
Dynamically distributing tasks from an unattended

parallel compiler with Cloudbook

José J. García-Aranda
1
, Juan Ramos-Díaz

1
, Sergio Molina-Cardín

1
, Xavier Larriva-

Novo
2
, Andrés Bustos

3
, Luis A. Galindo

4
, and Rafael Mayo-García

3[0000-0002-0151-3954]

1 Nokia, María Tubau 9, 28050 Madrid, Spain
2 ETSIT-UPM, Avda. Complutense s/n, 28040 Madrid, Spain

3 CIEMAT, Avda. Complutense 40, 28040 Madrid, Spain
4 Telefónica, Ronda de la Comunicación 2, 28050 Madrid, Spain

rafael.mayo@ciemat.es

Abstract. A dynamic version of Cloudbook is presented in this work, a new

tool for automatically and unattendedly parallelizing codes which also lately

distributes the tasks dynamically. Cloudbook is designed for Python codes and,

above all, makes the parallelization in a way in which the number and main

characteristics of the available infrastructure is taking into account for optimiz-

ing the execution (performance, bandwidth connection, etc.) in a dynamic way.

Cloudbook is designed to allow developers to get the technical benefits of au-

tomated distribution and parallelization of programs with a very low learning

cost. It only requires labelling the original code with a reduced set of pragmas

located at function headers. Results of the tests carried out with Cloudbook with

several codes on a real infrastructure are presented as well.

Keywords: Parallel Computing, Compiler, Automatization.

1 Introduction

In general terms, parallel computing refers to the use in combination of two or more

processes (threads, cores, computers…) to solve a single problem. This methodology

is carried out by using computing architectures in which several processors execute or

process simultaneously an application or computation. Thus, it is possible to perform

large computations by dividing the workload between more than one processor, all of

which execute their task through the computation at the same time in a predefined

scheme.

Compared to serial computing, parallel computing is then much better suited for

modelling, simulating, and understanding complex real world phenomena. Thus, the

primary objective of parallel computing, also known as parallel processing, is to in-

crease the available computation power for faster application execution or task resolu-

tion.

Today’s supercomputers employ parallel computing principles to operate and solve

complex problems. Some examples of computational science applied to natural sci-

ences are galaxy formation, climate change, weather forecast, energy production,

2

bioinformatics, material science, etc. Although parallel computing was firstly used for

scientific computing and the simulation of scientific problems, nowadays it is present

in any field, including human and social sciences too. This has led and is still leading

to the design of more powerful and efficient parallel hardware and software making a

reality the so-called High Performance Computing (HPC).

As a consequence, the use of the HPC infrastructure has become a challenge itself

with the advent of many-core systems, i.e. the parallelization of serial programs has

become a mainstream and cornerstone programming task.

Additionally, parallel computers based on interconnected networks need to have

some kind of routing protocols to enable the transmission of messages between nodes

that are not directly connected. The medium used for communication between the

processors is likely to be hierarchical in large multiprocessor machines and have a

strong influence on the cluster performance when large parallel calculi are executed.

The variation of the performance with the number of computer resources is known as

scalability and depends on the hardware and architecture of the physical resources as

well as on the computational characteristics of the problem to be solved. Scalability

must be maximized, but it is usually degraded when the computing resources or the

problem size rise.

Summarizing, parallel computing is highly useful, but presents several challenges

that become more and more complex to be overcome as the size of the infrastructures

increase. Companies must manufacture efficient supercomputers from the energy

point of view that, in addition, should be efficiently exploited from the usage point of

view. In this sense, the way in which the parallelization is implemented is key as pro-

gramming to target parallel architectures can be highly difficult and requires human

expertise and know-how.

The first aim of this work is to provide a tool that automatically and unattendedly

parallelizes a code, releasing the final user of designing such a parallel implantation

as well as of debugging processes. Lately, a second goal is achieved by providing

dynamic capabilities for distributing the parallel tasks by the tool itself in order to

optimize the computational efficiency in term of performance.

