ {1, . . . , Q}
RS29 ≡ [Lb → λ]0k for k ∈ {1, . . . , Q}

Overview of the Computation

We start with the initial configuration. It consists on Q elementary membranes,
the skin (with label s) and the intermediate one (with label g). All of them have
polarization 0. Each elementary membrane contains the object z0, plus n individ-
uals with identifiers 1, . . . , n. All the individuals have accumulated meetings and
accumulated payoff equals to 0. Each of them has also a strategy c or d (tji denotes
the strategy of the individual with identifier i in the elementary membrane j). The
skin contains an object h0.

37

C0 =



[
〈Id1, t11, 0, 0〉 . . . 〈Idn, t1n, 0, 0〉 z0

]0
1

. . .[
〈Id1, tQ1 , 0, 0〉 . . . 〈Idn, tQn , 0, 0〉 z0

]0
Q


0

g

h0


0

s

From this starting configuration only meeting rules can be applied (together
with rules [z0 → z1]

0
k from the set of rules RS17 and the rule [h0 → h1]

0
s from

the set of rules RS24). Each individual has a meeting with another individual and
their accumulated payoff change according to their strategies. In order to fix ideas
let us consider a concrete example in the elementary membrane 1 with the payoff
matrix settled to R1 = 5, S1 = 1, T1 = 10, P1 = 3. Let us also consider that
there are six individuals, four cooperators with identifiers 1, . . . , 4 and two defectors
with identifiers 5 and 6. In this case, the initial configuration in the elementary
membrane 1 is: [

〈1, c, 0, 0〉 〈2, c, 0, 0〉 〈3, c, 0, 0〉
〈4, c, 0, 0〉 〈5, d, 0, 0〉 〈6, d, 0, 0〉 z0

]0
1

Let us suppose that the non-deterministically chosen rules has been

[〈1, c, 0, 0〉〈3, c, 0, 0〉 → 〈1, c, 1, 5〉〈3, c, 1, 5〉]0k
[〈2, c, 0, 0〉〈5, d, 0, 0〉 → 〈2, c, 1, 1〉〈5, d, 1, 10〉]0k
[〈4, c, 0, 0〉〈6, d, 0, 0〉 → 〈4, c, 1, 1〉〈6, d, 1, 10〉]0k

From a Game Theory point of view, cooperators 1 and 3 meet; cooperator 2 and
defector 5 meet; and cooperator 4 with defector 6. In this way, the configuration at
time 1 in this elementary membrane is[

〈1, c, 1, 5〉 〈2, c, 1, 1〉 〈3, c, 1, 5〉
〈4, c, 1, 1〉 〈5, d, 1, 10〉 〈6, d, 1, 10〉 z1

]0
1

These meetings occur in parallel in the Q elementary membranes. Since the
polarization of these elementary membranes has not changed, the next step is sim-
ilar to this one: only rules from the meeting set can be applied together with the
corresponding rules from RS17 and RS24. The P system goes on with the evolution
till reaching the configuration M − 2. The configuration at time M − 2 is (in the
general case) is

CM−2 =



[
〈Id1, t11,M − 2, Y 1,1

M−2〉 . . . 〈Idn, t1n,M − 2, Y n,1
M−2〉 zM−2

]0
1

. . .[
〈Id1, tQ1 ,M − 2, Y 1,Q

M−2〉 . . . 〈Idn, tQn ,M − 2, Y n,Q
M−2〉 zM−2

]0
Q


0

g

hM−2


0

s

38

In the next step of computation, the meeting rules are still applied. We also
applied the rules RS18 and a rule of the set RS24.

CM−1 =



[
. . . 〈Idj, t1j ,M − 1, Y j,1

M−1〉 . . . zM−1 f0,1
]0
1

. . .[
. . . 〈Idj, tQj ,M − 1, Y j,Q

M−1〉 . . . zM−1 f0,Q
]0
Q


0

g

hM−1


0

s

In each elementary membrane k in the configuration CM−1 a new object f0,k
appears. From this configuration, meeting rules can be applied together with RS19,
rules from RS21 and the corresponding rule from the set RS24. The application of
rules from R21 changes the polarization of the elementary membranes, but according
to the principle I2, we consider that the evolution inside this membrane can be
performed in the same computational step. In this way, the configuration at time
M is

CM =



[
. . . 〈Idj, t1j ,M, Y j,1

M 〉 . . . zM L
]+
1
f1,1

. . .[
. . . 〈Idj, tQj ,M, Y j,Q

M 〉 . . . zM L
]+
Q
f1,Q


0

g

hM


0

s

Since the polarization of the elementary membranes has changed to +, now
the meeting rules cannot be applied and the replication and killing stage starts.
Each individual 〈Id, c,M,A〉 in the membrane k evolves to an individual 〈Id, c, 0, 0〉
together with B objects pId,1, . . . pId,B where (A,B) is a pair in LFc,k. This evolution
is performed by the application of the corresponding rule from RS4. As pointed out
above, the fitness B corresponding to the accumulated payoff A is expressed by the
object pId,1 . . . pId,B. The application of the rule also resets the accumulated meetings
and payoff of the individual to 0. The case of the defectors and the application of
the rules from the set RS5 is analogous.

In each elementary membrane, a new objects L has appeared. L starts the
replication process. In each elementary membrane, one and only one of the rules
RS6 or RS7 is triggered according to the probability of mutations. If La is produced,
then there is mutation in the replication process; otherwise, if Lb is produced, there
is no mutation. Rules RS17 and the corresponding from the sets RS22 and RS24 are
also applied.

CM+1 =



[
. . . 〈Idj, c, 0, 0〉qIdj ,1 . . . p1,B1

j
. . . zM+1 La/b

]+
1
f2,1

. . .[
. . . 〈Idj, d, 0, 0〉qIdj ,1 . . . q1,B1

j
. . . zM+1 La/b

]+
1
f2,Q


0

g

hM+1


0

s

39

In the next step the replication stage starts. Let us consider that Lb was produced
in the previous step. The object Lb is interpreted as the no-mutation object. This
object is involved in the application of rules from RS10 and RS11. Since pId,j is a
fitness unit of a cooperator and Lb denotes that there is no mutation, the application
of the rule RS10 ≡ [pId,j Lb → coopK]+k will produce a flag coop which will be used
to recall the strategy of the offspring. Rules for 8 to RS11 consider all the possibilities
of producing a flag coop or def depending on the strategy of the individual chosen
to be replicated (denoted by pId,j or qId,j and the probability of mutation. Let us
notice that, in any case, a new object K is produced. Rules from RS17, RS22 and
RS24 are also triggered.

