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Abstract. A dynamic version of Cloudbook is presented in this work, a new 

tool for automatically and unattendedly parallelizing codes which also lately 

distributes the tasks dynamically. Cloudbook is designed for Python codes and, 

above all, makes the parallelization in a way in which the number and main 

characteristics of the available infrastructure is taking into account for optimiz-

ing the execution (performance, bandwidth connection, etc.) in a dynamic way. 

Cloudbook is designed to allow developers to get the technical benefits of au-

tomated distribution and parallelization of programs with a very low learning 

cost. It only requires labelling the original code with a reduced set of pragmas 

located at function headers. Results of the tests carried out with Cloudbook with 

several codes on a real infrastructure are presented as well. 

Keywords: Parallel Computing, Compiler, Automatization. 

1 Introduction 

In general terms, parallel computing refers to the use in combination of two or more 

processes (threads, cores, computers…) to solve a single problem. This methodology 

is carried out by using computing architectures in which several processors execute or 

process simultaneously an application or computation. Thus, it is possible to perform 

large computations by dividing the workload between more than one processor, all of 

which execute their task through the computation at the same time in a predefined 

scheme. 

Compared to serial computing, parallel computing is then much better suited for 

modelling, simulating, and understanding complex real world phenomena. Thus, the 

primary objective of parallel computing, also known as parallel processing, is to in-

crease the available computation power for faster application execution or task resolu-

tion. 

Today’s supercomputers employ parallel computing principles to operate and solve 

complex problems. Some examples of computational science applied to natural sci-

ences are galaxy formation, climate change, weather forecast, energy production, 
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bioinformatics, material science, etc. Although parallel computing was firstly used for 

scientific computing and the simulation of scientific problems, nowadays it is present 

in any field, including human and social sciences too. This has led and is still leading 

to the design of more powerful and efficient parallel hardware and software making a 

reality the so-called High Performance Computing (HPC). 

As a consequence, the use of the HPC infrastructure has become a challenge itself 

with the advent of many-core systems, i.e. the parallelization of serial programs has 

become a mainstream and cornerstone programming task. 

Additionally, parallel computers based on interconnected networks need to have 

some kind of routing protocols to enable the transmission of messages between nodes 

that are not directly connected. The medium used for communication between the 

processors is likely to be hierarchical in large multiprocessor machines and have a 

strong influence on the cluster performance when large parallel calculi are executed. 

The variation of the performance with the number of computer resources is known as 

scalability and depends on the hardware and architecture of the physical resources as 

well as on the computational characteristics of the problem to be solved. Scalability 

must be maximized, but it is usually degraded when the computing resources or the 

problem size rise. 

Summarizing, parallel computing is highly useful, but presents several challenges 

that become more and more complex to be overcome as the size of the infrastructures 

increase. Companies must manufacture efficient supercomputers from the energy 

point of view that, in addition, should be efficiently exploited from the usage point of 

view. In this sense, the way in which the parallelization is implemented is key as pro-

gramming to target parallel architectures can be highly difficult and requires human 

expertise and know-how. 

The first aim of this work is to provide a tool that automatically and unattendedly 

parallelizes a code, releasing the final user of designing such a parallel implantation 

as well as of debugging processes. Lately, a second goal is achieved by providing 

dynamic capabilities for distributing the parallel tasks by the tool itself in order to 

optimize the computational efficiency in term of performance. 

2 Related work 

As aforementioned, multi- and many-core machines are very common nowadays, 

allowing a number of problems exploiting the tremendous processing power of such 

machines. Such goal can only be efficiently achieved by parallel compilation. Auto-

matic conversion of serial code into its functionally equivalent parallel version re-

mains as an open challenge for researchers for the last years. These tools are intended 

to transform legacy serial code into parallel code to execute on parallel architectures. 

With respect to parallel compilers, a couple of reviews of the different tools can be 

found in [1] and [2]. Roughly speaking, these works compare different automatic 

tools (see references therein) on the basis of technology, language, available platforms 

and features, and drawbacks. The most important phase within the flowchart for par-



3 

allelizing the code is the detection of potential blocks, which is also the most time 

consuming part. 