2 Related work

As aforementioned, multi- and many-core machines are very common nowadays,

allowing a number of problems exploiting the tremendous processing power of such

machines. Such goal can only be efficiently achieved by parallel compilation. Auto-

matic conversion of serial code into its functionally equivalent parallel version re-

mains as an open challenge for researchers for the last years. These tools are intended

to transform legacy serial code into parallel code to execute on parallel architectures.

With respect to parallel compilers, a couple of reviews of the different tools can be

found in [1] and [2]. Roughly speaking, these works compare different automatic

tools (see references therein) on the basis of technology, language, available platforms

and features, and drawbacks. The most important phase within the flowchart for par-

3

allelizing the code is the detection of potential blocks, which is also the most time

consuming part.

It is also found that most of the tools are either oriented to FORTRAN or C/C++ as

they clearly describe the operational flow in the code. Then, it is not strange that even

Barve et al. developed a serial to parallel C++ code converter for multi-core machines

after the publication of their revision [3]. Another posterior work presented a novel

architecture based on web services which is able to translate any legacy software ap-

plication into a parallel code [4]. In a similar way, André et al. [5] present an envi-

ronment for programming distributed memory computers using High Performance

Fortran, with emphasis put on compilation techniques and distributed array manage-

ment. OpenMP should be also highlighted, the well-known application programming

interface for shared memory parallel computing [6]

With a focus on data-parallel compiler, the aim has been to equal the performance

of carefully hand-optimized parallel codes. For tightly coupled applications based on

line sweeps, the Rice dHPF compiler [7] and its extension [8] can be cited. Most

closed to Data-analytics, the TOREADOR tool has been recently published [9].

Specific developments for GPU environments such as the thesis by Hsu [10] or for

executions carried out by virtual machines with the HPVM framework [11] can be

consulted, but those works are less related to the one presented here.

On the other hand, literature about optimizing the execution of codes along runtime

taking into account the underlying infrastructure is huge. Just to focus on heterogene-

ous architectures, the OmpSs framework is able to provide dynamic allocation of jobs

among other duties [12], but other solutions for heterogeneous resources are available

too [13, 14, 15]. For loosely coupled applications, such as Monte Carlos codes, the

Montera framework provided good results on real in production distributed heteroge-

neous platforms [16]. Works like this opened the door to widen this kind of solutions

to virtualized environments [17]

Analyzing the existing solutions, it can be deducted that all of them are still far

away from their expectations, focused on a specific kind of application/environment,

or do not stack a parallel compiler to the available infrastructure along runtime. The

aim of this work is then to present a general-purpose tool that will both make codes

parallel and will also take into account the infrastructure on which those codes are

executed in order to maximize their performance.

3 The Unattended Parallel Compiler

There are two main problems in parallel execution: the generation of pieces of code to

be executed on each processor as well as the efficient deployment and coordinated

execution of these tasks. This work focuses on both problems by splitting a Python

source code into the so-called deployable units (DU) and lately distributing these DUs

in a coordinated way allowing communication among them if needed. This solution is

called Cloudbook.

In order to achieve an efficient parallel execution, the proposed solution Cloud-

book defines several pragmas to be integrated in the source code, which will be inter-

4

preted by a “maker” designed to split the code into DUs. The main components of the

proposed solution are summarized in the following architecture:

 Maker: comprises the graph analyzer of source code and the splitter, which

produces the DUs

 Deployer: assigns the DUs to the available resources and launches the execu-

tion

 Agents: execute the DUs

During execution of Cloudbook programs, there is not need for a central server

which attends the requests from agents asking for tasks o providing results, because

Cloubook allows agents communicate each other and therefore the figure of a central

controller server is not needed.

3.1 Requirements

In order to both optimize parallelism and improve performance, the programmer can

include a series of labels in the functions that would indicate the agents how to exe-

cute those functions.