CM+2 =



[
. . . 〈Idj, c, 0, 0〉qIdj ,1 . . . p1,B1

j
. . . zM+2 coop/def K

]+
1
f3,1

. . .[
. . . 〈Idj, d, 0, 0〉qIdj ,1 . . . q1,B1

j
. . . zM+2 coop/def K

]+
1
f3,Q


0

g

hM+2


0

s

In any case, regardless which of the rules from RS8 to RS11 is triggered, an
object K will appear in the elementary membrane. As we will see below, such
object K will be used to delete one of the individuals of the membrane randomly
chosen. Let us notice the special case where all the individuals in the membrane are
defectors all of them and the punishment Pk of the payoff matrix associated to the
membrane is Pk = 0. In such case, all the possible meetings couple two defectors
and their accumulated payoffs are constant (increased by Pk = 0). In such case,
objects qi,j are never produced by RS5 and therefore, RS9 nor RS11 are applied.
This means that in such membrane there is no replication. As a secondary effect,
since RS9 and RS11 are not applied, then the object K is not produced, an none of
the individuals of the membrane is deleted. There is no replication an no deletion
in this elementary membrane, but it is still possible the migration and then, the
possibility of introducing cooperators in the membrane.

In the next step, one of the killing rules from RS14 is applied in each elementary
membrane. The object K randomly chooses an individual and removes it. The
result of the application of the rule is a new object KId which recalls the identifier
of the deleted individual. Rules from RS17, RS22 and RS24 are also triggered.

CM+3 =



[
〈Idj, c, 0, 0〉qIdj ,1 . . . p1,B1

j
. . . zM+3 coop/def KId1

]+
1
f4,1

. . .[
〈Idj, d, 0, 0〉qIdj ,1 . . . q1,B1

j
. . . zM+3 coop/def KIdQ

]+
1
f4,Q


0

g

hM+3


0

s

In the next step the process of replication and killing finished with the appli-
cation of one rule from RS12 or RS13. The flag which recalls the strategy of the

40

offspring together with the flag which recalls the identifier of the deleted individual
and combined in order to produce a new individual with the obtained strategy and
the same identifier as the deleted individual. In this case, after the replication and
killing stage, the set of identifiers 1, . . . , n is kept in each elementary membrane.
Rules from RS20, RS21 and RS24 are also applied. Rules from RS20 produce a new
object V inside each elementary membrane and the migration stage starts.

CM+4 =



[
〈Idj, c, 0, 0〉qIdj ,1 . . . p1,B1

j
. . . V

]+
1
f5,1

. . .[
〈Idj, d, 0, 0〉qIdj ,1 . . . q1,B1

j
. . . V

]+
1
f5,Q


0

g

hM+4


0

s

In the next step, rules form RS15 are applied. The object V chooses randomly an
individual and sends it out of the elementary membrane. This happens in parallel in
all the Q elementary membranes, so in the next configuration there are Q individuals
in the membrane g which surrounds the elementary membranes. Each rule fromRS15

also produce a flag Vk,Id which recalls the identifier Id of the individual which has
been sent out from the elementary membrane k. Rules from RS22 and RS24 are also
applied.

CM+5 =




[
〈Idj, c, 0, 0〉qIdj ,1 . . . p1,B1

j

]−
1
〈 Idj, c, 0, 0〉

. . .[
〈Idj, d, 0, 0〉qIdj ,1 . . . q1,B1

j

]−
1
〈 Idj, c, 0, 0〉

f6,1 . . . f6,Q V1,Id1 . . . VQ,IdQ


0

g

hM+5



0

s

Next, rules from RS16 are applied. Each object Vk,Id chooses randomly an in-
dividual from the membrane g and sends it into the membrane k. Since there are
Q objects different Vk,Id and Q individuals, only one individual is sent into each
elementary membrane k. The application of the rule also changes the identifier of
the chosen individual and takes the identifier associated to Vk,Id. In this way, the
individual which arrives to membrane k will take the same identifier as the individ-
ual which was sent out in the previous step. In this way, all the individuals inside
each membrane will have the identifiers 1, . . . , n again. Rules from RS22 and RS24

are also applied.

CM+6 =



[
〈Idj, c, 0, 0〉qIdj ,1 . . . p1,B1

j
. . .
]−
1
f7,1

. . .[
〈Idj, d, 0, 0〉qIdj ,1 . . . q1,B1

j
. . .
]−
1
f7,Q


0

g

hM+6


0

s

In the next step, rules from RS23 and the corresponding from RS24 are also

41

applied. Rules from RS23 send an object z0 inside each elementary membrane and
also changes the polarization, so the meeting stage can start again.

Let us notice that the configuration CM+7 is similar to C0. The elementary
membranes have n individuals with identifiers 1, . . . , n and accumulated payoffs and
meetings equal to 0. All the elementary membranes also have an object z0 and its
electrical charge is 0. With this configuration the first cycle has concluded. The
differences between CM+7 and C0 are:

• The number of the individuals in each elementary membrane is n, but it may
be changed the proportion of cooperators and defectors (due to the deletions,
replications and migrations).

• The counter h has reached hM+7.

• In CM+7 several objects pId,j and qId,j appear. These objects can be considered
garbage and will be deleted in the next step by the set of rules RS26 and RS27.
As pointed above, in the case of that La or Lb has been produced but it has
not been consumed, such object can also be deleted by rules RS28 and RS29.

After otherM+7 steps, the configuration C2×(M+7) is reached and this is the end
of the second cycle. Analogously, the (C−1)-th cycle is finished after (C−1)×(M+7)
steps. Let us consider the configuration at the step M + 4 + ((C − 1)× (M + 7)) =
CM + 7C − 3 which is analogous to the configuration at step M + 4

CCM+7C−3 =



[
〈Idj, c, 0, 0〉qIdj ,1 . . . p1,B1

j
. . . V

]+
1
f5,1

. . .[
〈Idj, d, 0, 0〉qIdj ,1 . . . q1,B1

j
. . . V

]+
1
f5,Q


0

g

hCM+7C−3


0

s

The transition from this configuration to the next one is similar to the transition
from CM+4 to CM+5. The difference is that no more rules from the set RS24 are
applied and now rule RS25 is triggered. The application of this rule changes the
polarization of the membrane with label g from 0 to +.

CCM+7C−2 =




[
〈Idj, c, 0, 0〉qIdj ,1 . . . p1,B1

j

]−
1
〈 Idj, c, 0, 0〉

. . .[
〈Idj, d, 0, 0〉qIdj ,1 . . . q1,B1

j

]−
1
〈 Idj, c, 0, 0〉

f6,1 . . . f6,Q V1,Id1 . . . VQ,IdQ

hCM+7C−3


+

g



0

s

Since the polarization of the membrane g is now positive, rules from RS22 are
no longer applied and objects f4,k do not evolve any more. Rules from RS16 are
applied and the migration of the C-th cycle finishes.