It is also found that most of the tools are either oriented to FORTRAN or C/C++ as 

they clearly describe the operational flow in the code. Then, it is not strange that even 

Barve et al. developed a serial to parallel C++ code converter for multi-core machines 

after the publication of their revision [3]. Another posterior work presented a novel 

architecture based on web services which is able to translate any legacy software ap-

plication into a parallel code [4]. In a similar way, André et al. [5] present an envi-

ronment for programming distributed memory computers using High Performance 

Fortran, with emphasis put on compilation techniques and distributed array manage-

ment. OpenMP should be also highlighted, the well-known application programming 

interface for shared memory parallel computing [6] 

With a focus on data-parallel compiler, the aim has been to equal the performance 

of carefully hand-optimized parallel codes. For tightly coupled applications based on 

line sweeps, the Rice dHPF compiler [7] and its extension [8] can be cited. Most 

closed to Data-analytics, the TOREADOR tool has been recently published [9]. 

Specific developments for GPU environments such as the thesis by Hsu [10] or for 

executions carried out by virtual machines with the HPVM framework [11] can be 

consulted, but those works are less related to the one presented here. 

On the other hand, literature about optimizing the execution of codes along runtime 

taking into account the underlying infrastructure is huge. Just to focus on heterogene-

ous architectures, the OmpSs framework is able to provide dynamic allocation of jobs 

among other duties [12], but other solutions for heterogeneous resources are available 

too [13, 14, 15]. For loosely coupled applications, such as Monte Carlos codes, the 

Montera framework provided good results on real in production distributed heteroge-

neous platforms [16]. Works like this opened the door to widen this kind of solutions 

to virtualized environments [17] 

Analyzing the existing solutions, it can be deducted that all of them are still far 

away from their expectations, focused on a specific kind of application/environment, 

or do not stack a parallel compiler to the available infrastructure along runtime. The 

aim of this work is then to present a general-purpose tool that will both make codes 

parallel and will also take into account the infrastructure on which those codes are 

executed in order to maximize their performance. 

3 The Unattended Parallel Compiler 

There are two main problems in parallel execution: the generation of pieces of code to 

be executed on each processor as well as the efficient deployment and coordinated 

execution of these tasks. This work focuses on both problems by splitting a Python 

source code into the so-called deployable units (DU) and lately distributing these DUs 

in a coordinated way allowing communication among them if needed. This solution is 

called Cloudbook. 

In order to achieve an efficient parallel execution, the proposed solution Cloud-

book defines several pragmas to be integrated in the source code, which will be inter-
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preted by a “maker” designed to split the code into DUs. The main components of the 

proposed solution are summarized in the following architecture: 

 Maker: comprises the graph analyzer of source code and the splitter, which 

produces the DUs 

 Deployer: assigns the DUs to the available resources and launches the execu-

tion 

 Agents: execute the DUs 

During execution of Cloudbook programs, there is not need for a central server 

which attends the requests from agents asking for tasks o providing results, because 

Cloubook allows agents communicate each other and therefore the figure of a central 

controller server is not needed. 

3.1 Requirements 

In order to both optimize parallelism and improve performance, the programmer can 

include a series of labels in the functions that would indicate the agents how to exe-

cute those functions.  

Certain Cloudbook Pragmas may reflect the fork-join model spirit [18]. However, 

in Cloudbook the invokers do not match the concept of “parent” of the fork-join mod-

el because (among other details) tasks are executed on different agents, do not share a 

copy of parent’s variables, threads can be either created at invoker or invoked, and 

parallel functions cannot return values. 

Cloudbook supports the following language extensions (pragmas) for functions: 

 

 #__CLOUDBOOK:NONBLOCKING__: functions with this label cannot re-

turn anything. When Cloudbook detects a non-blocking function, its code is 

modified to launch a thread at the invoked agent and returns immediately. 

These functions cannot return any value. Restriction: function parameters 

cannot be objects, only basic types. 

 #__CLOUDBOOK:PARALLEL__: these functions are deployed in all DUs. 

These functions are non-blocking by construction and therefore are not al-

lowed to return anything. The difference between non-blocking and parallel 

consists of the number of DUs in which the function is deployed. Non-

blocking functions are deployed in only one DU, whereas parallel functions 

are deployed in all available DUs. Parallel functions are synchronizable by 

using #CLOUDBOOK:SYNC__ (see below). Restriction: function parame-

ters cannot be objects, but basic types. 