Certain Cloudbook Pragmas may reflect the fork-join model spirit [18]. However,

in Cloudbook the invokers do not match the concept of “parent” of the fork-join mod-

el because (among other details) tasks are executed on different agents, do not share a

copy of parent’s variables, threads can be either created at invoker or invoked, and

parallel functions cannot return values.

Cloudbook supports the following language extensions (pragmas) for functions:

 #__CLOUDBOOK:NONBLOCKING__: functions with this label cannot re-

turn anything. When Cloudbook detects a non-blocking function, its code is

modified to launch a thread at the invoked agent and returns immediately.

These functions cannot return any value. Restriction: function parameters

cannot be objects, only basic types.

 #__CLOUDBOOK:PARALLEL__: these functions are deployed in all DUs.

These functions are non-blocking by construction and therefore are not al-

lowed to return anything. The difference between non-blocking and parallel

consists of the number of DUs in which the function is deployed. Non-

blocking functions are deployed in only one DU, whereas parallel functions

are deployed in all available DUs. Parallel functions are synchronizable by

using #CLOUDBOOK:SYNC__ (see below). Restriction: function parame-

ters cannot be objects, but basic types.

 #__CLOUDBOOK:RECURSIVE__: these functions are deployed in all

DUs. The behavior is defined to maximize the level of recursivity. Each re-

cursive invocation from any DU invokes other DU, which means that in a

circle with 10 machines you have 10 times more recursive level than in one

machine. Restriction: function parameters cannot be objects, only basic

types.

 #__CLOUDBOOK:LOCAL__: these functions are deployed in all DUs, in

order to be available for local invocations, avoiding communications. This

5

pragma is intended to be considered at “tuning” phase of the program. There

is no restriction in the parameters. They can be objects as well as basic types.

 #__CLOUDBOOK:DU0__: these functions are deployed in DU0. This

pragma is useful if your program has certain interactive functionality such as

GUIs or keyboard input, which can be forced to be executed in Agent 0.

The pragmas at the level of function invocation are:

 #__CLOUDBOOK:NONBLOCKING_INV__: if the function is not defined

as NONBLOCKING but the programmer does not want to wait for its execu-

tion, can invoke the function using this label. In this case, a thread is

launched at invoker agent, whereas when the label is used at function defini-

tion, the thread is created at the invoked agent.

 #__CLOUDBOOK:SYNC[:timeout]__: this will wait until all the non-

blocking operations have finished. In order to be able to continue executing

in the cases where an agent stops working, the optional parameter timeout

(specified in seconds) may be set after the SYNC word and a colon (:). In the

case the optional parameter is set, the program will continue running when-

ever the all non-blocking operations have finished or when the waiting time

exceeds the timeout value (whatever happens first). Example:

#__CLOUDBOOK:SYNC:3__

Cloudbook supports global variables, but special treatment is needed:

 global: this Python keyword indicates to Cloudbook that must either load or

refresh the value of global var. Since then, a local cache copy of the var is

used. The use of a local copy benefits the performance, reducing communi-

cations. In this case, “global” is not a Cloudbook pragma, but a Python key-

word

 Critical sections: in order to support “safe variables” (which only can be

used by one DU at the same time) or any other critical resource, Cloudbook

supports the definition of critical sections, which can be defined by the

pragmas #__CLOUDBOK:LOCK__ and #__CLOUDBOK:UNLOCK__;

this way the modifications of global variables or critical data are only ac-

cessed by one agent at a time

 #__CLOUDBOOK:NONSHARED__: the variable is created at any agent

but non shared among different agents. This type of variables allows having

unique identifiers for each agent, and different data at each agent if it is

needed

 #__CLOUDBOOK:CONST__: this pragma allows Cloudbook to manage

constant global variables in an efficient way (replicate them among all DUs)

The use of global variables implies the creation of the following strategy:

 Each global variable is translated into one non-idempotent management

function. It exists only in a unique DU

 The management function includes the global var as a non-volatile internal

attribute Additionally, this management function must be a critical section in

order to allow multiple access from DU outside

6

 Each function using the global var requests its fresh value at the beginning,

invoking the management function, and stores it into volatile internal varia-

ble, which is used during the function execution time

 If inside the body of a function that use the global variable is required a re-

fresh of its value, it can be possible invoking another local function that get

at the beginning a fresh global variable value and returns its value.