42

CCM+7C−1 =



[
〈Idj, c, 0, 0〉qIdj ,1 . . . p1,B1

j
. . .
]−
1
f6,1

. . .[
〈Idj, d, 0, 0〉qIdj ,1 . . . q1,B1

j
. . .
]−
1
f6,Q

hCM++7C−3


+

g


0

s

Since the polarization of the elementary membranes is now negative, the meeting
and rules cannot be applied. No more rules in general can be applied and CCM+7C−1
is a halting configuration. In each of the Q membranes there are n individuals which
can be considered the output of the computation.

3.2.3 MeCoSim

In order to implement and simulate the proposed P System, P-Lingua and MeCoSim
are used. P-Lingua is a programming language for Membrane Computing. It is
designed to implement P Systems and it incorporate some built-in simulators for the
supported models [51]. MeCoSim is a General Purpose Application that implements
a version of P-Lingua, including its core and simulators. In MeCoSim it is possible
to model, design, simulate, analyze and verify P system models [52]. One of the
main features of MeCoSim is the ability to run multiple simulations with different
initial conditions using input files and parameters in the model definition. Another
important features is the step by step execution of simulations, which allows to
browse the content of every membrane present in the P System.

All the experiments carried out in this work have been run in MeCoSim using
the simulator named binomial.

3.3 Experimentation and Results

In this section, the implementation of the proposed model by using the probabilistic
P systems simulator MeCoSim [39] is presented. The model have been tested using
the classical games involving cooperation, Prisoner’s dilemma and Snowdrift game5.
The aim of this section is not to do a systematic analysis of these two games but to
demonstrate a way to use a standard P systems simulator to run relevant examples
of EGT, including the possibility of using compartments to simulate structured
populations and migration, that can be used to enrich the study of cooperation and
population dynamics [31, 54, 55, 56, 57], and, at the same time, enhance the study
of P systems and ecological dynamics [39].

Simulations have been conducted using a computer with CPU Intel Core i7 and
16Gb of RAM. Due to the limited computational resources available, some parame-
ters in the experiments have been limited. The number of individuals (cooperators

5A detailed description of Prisoner’s dilemma and Snowdrift game, among many other classical
games involving cooperation, can be found in [53].

43

or defectors) are restricted to a maximum of 20 and the number of cycles to a
maximum of 20000, depending on the experiment. For the experiments in which
Prisoner’s dilemma is simulated, the number of individuals is 20, divided in 10 co-
operators and 10 defectors. The number of cycles is 10000. For the Snowdrift game
experiment, the number of individuals is also 20 (10 cooperators and 10 defectors)
and the number of cycles is 20000. The last experiment uses two compartments,
one for the Prisoner’s dilemma and the other one for the Snowdrift game. The total
number of individuals is 40 (20 in each compartment) and the number of cycles is
20000.

The implementation of the model in P-Lingua is the following. As it can be
seen, the Model function receives the parameters needed to define the P System.
The code provided in this work it is adapted for two games.

1 @model<p r o b ab i l i s t i c >
2 def Model (R{1} ,S{1} ,T{1} ,P{1} ,R{2} ,S{2} ,T{2} ,P{2} , cs , ds ,M,w,U,C)
3 {
4 /∗
5 R: Reward
6 S : Sucker
7 T: Temptation
8 P: Punishment
9 cs : I n i t i a l number o f coopera to r s

10 ds : I n i t i a l number o f d e f e c t o r s
11 M: Number o f meetings per cy c l e
12 w: I n f l u en c e
13 U: Prob . o f mutation
14 C: Number o f c y c l e s
15 ∗/
16
17 l e t MAX_AC_C = M∗R{1};
18 l e t MAX_AC_D = M∗T{2} ;
19 l e t MAX_FC = (M + @floor (w ∗ (MAX_AC_C − M))) ;
20 l e t MAX_FD = (M + @floor (w ∗ (MAX_AC_D − M))) ;
21 l e t n = cs + ds ;
22
23 /∗ Number o f membranes ∗/
24 l e t Q = 2 ;
25
26 /∗ Membrane s t ru c tu r e ∗/
27 @mu = [[[] ’ 1 [] ’ 2] ’ g] ’ s ;
28
29 /∗ Input mu l t i s e t f o r membrane 1 ∗/
30 @ms(1) += c{ ci , 0 , 0} : 1 <= c i <= cs ;
31 @ms(1) += d{di , 0 , 0} : cs+1 <= di <= cs+ds ;
32 @ms(1) += z {0} ;
33
34 /∗ Input mu l t i s e t f o r membrane 2 ∗/
35 @ms(2) += c{ ci , 0 , 0} : 1 <= c i <= cs ;
36 @ms(2) += d{di , 0 , 0} : cs+1 <= di <= cs+ds ;
37 @ms(2) += z {0} ;
38
39 /∗ Input mu l t i s e t f o r membrane g ∗/
40 @ms(g) += w;
41
42 /∗ Input mu l t i s e t f o r membrane s ∗/
43 @ms(s) += h{0} ;
44
45 /∗ Rules ∗/
46 /∗ R1 ∗/
47 [c{ Id1 , A, (r1 ∗ S{k}) + ((A−r1) ∗ R{k}) } , c{ Id2 , A, (r2 ∗ S{k}) + ((A−r2) ∗ R{k}) } −−> c{Id1 ,

A + 1 , (r1 ∗ S{k}) + ((A−r1) ∗ R{k}) + R{k}} , c{ Id2 , A + 1 , (r2 ∗ S{k}) + ((A−r2) ∗ R{k}) +
R{k }}] ’ { k} : : 1 .0 : 1 <= k <= Q, 0 <= Id1 <= n , 0 <= Id2 <= n , 0 <= r1 <= A, 0 <= r2 <= A, 0
<= A <= M−1;

48
49 /∗ R2 ∗/
50 [c{ Id1 , A, (r1 ∗ S{k}) + ((A−r1) ∗ R{k}) } , d{Id2 , A, (r2 ∗ T{k}) + ((A−r2) ∗ P{k}) } −−> c{Id1 ,

A + 1 , (r1 ∗ S{k}) + ((A−r1) ∗ R{k}) + S{k}} , d{Id2 , A + 1 , (r2 ∗ T{k}) + ((A−r2) ∗ P{k}) +
T{k }}] ’ { k} : : 1 . 0 : 1 <= k <= Q, 0 <= Id1 <= n , 0 <= Id2 <= n , 0 <= r1 <= A, 0 <= r2 <= A, 0
<= A <= M−1;

51
52 /∗ R3 ∗/
53 [d{ Id1 , A, (r1 ∗ T{k}) + ((A−r1) ∗ P{k}) } , d{ Id2 , A, (r2 ∗ T{k}) + ((A−r2) ∗ P{k}) } −−> d{Id1 ,

A + 1 , (r1 ∗ T{k}) + ((A−r1) ∗ P{k}) + P{k}} , d{Id2 , A + 1 , (r2 ∗ T{k}) + ((A−r2) ∗ P{k}) +
P{k }}] ’ { k} : : 1 . 0 : 1 <= k <= Q, 0 <= Id1 <= n , 0 <= Id2 <= n , 0 <= r1 <= A, 0 <= r2 <= A, 0
<= A <= M−1;