 #__CLOUDBOOK:RECURSIVE__: these functions are deployed in all 

DUs. The behavior is defined to maximize the level of recursivity. Each re-

cursive invocation from any DU invokes other DU, which means that in a 

circle with 10 machines you have 10 times more recursive level than in one 

machine. Restriction: function parameters cannot be objects, only basic 

types. 

 #__CLOUDBOOK:LOCAL__: these functions are deployed in all DUs, in 

order to be available for local invocations, avoiding communications. This 
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pragma is intended to be considered at “tuning” phase of the program. There 

is no restriction in the parameters. They can be objects as well as basic types. 

 #__CLOUDBOOK:DU0__: these functions are deployed in DU0. This 

pragma is useful if your program has certain interactive functionality such as 

GUIs or keyboard input, which can be forced to be executed in Agent 0. 

The pragmas at the level of function invocation are: 

 #__CLOUDBOOK:NONBLOCKING_INV__: if the function is not defined 

as NONBLOCKING but the programmer does not want to wait for its execu-

tion, can invoke the function using this label. In this case, a thread is 

launched at invoker agent, whereas when the label is used at function defini-

tion, the thread is created at the invoked agent. 

 #__CLOUDBOOK:SYNC[:timeout]__: this will wait until all the non-

blocking operations have finished. In order to be able to continue executing 

in the cases where an agent stops working, the optional parameter timeout 

(specified in seconds) may be set after the SYNC word and a colon (:). In the 

case the optional parameter is set, the program will continue running when-

ever the all non-blocking operations have finished or when the waiting time 

exceeds the timeout value (whatever happens first). Example: 

#__CLOUDBOOK:SYNC:3__ 

Cloudbook supports global variables, but special treatment is needed: 

 global: this Python keyword indicates to Cloudbook that must either load or 

refresh the value of global var. Since then, a local cache copy of the var is 

used. The use of a local copy benefits the performance, reducing communi-

cations. In this case, “global” is not a Cloudbook pragma, but a Python key-

word 

 Critical sections: in order to support “safe variables” (which only can be 

used by one DU at the same time) or any other critical resource, Cloudbook 

supports the definition of critical sections, which can be defined by the 

pragmas #__CLOUDBOK:LOCK__ and #__CLOUDBOK:UNLOCK__; 

this way the modifications of global variables or critical data are only ac-

cessed by one agent at a time 

 #__CLOUDBOOK:NONSHARED__: the variable is created at any agent 

but non shared among different agents. This type of variables allows having 

unique identifiers for each agent, and different data at each agent if it is 

needed 

 #__CLOUDBOOK:CONST__: this pragma allows Cloudbook to manage 

constant global variables in an efficient way (replicate them among all DUs) 

The use of global variables implies the creation of the following strategy: 

 Each global variable is translated into one non-idempotent management 

function. It exists only in a unique DU 

 The management function includes the global var as a non-volatile internal 

attribute Additionally, this management function must be a critical section in 

order to allow multiple access from DU outside 
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 Each function using the global var requests its fresh value at the beginning, 

invoking the management function, and stores it into volatile internal varia-

ble, which is used during the function execution time 

 If inside the body of a function that use the global variable is required a re-

fresh of its value, it can be possible invoking another local function that get 

at the beginning a fresh global variable value and returns its value. 

In order to be refreshed by Cloudbook conveniently, global variables should be de-

fined explicitly, but there is no need for a specific pragma. On the other side, objects 

work as a function abstraction, i.e., the maker analyzes the procedural part of the pro-

gram and generates the different DUs. 

Last but not least, the generic configuration parameters for Cloudbook are: 

 Circle ID, unique identifier of a circle, being a circle a set of available re-

sources 

 Circle definition, which includes features of each machine belonging to the 

circle 

 Distributed file system to be used by all agents, which is part of the circle 

properties 

 Desired deployable units, number of DUs, which normally is greater or equal 

to the number of machines 

 Cloudbook_maxthreads, which allows launching up to 

CLOUDBOOK_MAXTHREADS functions in parallel and waits to launch 

the next one until any of the previously launched functions ends. This limit 

allows keeping under control the number of resources at any invocation of 

parallel functions. 