In order to be refreshed by Cloudbook conveniently, global variables should be de-

fined explicitly, but there is no need for a specific pragma. On the other side, objects

work as a function abstraction, i.e., the maker analyzes the procedural part of the pro-

gram and generates the different DUs.

Last but not least, the generic configuration parameters for Cloudbook are:

 Circle ID, unique identifier of a circle, being a circle a set of available re-

sources

 Circle definition, which includes features of each machine belonging to the

circle

 Distributed file system to be used by all agents, which is part of the circle

properties

 Desired deployable units, number of DUs, which normally is greater or equal

to the number of machines

 Cloudbook_maxthreads, which allows launching up to

CLOUDBOOK_MAXTHREADS functions in parallel and waits to launch

the next one until any of the previously launched functions ends. This limit

allows keeping under control the number of resources at any invocation of

parallel functions.

4 Cloudbook Global Architecture

The Cloudbook global architecture for a dynamic behavior is much simple and is

composed of the following components (see Fig. 1 too):

- Agent: This is the component that will be in each machine that is part of the

Cloudbook circle. Tasks:

o Executing code and communicating with other agents

o Start the application (through invocation to “run” at deployer ser-

vice)

- Maker: This component receives a link to the code (which is located in the

distributed FS). The maker performs two tasks:

o Graph analysis: parses the code and produces the invocations matrix

o Split the program: groups functions into code pieces, which are the

“Deployable Units” (DU). The number of DU depends on circle

definition (number of agents and machines) and possible certain ad-

ditional criteria.

- Distributed file system: This module stores code and data. It is accessible by

all agents; the original code is located on folder the “original” and the maker

saves the DUs on the “cloudbook” folder. Agents are agnostic to this com-

7

ponent. All machines mount the distributed file system as a local directory

and use it in the same way as local

- Deployer service: This module is responsible for the creation of the cloud-

book directory, which contains the assignment of the deployable units to the

different agents, and starts the execution. Tasks:

o Create the cloudbook directory

o When “run” command is invoked, checks if all the required agents

are online and then start the execution

- Stats monitor: this module contains the statistics associated to the DUs’ exe-

cutions in order to allow a dynamic behavior of the tool

Cloudbook relies on distributed file systems to make DUs accessible to all agents

and also as storage for program files, which must be accessed by all agents. Cloud-

book is then agnostic to the file system and the programmer must decide which file

system to use in order to get a scalable communication mechanism avoiding using

centralized servers (for small/medium projects a NFS server may be enough, for

big/huge projects a bit torrent FS may be needed).

Fig. 1. The Cloudbook .architecture

In order to replace these centralized servers, certain files have been defined for al-

lowing communication of all platform components:

- agent_<XXX>_grant.json: written by agent, read by deployer. Includes in-

formation of agent identification, power granted by the agent, and pub-

lic/private IP addresses. There is one file per agent and the deployer reads

and deletes them periodically. The agents must re-create the file periodically

and the deployer may deduce which agents are new and which agents have

stopped based on comparison of existing files

8

- Alarm files: written by agents, read by the deployer. There are two types of

alarm: WARNING (if it is possible to continue executing) and CRITICAL

(if not possible). When the deployer reads this file (only one file for all

agents exists), it will perform a hot redeployment (WARNING file) or a cold

redeployment (CRITICAL file)