54
55 /∗ R4 ∗/
56 +[c{Id , M, (r1 ∗ S{k}) + ((A−r1) ∗ R{k}) } −−> &{p{Id , j } , c{Id ,0 ,0}}:{1 <= j<=(M + @floor (w ∗ (((

44

r1 ∗ S{k}) + ((A−r1) ∗ R{k})) − M))) }] ’ { k} : : 1 . 0 : 1 <= k <= Q, 1 <= Id <= n , 0 <= r1 <= A,
1 <= A <= M;

57
58 /∗ R5 ∗/
59 +[d{Id , M, (r1 ∗ T{k}) + ((A−r1) ∗ P{k}) } −−> &{q{Id , j } , d{Id ,0 ,0}}:{1 <= j<=(M + @floor (w ∗ (((

r1 ∗ T{k}) + ((A−r1) ∗ P{k})) − M))) }] ’ { k} : : 1 . 0 : 1 <= k <= Q, 1 <= Id <= n , 0 <= r1 <= A,
1 <= A <= M;

60
61 /∗ R6 ∗/
62 +[L −−> La] ’ { k} : : U : 1 <= k <= Q;
63
64 /∗ R7 ∗/
65 +[L −−> Lb] ’ { k} : : 1 . 0 − U : 1 <= k <= Q;
66
67 /∗ R8 ∗/
68 +[p{Id , j j } ,La −−> D,K] ’ { k} : : 1 .0 : 1 <= k <= Q, 1 <= Id <= n , 1 <= j j <= MAX_FC;
69
70 /∗ R9 ∗/
71 +[q{Id , j j } ,La −−> C,K] ’ { k} : : 1 . 0 : 1 <= k <= Q, 1 <= Id <= n , 1 <= j j <= MAX_FD;
72
73 /∗ R10 ∗/
74 +[p{Id , j j } ,Lb −−> C,K] ’ { k} : : 1 . 0 : 1 <= k <= Q, 1 <= Id <= n , 1 <= j j <= MAX_FC;
75
76 /∗ R11 ∗/
77 +[q{Id , j j } ,Lb −−> D,K] ’ { k} : : 1 .0 : 1 <= k <= Q, 1 <= Id <= n , 1 <= j j <= MAX_FD;
78
79 /∗ R12 ∗/
80 +[K{ Id } ,C −−> c{Id , 0 , 0 }] ’ { k} : : 1 .0 : 1 <= k <= Q, 1 <= Id <= n ;
81
82 /∗ R13 ∗/
83 +[K{ Id } ,D −−> d{Id , 0 , 0 }] ’ { k} : : 1 .0 : 1 <= k <= Q, 1 <= Id <= n ;
84
85 /∗ R14 ∗/
86 +[K, c{Id ,0 , 0} −−> K{Id }] ’ { k} : : 1 . 0 : 1 <= k <= Q, 1 <= Id <= n ;
87 +[K, d{Id ,0 , 0} −−> K{Id }] ’ { k} : : 1 . 0 : 1 <= k <= Q, 1 <= Id <= n ;
88
89 /∗ R15 ∗/
90 +[V, c{Id , 0 , 0 }] ’ { k} −−> V{k , Id } , c{Id ,0 ,0} − [c{ Id , 0 , 0 }] ’ { k} : : 1 .0 : 1 <= k <= Q, 1 <= Id <= n ;
91 +[V, d{Id , 0 , 0 }] ’ { k} −−> V{k , Id } ,d{Id ,0 ,0} − [d{Id , 0 , 0 }] ’ { k} : : 1 . 0 : 1 <= k <= Q, 1 <= Id <= n ;
92
93 /∗ R16 ∗/
94 c{Id1 , 0 , 0} , V{k , Id2} − [] ’{ k} −−> −[c{ Id2 , 0 , 0 }] ’ { k} : : 0 : 1 <= k <= Q, 1 <= Id1 <= n , 1 <= Id2

<= n ;
95 d{Id1 , 0 , 0} , V{k , Id2} − [] ’{ k} −−> −[d{ Id2 , 0 , 0 }] ’ { k} : : 0 : 1 <= k <= Q, 1 <= Id1 <= n , 1 <= Id2

<= n ;
96
97 /∗ R17 ∗/
98 [z{ i } −−> z{ i +1}] ’{k} : : 1 . 0 : 1 <= k <= Q, 0 <= i <= M−3;
99 +[z{ i } −−> z{ i +1}] ’{k} : : 1 . 0 : 1 <= k <= Q, M <= i <= M+2;

100
101 /∗ R18 ∗/
102 [z{M−2} −−> z{M−1}, f {0 , k }] ’ { k} : : 1 .0 : 1 <= k <= Q;
103
104 /∗ R19 ∗/
105 [z{M−1} −−> z{M} ,L] ’ { k} : : 1 . 0 : 1 <= k <= Q;
106
107 /∗ R20 ∗/
108 +[z{M+3} −−> V] ’ { k} : : 1 . 0 : 1 <= k <= Q;
109
110 /∗ R21 ∗/
111 [f {0 , k }] ’ { k} −−> f {1 , k }+[] ’{ k} : : 1 . 0 : 1 <= k <= Q;
112
113 /∗ R22 ∗/
114 [f { i , k} −−> f { i +1,k }] ’ g : : 1 . 0 : 1 <= k <= Q, 1 <= i <= 6 ;
115
116 /∗ R23 ∗/
117 f {7 , k } − [] ’{ k} −−> [z {0}] ’ { k} : : 1 . 0 : 1 <= k <= Q;
118
119 /∗ R24 ∗/
120 [h{ i } −−> h{ i +1}] ’ s : : 1 . 0 : 0 <= i <= C∗M + 7∗C − 4 ;
121
122 /∗ R25 ∗/
123 h{C∗M + 7∗C − 3 } [] ’ g −−> +[h{C∗M + 7∗C − 3}] ’ g : : 1 . 0 ;
124
125 /∗ R26 ∗/
126 [p{Id , j j } −−>] ’ { k} : : 1 . 0 : 1 <= k <= Q, 1 <= Id <= n , 1 <= j j <= MAX_FC;
127
128 /∗ R27 ∗/
129 [q{Id , j j } −−>] ’ { k} : : 1 . 0 : 1 <= k <= Q, 1 <= Id <= n , 1 <= j j <= MAX_FD;
130
131 /∗ R28 ∗/
132 [La −−>]’{k} : : 1 .0 : 1 <= k <= Q;
133
134 /∗ R29 ∗/
135 [Lb −−>]’{k} : : 1 .0 : 1 <= k <= Q;
136 }

In Figures 12 and 13 we compute the long-term average of the number of co-
operators by calculating the average number of cooperators considering the entire