4 Cloudbook Global Architecture 

The Cloudbook global architecture for a dynamic behavior is much simple and is 

composed of the following components (see Fig. 1 too): 

- Agent: This is the component that will be in each machine that is part of the 

Cloudbook circle. Tasks: 

o Executing code and communicating with other agents 

o Start the application (through invocation to “run” at deployer ser-

vice) 

- Maker: This component receives a link to the code (which is located in the 

distributed FS). The maker performs two tasks: 

o Graph analysis: parses the code and produces the invocations matrix 

o Split the program: groups functions into code pieces, which are the 

“Deployable Units” (DU). The number of DU depends on circle 

definition (number of agents and machines) and possible certain ad-

ditional criteria. 

- Distributed file system: This module stores code and data. It is accessible by 

all agents; the original code is located on folder the “original” and the maker 

saves the DUs on the “cloudbook” folder. Agents are agnostic to this com-
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ponent. All machines mount the distributed file system as a local directory 

and use it in the same way as local 

- Deployer service: This module is responsible for the creation of the cloud-

book directory, which contains the assignment of the deployable units to the 

different agents, and starts the execution. Tasks: 

o Create the cloudbook directory 

o When “run” command is invoked, checks if all the required agents 

are online and then start the execution 

- Stats monitor: this module contains the statistics associated to the DUs’ exe-

cutions in order to allow a dynamic behavior of the tool 

Cloudbook relies on distributed file systems to make DUs accessible to all agents 

and also as storage for program files, which must be accessed by all agents. Cloud-

book is then agnostic to the file system and the programmer must decide which file 

system to use in order to get a scalable communication mechanism avoiding using 

centralized servers (for small/medium projects a NFS server may be enough, for 

big/huge projects a bit torrent FS may be needed). 

 

 

Fig. 1. The Cloudbook .architecture 

In order to replace these centralized servers, certain files have been defined for al-

lowing communication of all platform components: 

- agent_<XXX>_grant.json: written by agent, read by deployer. Includes in-

formation of agent identification, power granted by the agent, and pub-

lic/private IP addresses. There is one file per agent and the deployer reads 

and deletes them periodically. The agents must re-create the file periodically 

and the deployer may deduce which agents are new and which agents have 

stopped based on comparison of existing files 
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- Alarm files: written by agents, read by the deployer. There are two types of 

alarm: WARNING (if it is possible to continue executing) and CRITICAL 

(if not possible). When the deployer reads this file (only one file for all 

agents exists), it will perform a hot redeployment (WARNING file) or a cold 

redeployment (CRITICAL file) 

- Redeploy messages: written by the deployer, read by agents. Once the de-

ployer has produced a new cloudbook.json dictionary file, it will inform all 

agents creating a COLD_REDEPLOY file or a HOT_REDEPLOY file. This 

file will be deleted in the next deployer monitoring period 

- stats_agent_<XX>.json: created by agents, read by the stats monitor. This 

file contains execution stats which also contains information to tune the ma-

trix at make phase 

- matrix_<timestamp>.json: created by the stats monitor, read by the maker: 

contains a new version of the matrix taking into account execution stats 

- du_list.json: created by the maker, read by the deployer, this file contains all 

DUs, in order to be assigned by the deployer to the alive agents 

- function_mapping.json: created by the maker, read by the stats monitor. This 

file contains the mapping between original name functions and final name 

functions 

5 Dynamic execution 

With the previously described architecture, it is possible to perform dynamic 

(re)deployment and execution of codes. By profiting from the surveillance monitor, it 

is possible to periodically check changes in the number of available agents and alarms 

raised by agents in order to perform both a “hot” (without restarting the program) or 

“cold” (program must be restarted) redeployment. Redeployments are initiated in the 

following cases: 

- Under critical alarms sent by agents (they cannot continue running), the sur-

veillance monitor must restart the deployment and in some cases the maker 

- Under warning alarms sent by agents (they can continue running), the sur-

veillance monitor must make a hot redeployment and inform the agents to 

load the new Cloudbook 

- When new agents have been added or others have stopped, in a way in which 

the new Cloudbook dictionary must be compatible with the previous one, so 

orphan DUs, stopped agents, new agents, and critical DUs are properly reas-

signed by Cloudbook 

In order to keep track of the number of available agents, the surveillance monitor 

will use the agents_grant.json file. Agents will update this file periodically (period is 

chosen taking into account both the distributed file system synchronization time and 

processing time of the monitor) and surveillance monitor will explore this file period-

ically using a larger interval. With the surveillance monitor component, the deployer 

will never stop because sleeps and wakes up periodically (this strategy is better than a 
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scheduled OS task and allows easily stopping the deployer and the surveillance moni-

tor mechanism). 