45

0
- 5

00
50

0
- 1

00
0

10
00

 -
15

00
15

00
 -
20

00
20

00
 -
25

00
25

00
 -
30

00
30

00
 -
35

00
35

00
 -
40

00
40

00
 -
45

00
45

00
 -
50

00
50

00
 -
55

00
55

00
 -
60

00
60

00
 -
65

00
65

00
 -
70

00
70

00
 -
75

00
75

00
 -
80

00
80

00
 -
85

00
85

00
 -
90

00
90

00
 -
95

00
95

00
 -
10

00
0

10
00

0
- 1

05
00

10
50

0
- 1

10
00

11
00

0
- 1

15
00

11
50

0
- 1

20
00

12
00

0
- 1

25
00

12
50

0
- 1

30
00

13
00

0
- 1

35
00

13
50

0
- 1

40
00

14
00

0
- 1

45
00

14
50

0
- 1

50
00

15
00

0
- 1

55
00

15
50

0
- 1

60
00

16
00

0
- 1

65
00

16
50

0
- 1

70
00

17
00

0
- 1

75
00

17
50

0
- 1

80
00

18
00

0
- 1

85
00

18
50

0
- 1

90
00

19
00

0
- 1

95
00

19
50

0
- 2

00
00

Cycles

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
M
ea

n
Mean of individuals every 500 cycles

defectors
cooperators

Figure 12: Evolution of cooperators and defectors in Snowdrift game during 20000
cycles (each bar represents the mean every 500 cycles). We can observe that cooper-
ators and defectors can co-exist, as we can also observe in the long-term average of
cooperators (skipping first 1000 cycles, in order to avoid adding the transient effects
of the initial configuration in the calculated long-term average) which is 8.73. Coop-
erators can invade a region full of defectors, while defectors can invade a region full
of cooperators. Payoff matrix used in this experiment is composed of Reward = 5,
Sucker’s payoff = 4, Temptation = 6 and Punishment = 3. Initial individuals are 10
cooperators and 10 defectors. Mutation probability is 0.01 and parameter influence
w is 0.5.

simulation (skipping the first 1000 cycles). Intuitively, this provides the expected
number of cooperators present in the population in the long term. As one would ex-
pect, the simulator correctly shows that cooperators and defectors can co-exists only
in the Snowdrift game (Figure 12), while in the Prisoner’s dilemma, the population
is dominated by the defectors in the early cycles (Figure 13).

Figure 14 shows the evolution of a population of 40 individuals split into 2 mem-
branes with 20 individuals each. In the first one (membrane 1) the individuals evolve
with the Prisoner’s dilemma matrix and the individuals in membrane 2 evolves ac-
cording to the Snowdrift game. The system is evolved for 20000 cycles (each bar

46

0
- 2

50
25

0
- 5

00
50

0
- 7

50
75

0
- 1

00
0

10
00

 -
12

50
12

50
 -
15

00
15

00
 -
17

50
17

50
 -
20

00
20

00
 -
22

50
22

50
 -
25

00
25

00
 -
27

50
27

50
 -
30

00
30

00
 -
32

50
32

50
 -
35

00
35

00
 -
37

50
37

50
 -
40

00
40

00
 -
42

50
42

50
 -
45

00
45

00
 -
47

50
47

50
 -
50

00
50

00
 -
52

50
52

50
 -
55

00
55

00
 -
57

50
57

50
 -
60

00
60

00
 -
62

50
62

50
 -
65

00
65

00
 -
67

50
67

50
 -
70

00
70

00
 -
72

50
72

50
 -
75

00
75

00
 -
77

50
77

50
 -
80

00
80

00
 -
82

50
82

50
 -
85

00
85

00
 -
87

50
87

50
 -
90

00
90

00
 -
92

50
92

50
 -
95

00
95

00
 -
97

50
97

50
 -
10

00
0

Cycles

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
ea

n
Mean of individuals every 250 cycles

defectors
cooperators

Figure 13: Evolution of cooperators and defectors in Prisoner’s dilemma game during
10000 cycles (each bar represents the mean every 250 cycles). We can observe that
the population is composed by mostly defectors as we can also observe in the long-
term average of cooperators (skipping first 1000 cycles) which is just 0.42. As it
can be seen, cooperators have a lot of difficulties invading a region full of defectors.
Payoff matrix is composed of Reward = 3, Sucker’s payoff = 1, Temptation = 7 and
Punishment = 2. Initial individuals are 10 cooperators and 10 defectors. Mutation
probability is 0.01 and parameter influence w is 0.5.

represents the mean every 500 cycles). In this case, the two previous games are
encoded in different elemental membranes. As stated before, membrane 1 encodes
the Snowdrift game whereas membrane 2 encodes Prisoner’s dilemma. In this con-
figuration, migration rules are applied in order to interchange individuals between
membranes. In Figure 14 we can see that the long-term average number of coopera-
tors is distinct from the one obtained in the two scenarios (Prisoner’s dilemma and
Snowdrift) when studied independently, (Figure 13 and 14) which highlights the rel-
evance of combining compartments. More generally, the presented approach allows
to study systems with complex structures where in different regions can be applied
different games, with distinct payoff matrices and individuals migrating across mem-
branes. In this way, the cellular-inspired structure of membrane computing can be

47

0
- 5

00
50

0
- 1

00
0

10
00

 -
15

00
15

00
 -
20

00
20

00
 -
25

00
25

00
 -
30

00
30

00
 -
35

00
35

00
 -
40

00
40

00
 -
45

00
45

00
 -
50

00
50

00
 -
55

00
55

00
 -
60

00
60

00
 -
65

00
65

00
 -
70

00
70

00
 -
75

00
75

00
 -
80

00
80

00
 -
85

00
85

00
 -
90

00
90

00
 -
95

00
95

00
 -
10

00
0

10
00

0
- 1

05
00

10
50

0
- 1

10
00

11
00

0
- 1

15
00

11
50

0
- 1

20
00

12
00

0
- 1

25
00

12
50

0
- 1

30
00

13
00

0
- 1

35
00

13
50

0
- 1

40
00

14
00

0
- 1

45
00

14
50

0
- 1

50
00

15
00

0
- 1

55
00

15
50

0
- 1

60
00

16
00

0
- 1

65
00

16
50

0
- 1

70
00

17
00

0
- 1

75
00

17
50

0
- 1

80
00

18
00

0
- 1

85
00

18
50

0
- 1

90
00

19
00

0
- 1

95
00

19
50

0
- 2

00
00

Cycles

0

5

10

15

20

25

30

35

40
M
ea

n
Mean of individuals every 500 cycles

defectors
cooperators

Figure 14: This figure shows the evolution of a population of 40 individuals split into
2 membranes with 20 individuals each. In membrane 1, the individuals evolve with
the Prisoner’s dilemma payoff matrix and the individuals in membrane 2 evolves
according to the Snowdrift game. The system has evolved during 20000 cycles
(each bar represents the mean every 500 cycles). Long-term average of cooperators
for the overall system (skipping first 1000 cycles) is 6.26. In this configuration,
each membrane encode one of the games. Membrane 1 has a payoff matrix com-
posed of Reward = 5, Sucker’s payoff = 4, Temptation = 6 and Punishment = 3
whereas membrane 2 has Reward = 3, Sucker’s payoff = 1, Temptation = 7 and
Punishment = 2 (i.e., these payoffs correspond to the Prisoner’s dilemma and Snow-
drift games). Both membranes has the same configuration for the rest of parameters:
mutation probability is 0.01 and parameter influence w is 0.5.

used to study the spreading of behaviours in structured populations.