The dynamic execution also allows improving performance based on collected sta-

tistics. The redeployment for improving performance must take into account stats 

gathered by agents. These stats provided by the agents feed a stats monitor, which 

dynamically builds a matrix and compares with existing matrix used at current de-

ployment. Stats generated by agents include the number of times that each function 

has been invoked by each “invoker” function. In order to make it possible, the name 

of the “invoker” function will be sent at each invocation. 

The existing matrix must be an output from the maker. The latter must invoke the 

graph analyzer to build and fill the matrix only the first time. Therefore, an optional 

parameter to use existing filled matrix must be included in the invocation to maker, 

i.e. it must be possible to do a “remake” and not only a “make”, and for make it pos-

sible the matrix parameter is needed. The matrix file used as input is created by the 

stats monitor and improves the “default” assumptions that maker does when building 

the matrix. By doing so, the performance can be improved in terms of the way in 

which the code has been parallelized and distributed, but also in terms of performance 

based on the underlying infrastructure as additional features can be added for doing an 

intelligent redeployment. Stats provide real information about invocations among 

functions and allow taking better decisions when the code of the original program is 

separated into different DUs, which are executed on different agents. Stats may sug-

gest that certain functions should be deployed together in the same DU. 

The way in which the dynamic redeployment is carried out is depicted in Fig. 2. 

 

 

Fig. 2. The Cloudbook .architecture 
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6 Results 

Experiments have been carried out in two platforms: a group of low-end machines 

and an HPC cluster 

6.1 Group of low-end machines 

For proof of concepts tests, platform is composed of four Raspberry Pi2 interconnect-

ed with an Ethernet switch and sharing a NFS file system to store the program (DUs) 

and files published by each agent. The characteristics of this circle of machines are: 

- Processor: Broadcom BCM2837B0, Cortex-A53 64-bitSoC@ 1.4GHz 

- RAM: 1GB LPDDR2 SDRAM 

- Wi-Fi+Bluetooth: 2.4GHz y 5GHz IEEE 802.11.b/g/n/ac, Bluetooth 

- Operating System: Raspbian 

In order to test the correctness of Cloudbook, two first examples have been adapted 

to the tool paradigm in order to include the simple and reduced pragmas that Cloud-

book needs to find out within the code in order to successfully make parallel an initial 

serial code. These two problems are the N-body problem [19] and the tower of Hanoi 

game [20]. According to the results, they have been used as valid proof of concept for 

this work. 

For the sake of completion, the results related to the N-body problem executed on 

Cloudbook can be watched in a video [21], where it is demonstrated how the code is 

run in the four aforementioned raspberries. The time spent in the algorithm by Cloud-

book is lower than the sequential version, from a certain number of bodies. The bene-

fit is bigger when the number of bodies processed by one invocation is high, and the 

communication time becomes non relevant. Regarding the performance and taking 

into account the test bed, Cloudbook starts performing better than the serial version 

from ~3,000 bodies on. From this point, the speed up grows linearly, close to a 4x 

factor as is depicted in Fig. 3. 
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Fig. 3. Results of the N-body execution on the Cloudbook test bed. X-axis reads for number of 

bodies and Y-Axis for seconds; they are not included in the Figure for readability reasons 

With respect to the Hanoi game and in a similar way, it is also found out that 

Cloudbook provides potentially 4 times bigger stack for recursive invocations in the 

aforementioned testbed, but what it is most important is to notice how this recursive 

problem is able not to collapse thanks to Cloudbook. It has been demonstrated that for 

a ten of pieces a sequential version would crash meanwhile Cloudbook is able to keep 

on working on finding out the solution. Speed in recursive invocations is not im-

proved but stack size is increased linearly with the number of agents involved. 

In order to test the solution proposed with a different approach, some tests have 

been performed with Cloudbook executing an Intrusion Detection System (IDS). This 

way, the focus is put most on dataset management and process. The comparison be-

tween one machine and Cloudbook execution is shown in Table I below. 

Table 1. Local and Cloudbook execution times for an IDS. 