3.4 Conclusions

EGT is a mathematical and computational framework which is used to study the
spreading of behaviours (often referred as strategies) in evolving populations. An

48

important problem approached using EGT is the study of the resilience of coopera-
tion in structured populations, i.e., organized according to specific structures. Very
often, the problem is studied using ad-hoc computational models.

In this work, it is proposed a general, flexible, way to encode and simulate EGT
problems in P systems. This allows us to provide a formal way to computationally
study the dynamics of evolving populations, and, at the same time, use well-known
simulators and languages for P systems (such as MeCoSim and P-Lingua) to inves-
tigate, in-silicio, the spreading of strategies in structured populations, organized in
compartments where individuals can meet, replicate and migrate. To demonstrate
the feasibility of the proposed approach, it is encoded two well-known games to
study cooperation (Prisoner’s dilemma and Snowdrift game) into P systems and
simulated their dynamics using MeCoSim. As expected, cooperators and defectors
can co-exists in the Snowdrift game, while in the Prisoner’s dilemma, the population
is mostly composed by defectors (even in the early cycles). The proposed approach
allows also to simulate populations organized in different compartments with mi-
gration across the different membranes, where different games can be associated to
different membranes (i.e. it is possible to study the dynamics of populations that
interact with each other). Despite it is not the aim of this work to focus on any
specific scenario, we believe that the proposed encoding of EGT into P systems will
constitute an innovative framework to study and simulate the dynamics of ecological
processes related to the spreading of new behaviours in structured populations, a
key general research question in EGT. More generally, the proposed approach can
provide an alternative general framework to study the evolutionary dynamics in
structured populations, enriching the research area that studies ecological dynamics
using P systems, and the area that studies the spreading of behaviours in structured
populations.

49

4 Final thoughts

In this work, the two research works carried out during the academic year have been
developed. Both of the papers have been submitted to journals. Paper PBIL for op-
timizing Inception Module in Convolutional Neural Networks have been submitted
to the Logic Journal of the IGPL and have already been accepted for publication.
Paper Evolutionary Game Theory in a Cell: A Membrane Computing Approach
have been submitted to the special issue about Membrane Computing of the Infor-
mation Sciences journal and is currently being reviewed. Both papers have a strong
inspiration in nature.

The paper PBIL for optimizing Inception Module in Convolutional Neural Net-
works proposes a methodology to optimize the hyperparameters of the Inception-A
block using PBIL algorithm. In order to not generate individuals with incompat-
ible kernel sizes (based on the requirements of the problem) a special codification
is implemented. In addition, the use of a single epoch during the hyperparameters
optimization allows to reduce the execution time drastically. Hence, the carbon
footprint is also reduced. Results demonstrate that the optimized architecture of
Inception-A module using only 3 blocks, and therefore a lower number of train-
able parameters, achieves an excellent performance. One of the best things of this
paper is that the future work is abundant. There are ton of things that can be
tested: others neural network architectures, others optimization algorithms, the use
of more than one epoch to compute the fitness of individuals, the optimization of
more hyperparameters, etc.

The paper Evolutionary Game Theory in a Cell: A Membrane Computing Ap-
proach proposes a general way to encode Evolutionary Game Theory problems into
Membrane Computing. A novel computational framework which can be used to
study, analyze and simulate the spreading of behaviours in structured populations
organized in communicating compartments is also proposed. The proposed approach
provides an alternative general framework to study the evolutionary dynamics in
structured populations, enriching the research area that studies ecological dynamics
using P systems, and the area that studies the spreading of behaviours in structured
populations. As future work, optimization of the P System can lead to more ambi-
tious experiments in which more than two compartments are used to hold different
populations.

These two papers are only two cases of nature-inspired computation. In the
computer science area (and mathematics), there are tons of examples of nature
inspiration. Thus, we can say nature has had a great impact in the way research is
done.

As stated before, the two papers open up a broad range of future work. Hence,
new research lines can derive to continue the work.

50

References

[1] Shumeet Baluja. Population-based incremental learning: A method for inte-
grating genetic search based function optimization and competitive learning.
Technical Report CMU-CS-94-163, Carnegie Mellon University, Pittsburgh,
PA, January 1994.

[2] Shumeet Baluja and Rich Caruana. Removing the genetics from the standard
genetic algorithm. In Machine Learning, Proceedings of the Twelfth Interna-
tional Conference on Machine Learning, Tahoe City, California, USA, July
9-12, 1995, pages 38–46, 1995.

[3] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. Going deeper with convolutions, 2014.

[4] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander Alemi.
Inception-v4, inception-resnet and the impact of residual connections on learn-
ing. Proceedings of the AAAI Conference on Artificial Intelligence, 31(1), Feb.
2017.

[5] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[6] Estrategia Nacional de Inteligencia Artificial. Technical report, Gobierno de
España, 2020.

[7] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy
considerations for deep learning in NLP. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 3645–3650,
Florence, Italy, July 2019. Association for Computational Linguistics.

[8] Iván Méndez-Jiménez and Miguel Cárdenas-Montes. Modelling and forecasting
of the 222Rn radiation level time series at the Canfranc Underground Labora-
tory. In Hybrid Artificial Intelligent Systems - 13th International Conference,
HAIS 2018, Oviedo, Spain, June 20-22, 2018, Proceedings, volume 10870 of
Lecture Notes in Computer Science, pages 158–170. Springer, 2018.

[9] Iván Méndez-Jiménez and Miguel Cárdenas-Montes. Time series decomposition
for improving the forecasting performance of convolutional neural networks. In
Advances in Artificial Intelligence - 18th Conference of the Spanish Association
for Artificial Intelligence, CAEPIA 2018, Granada, Spain, Proceedings, volume
11160 of Lecture Notes in Computer Science, pages 87–97. Springer, 2018.

[10] Miguel Cárdenas-Montes and Iván Méndez-Jiménez. Ensemble deep learning
for forecasting 222Rn radiation level at Canfranc Underground Laboratory. In

51

14th International Conference on Soft Computing Models in Industrial and En-
vironmental Applications (SOCO 2019) - Seville, Spain, May 13-15, 2019, Pro-
ceedings, volume 950 of Advances in Intelligent Systems and Computing, pages
157–167. Springer, 2019.

[11] Miguel Cárdenas-Montes. Forecast daily air-pollution time series with deep
learning. In Hybrid Artificial Intelligent Systems - 14th International Confer-
ence, HAIS 2019, León, Spain, September 4-6, 2019, Proceedings, volume 11734
of Lecture Notes in Computer Science, pages 431–443. Springer, 2019.

[12] Miguel Cárdenas-Montes. Uncertainty estimation in the forecasting of the 222Rn
radiation level time series at the Canfranc Underground Laboratory. Logic
Journal of the IGPL, 11 2020. jzaa057.

[13] Roberto A. Vasco-Carofilis, Miguel A. Gutiérrez-Naranjo, and Miguel
Cárdenas-Montes. PBIL for optimizing hyperparameters of convolutional neural
networks and STL decomposition. In Enrique A. de la Cal, José Ramón Vil-
lar Flecha, Héctor Quintián, and Emilio Corchado, editors, Hybrid Artificial
Intelligent Systems - 15th International Conference, HAIS 2020, Gijón, Spain,
November 11-13, 2020, Proceedings, volume 12344 of Lecture Notes in Com-
puter Science, pages 147–159. Springer, 2020.

[14] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[15] Y. LeCun. Generalization and network design strategies. Technical report,
University of Toronto, 1989.

[16] John Cristian Borges Gamboa. Deep learning for time-series analysis. CoRR,
abs/1701.01887, 2017.

[17] Zhiguang Wang, Weizhong Yan, and Tim Oates. Time series classification from
scratch with deep neural networks: A strong baseline. CoRR, abs/1611.06455,
2016.

[18] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbig-
niew Wojna. Rethinking the inception architecture for computer vision, 2015.

[19] Salvador García, Daniel Molina, Manuel Lozano, and Francisco Herrera. A
study on the use of non-parametric tests for analyzing the evolutionary al-
gorithms’ behaviour: a case study on the CEC’2005 special session on real
parameter optimization. J. Heuristics, 15(6):617–644, 2009.

[20] Salvador García, Alberto Fernández, Julián Luengo, and Francisco Herrera.
A study of statistical techniques and performance measures for genetics-based
machine learning: accuracy and interpretability. Soft Comput., 13(10):959–977,
2009.

52

http://www.deeplearningbook.org

[21] Vittorio Mazzia, Francesco Salvetti, and Marcello Chiaberge. Efficient-capsnet:
Capsule network with self-attention routing, 2021.

[22] Josef Hofbauer and Karl Sigmund. Evolutionary Games and Population Dy-
namics. Cambridge University Press, 1998.

[23] Martin A Nowak and Karl Sigmund. Evolutionary dynamics of biological games.
science, 303(5659):793–799, 2004.

[24] Martin A Nowak. Five rules for the evolution of cooperation. science,
314(5805):1560–1563, 2006.

[25] Kevin Lai, Michal Feldman, Ion Stoica, and John Chuang. Incentives for co-
operation in peer-to-peer networks. In Workshop on economics of peer-to-peer
systems, pages 1243–1248, 2003.

[26] Matteo Cavaliere, Song Feng, Orkun S Soyer, and José I Jiménez. Cooperation
in microbial communities and their biotechnological applications. Environmen-
tal microbiology, 19(8):2949–2963, 2017.

[27] Simon Levin. Crossing scales, crossing disciplines: collective motion and col-
lective action in the global commons. Philosophical Transactions of the Royal
Society B: Biological Sciences, 365(1537):13–18, 2010.

[28] Elizabeth Pennisi. How did cooperative behavior evolve? Science,
309(5731):93–93, 2005.

[29] Carlos P Roca, José A Cuesta, and Angel Sánchez. Evolutionary game theory:
Temporal and spatial effects beyond replicator dynamics. Physics of life reviews,
6(4):208–249, 2009.

[30] Matjaž Perc and Attila Szolnoki. Coevolutionary games—a mini review.
BioSystems, 99(2):109–125, 2010.

[31] Erez Lieberman, Christoph Hauert, and Martin A Nowak. Evolutionary dy-
namics on graphs. Nature, 433(7023):312–316, 2005.

[32] Corina E Tarnita, Tibor Antal, Hisashi Ohtsuki, and Martin A Nowak. Evo-
lutionary dynamics in set structured populations. Proceedings of the National
Academy of Sciences, 106(21):8601–8604, 2009.

[33] Matteo Cavaliere, Sean Sedwards, Corina E Tarnita, Martin A Nowak, and
Attila Csikász-Nagy. Prosperity is associated with instability in dynamical
networks. Journal of theoretical biology, 299:126–138, 2012.

[34] Martin A Nowak, Corina E Tarnita, and Tibor Antal. Evolutionary dynamics
in structured populations. Philosophical Transactions of the Royal Society B:
Biological Sciences, 365(1537):19–30, 2010.

53

[35] Hisashi Ohtsuki, Martin A Nowak, and Jorge M Pacheco. Breaking the symme-
try between interaction and replacement in evolutionary dynamics on graphs.
Physical review letters, 98(10):108106, 2007.

[36] Christoph Adami, Jory Schossau, and Arend Hintze. Evolutionary game theory
using agent-based methods. Physics of life reviews, 19:1–26, 2016.

[37] Paolo Cazzaniga, Marian Gheorghe, Natalio Krasnogor, Giancarlo Mauri, Pario
Pesciani, and Frnacisco José Romero-Campero. Probabilistic/stochastic mod-
els. In Păun et al. [69], pages 455 – 474.

[38] Mónica Cardona, M. Ángels Colomer, Antoni Margalida, Antoni Palau, Ignacio
Pérez-Hurtado, Mario J. Pérez-Jiménez, and Delfí Sanuy. A computational
modeling for real ecosystems based on P systems. Natural Computing, 10(1):39–
53, 2011.

[39] Maria Àngels Colomer, Antoni Margalida, and Mario J Pérez-Jiménez. Popu-
lation dynamics p system (pdp) models: a standardized protocol for describing
and applying novel bio-inspired computing tools. PloS one, 8(4):e60698, 2013.

[40] Ignacio Pérez-Hurtado, Luis Valencia-Cabrera, Mario J. Pérez-Jiménez,
Maria Angels Colomer, and Agustin Riscos-Núñez. Mecosim: A general pur-
pose software tool for simulating biological phenomena by means of P systems.
In Fifth International Conference on Bio-Inspired Computing: Theories and
Applications, BIC-TA 2010, University of Hunan, Liverpool Hope University,
Liverpool, United Kingdom / Changsha, China, September 8-10 and September
23-26, 2010, pages 637–643. IEEE, 2010.

[41] Gheorghe Păun. Computing with membranes. Technical Report 208, Turku
Centre for Computer Science, Turku, Finland, November 1998.

[42] Mihai Ionescu, Gheorghe Păun, and Takashi Yokomori. Spiking neural P sys-
tems. Fundamenta Informaticae, 71(2-3):279–308, 2006.