Data size (lines) Local execution time (s) Cloudbook execution time (s) 

100,000 5.67 4.25 

1,000,000 51.82 25.52 

5,000,000 257.06 139.70 

10,000,000 529.09 300.96 

50,000,000 2,737.52 1,363.32 

157,602,189 13,846.43 6,451.53 
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6.2 HPC cluster 

Two more computationally demanding tests have been carried out on a HPC envi-

ronment. We run with CloudBook a genetic algorithm in the XULA cluster, located at 

the CIEMAT data center. We use the new partition of the cluster (upgraded in March 

2020, named Xula2), which is composed of 56 computing nodes and connected 

through IB HDR100. Each node contains 2 processors Intel® Xeon® Gold 6254 

(18C, 36T) @3.10GHz and 192 GB of RAM memory. The common folder for Cloud-

book is mounted on a Lustre filesystem. 

 Fig. 4. Results of the DiVoS execution profiting from the Cloudbook solution and the Multi-

processing Python built-in library (homogenous tasks) 

The genetic algorithm adapted to Cloudbook is DiVoS [22]. DiVoS is a simulation 

code that finds the minimum energy of a superconducting layer by finding the optimal 

position of its magnetic vortices. In the genetic algorithm, the chromosomes are the 

position of the vortices and the fitness function is precisely the (negative) energy of 

the system. By means of heritage, crossovers, and natural selection rules, the algo-

rithm finds the best individual of the population, i.e. the one with lowest energy and 

thus the most likely state of the system. 

The DiVoS adaptation to CloudBook is rather straightforward: we have parallel-

ized a parameters scan in the input configuration file. In this way, we can easily per-

form physical parameters sweeps and numerical convergence studies in a fast and 

easy way from the user point of view.  We must point out that this parallelization does 
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not require any communication between the agents. The two tests carried out are in-

tended to show the scaling of the computing time with the number of agents for a 

fixed problem size and to compare the performance with the Multiprocessing Python 

built-in library. For Cloudbook, the time measure is the execution time of the cloud-

book_run.py program, not taking into account the time needed to make, deploy, or 

activate the agents. 

 

Fig. 5. Results of the DiVoS execution profiting from the Cloudbook solution and the Multi-

processing Python built-in library (heterogeneous tasks) 

In the first test we consider a problem that consists of 128 identical tasks, and 

measure the execution time in terms of the number of agents (or CPUs) used for the 

computation both with Cloudbook and the Multiprocessing library. A number of tasks 

equal to the number of available agents is run simultaneously, with a 

#__CLOUDBOOK:SYNC__ pragma at the end of each batch of tasks. Each case is 

executed 5-10 times, using the average value and assuming an error equal to twice the 

standard deviation. We also calculate the execution time corresponding to ideal scal-

ing in the two cases. The results are plotted in Fig. 4. 

In the second test the problem is formed by 80 inhomogeneous tasks. Due to the 

synchronization step, the scaling here is a bit worse, as can be seen in Fig. 5: 

We can extract two conclusions from these tests: 

- Cloudbook presents very similar performance as the Multiprocessing library 

within the error bars. 
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- Cloudbook can scale up much more than the Multiprocessing library, be-

cause the latter is limited to the number of available processors in each node 

(36 in Xula2) and Cloudbook allows the deployment between any number of 

nodes. 

7 Conclusions 

In this work, a new tool called Cloudbook that automatically and unattendedly paral-

lelizes serial codes is presented. Unlike previous similar solutions, it is focused on 

Python codes and has produced tangible results on production infrastructures at scale, 

which are also reported via digital content. Cloudbook does not only make the paral-

lelization, but also is aware of the number and main characteristics (performance, 

bandwidth connection, etc.) that the available resources provide in order to decide a 

smart distribution of the parallel tasks (DUs) in order to optimize the performance. 

The limits of the efficiency of parallel programming with Cloudbook are given by 

the size of the problem and the cost of communication. Performance results can be 

improved by taking advantage of the multi-processing in the agents, using their avail-

able cores. 

Cloudbook follows the model of HPC and HTC computing in a versatile way and 

can be adapted to a large set of problems, without forcing the programmer to make a 

distributed design of the problem. The main contributions of Cludbook are: 

- Provision of automatic splitting 

- Generic, not simply bounded to master-slave based programs, for example  

- Valid for both distributed and parallel environments 

- Dynamic redeployment based on performance 

- Low required level of knowledge 

Having demonstrated its correctness, the methodology that Cloudbook applies for 

making parallel a serial code is also extended to dynamic environments in which re-

sources are continuously integrated and decommissioned into/from the available in-

frastructure, while the tool successfully responds to that on-the-fly. 
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