[43] Ren Tristan A. de la Cruz, Francis George C. Cabarle, Ivan Cedric H.
Macababayao, Henry N. Adorna, and Xiangxiang Zeng. Homogeneous spiking
neural P systems with structural plasticity. J. Membr. Comput., 3(1):10–21,
2021.

[44] Qianqian Ren and Xiyu Liu. Delayed spiking neural p systems with scheduled
rules. Complexity, 2021:1–13, 2021.

[45] Xiaoxiao Song, Luis Valencia-Cabrera, Hong Peng, and Jun Wang. Spiking
neural p systems with autapses. Information Sciences, 570:383–402, 2021.

[46] Linqiang Pan, Gheorghe Paun, Gexiang Zhang, and Ferrante Neri. Spiking
neural p systems with communication on request. International Journal of
Neural Systems, 27, 08 2017.

54

[47] Tingfang Wu, Florin-Daniel Bîlbîe, Andrei Paun, Linqiang Pan, and Ferrante
Neri. Simplified and yet turing universal spiking neural p systems with com-
munication on request. International Journal of Neural Systems, 28, 04 2018.

[48] Gexiang Zhang, Haina Rong, Ferrante Neri, and Mario Pérez-Jiménez. An
optimization spiking neural p system for approximately solving combinatorial
optimization problems. International journal of neural systems, 24:1440006, 08
2014.

[49] Ming Zhu, Qiang Yang, Jianping Dong, Gexiang Zhang, Xiantai Gou, Haina
Rong, Prithwineel Paul, and Ferrante Neri. An adaptive optimization spiking
neural p system for binary problems. International Journal of Neural Systems,
31, 06 2020.

[50] Gexiang Zhang, Haina Rong, Prithwineel Paul, Yang yang He, Ferrante Neri,
and Mario J. Pérez-Jiménez. A complete arithmetic calculator constructed from
spiking neural p systems and its application to information fusion. International
journal of neural systems, page 2050055, 2021.

[51] P-Lingua. http://www.p-lingua.org/wiki/index.php/Main_Page.

[52] P-Lingua. http://www.p-lingua.org/mecosim/.

[53] Martin A Nowak. Evolutionary dynamics: exploring the equations of life. Har-
vard university press, 2006.

[54] Rui Cong, Bin Wu, Yuanying Qiu, and Long Wang. Evolution of cooperation
driven by reputation-based migration. PLoS One, 7(5):e35776, 2012.

[55] Luo-Luo Jiang, Wen-Xu Wang, Ying-Cheng Lai, and Bing-Hong Wang. Role of
adaptive migration in promoting cooperation in spatial games. Physical Review
E, 81(3):036108, 2010.

[56] Genki Ichinose and Takaya Arita. The role of migration and founder effect
for the evolution of cooperation in a multilevel selection context. Ecological
Modelling, 210(3):221–230, 2008.

[57] Dirk Helbing and Wenjian Yu. Migration as a mechanism to promote cooper-
ation. Advances in Complex Systems, 11(04):641–652, 2008.

[58] François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

[59] R. B. Cleveland, W. S. Cleveland, J.E. McRae, and I. Terpenning. STL: A
seasonal-trend decomposition procedure based on loess. Journal of Official
Statistics, pages 3–73, 1990.

[60] Josh Montague. STLDecompose. https://github.com/jrmontag/
STLDecompose, 2017.

55

http://www.p-lingua.org/wiki/index.php/Main_Page
http://www.p-lingua.org/mecosim/
https://github.com/fchollet/keras
https://github.com/jrmontag/STLDecompose
https://github.com/jrmontag/STLDecompose

[61] James Bergstra and Yoshua Bengio. Random search for hyper-parameter opti-
mization. Journal of Machine Learning Research, 13:281–305, 2012.

[62] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian opti-
mization of machine learning algorithms. In Advances in Neural Information
Processing Systems 25: 26th Annual Conference on Neural Information Pro-
cessing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake
Tahoe, Nevada, United States., pages 2960–2968, 2012.

[63] Dougal Maclaurin, David K. Duvenaud, and Ryan P. Adams. Gradient-based
hyperparameter optimization through reversible learning. In Proceedings of
the 32nd International Conference on Machine Learning, ICML 2015, Lille,
France, 6-11 July 2015, pages 2113–2122, 2015.

[64] Gonzalo I. Diaz, Achille Fokoue-Nkoutche, Giacomo Nannicini, and Horst
Samulowitz. An effective algorithm for hyperparameter optimization of neu-
ral networks. IBM Journal of Research and Development, 61(4):9, 2017.

[65] Elad Hazan, Adam R. Klivans, and Yang Yuan. Hyperparameter optimization:
A spectral approach. CoRR, abs/1706.00764, 2017.

[66] Risto Miikkulainen, Jason Zhi Liang, Elliot Meyerson, Aditya Rawal, Daniel
Fink, Olivier Francon, Bala Raju, Hormoz Shahrzad, Arshak Navruzyan,
Nigel Duffy, and Babak Hodjat. Evolving deep neural networks. CoRR,
abs/1703.00548, 2017.

[67] Ang Li, Ola Spyra, Sagi Perel, Valentin Dalibard, Max Jaderberg, Chenjie Gu,
David Budden, Tim Harley, and Pramod Gupta. A generalized framework for
population based training. CoRR, abs/1902.01894, 2019.

[68] Reza Rastegar and Arash Hariri. The population-based incremental learning
algorithm converges to local optima. Neurocomputing, 69(13-15):1772–1775,
2006.

[69] Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa, editors. The Oxford
Handbook of Membrane Computing. Oxford University Press, Oxford, England,
2010.

[70] Daniel Díaz-Pernil, Ignacio Pérez-Hurtado, Mario J. Pérez-Jiménez, and
Agustin Riscos-Núñez. A p-lingua programming environment for membrane
computing. In David W. Corne, Pierluigi Frisco, Gheorghe Paun, Grzegorz
Rozenberg, and Arto Salomaa, editors, Membrane Computing - 9th Interna-
tional Workshop, WMC 2008, Edinburgh, UK, July 28-31, 2008, Revised Se-
lected and Invited Papers, volume 5391 of Lecture Notes in Computer Science,
pages 187–203. Springer, 2008.

56

	Introduction
	Optimizing neural networks architectures with PBIL
	Introduction
	Methods
	Convolutional Neural Networks
	Inception Network
	Population-based Incremental Learning
	Gray Coding
	Gray-Code of Hyperparameters of Inception Module
	Statistics

	Results
	Evolving Inception
	Results Comparison and Statistical Tests

	Conclusions

	Evolutionary Game Theory and Membrane Computing
	Introduction
	Methods
	Probabilistic P systems
	Evolutionary Game Theory in P Systems
	MeCoSim

	Experimentation and Results
	Conclusions

	Final thoughts
	Referencias