- Redeploy messages: written by the deployer, read by agents. Once the de-

ployer has produced a new cloudbook.json dictionary file, it will inform all

agents creating a COLD_REDEPLOY file or a HOT_REDEPLOY file. This

file will be deleted in the next deployer monitoring period

- stats_agent_<XX>.json: created by agents, read by the stats monitor. This

file contains execution stats which also contains information to tune the ma-

trix at make phase

- matrix_<timestamp>.json: created by the stats monitor, read by the maker:

contains a new version of the matrix taking into account execution stats

- du_list.json: created by the maker, read by the deployer, this file contains all

DUs, in order to be assigned by the deployer to the alive agents

- function_mapping.json: created by the maker, read by the stats monitor. This

file contains the mapping between original name functions and final name

functions

5 Dynamic execution

With the previously described architecture, it is possible to perform dynamic

(re)deployment and execution of codes. By profiting from the surveillance monitor, it

is possible to periodically check changes in the number of available agents and alarms

raised by agents in order to perform both a “hot” (without restarting the program) or

“cold” (program must be restarted) redeployment. Redeployments are initiated in the

following cases:

- Under critical alarms sent by agents (they cannot continue running), the sur-

veillance monitor must restart the deployment and in some cases the maker

- Under warning alarms sent by agents (they can continue running), the sur-

veillance monitor must make a hot redeployment and inform the agents to

load the new Cloudbook

- When new agents have been added or others have stopped, in a way in which

the new Cloudbook dictionary must be compatible with the previous one, so

orphan DUs, stopped agents, new agents, and critical DUs are properly reas-

signed by Cloudbook

In order to keep track of the number of available agents, the surveillance monitor

will use the agents_grant.json file. Agents will update this file periodically (period is

chosen taking into account both the distributed file system synchronization time and

processing time of the monitor) and surveillance monitor will explore this file period-

ically using a larger interval. With the surveillance monitor component, the deployer

will never stop because sleeps and wakes up periodically (this strategy is better than a

9

scheduled OS task and allows easily stopping the deployer and the surveillance moni-

tor mechanism).

The dynamic execution also allows improving performance based on collected sta-

tistics. The redeployment for improving performance must take into account stats

gathered by agents. These stats provided by the agents feed a stats monitor, which

dynamically builds a matrix and compares with existing matrix used at current de-

ployment. Stats generated by agents include the number of times that each function

has been invoked by each “invoker” function. In order to make it possible, the name

of the “invoker” function will be sent at each invocation.

The existing matrix must be an output from the maker. The latter must invoke the

graph analyzer to build and fill the matrix only the first time. Therefore, an optional

parameter to use existing filled matrix must be included in the invocation to maker,

i.e. it must be possible to do a “remake” and not only a “make”, and for make it pos-

sible the matrix parameter is needed. The matrix file used as input is created by the

stats monitor and improves the “default” assumptions that maker does when building

the matrix. By doing so, the performance can be improved in terms of the way in

which the code has been parallelized and distributed, but also in terms of performance

based on the underlying infrastructure as additional features can be added for doing an

intelligent redeployment. Stats provide real information about invocations among

functions and allow taking better decisions when the code of the original program is

separated into different DUs, which are executed on different agents. Stats may sug-

gest that certain functions should be deployed together in the same DU.

The way in which the dynamic redeployment is carried out is depicted in Fig. 2.

Fig. 2. The Cloudbook .architecture

10

6 Results

Experiments have been carried out in two platforms: a group of low-end machines

and an HPC cluster

6.1 Group of low-end machines

For proof of concepts tests, platform is composed of four Raspberry Pi2 interconnect-

ed with an Ethernet switch and sharing a NFS file system to store the program (DUs)

and files published by each agent. The characteristics of this circle of machines are:

- Processor: Broadcom BCM2837B0, Cortex-A53 64-bitSoC@ 1.4GHz

- RAM: 1GB LPDDR2 SDRAM

- Wi-Fi+Bluetooth: 2.4GHz y 5GHz IEEE 802.11.b/g/n/ac, Bluetooth

- Operating System: Raspbian

In order to test the correctness of Cloudbook, two first examples have been adapted

to the tool paradigm in order to include the simple and reduced pragmas that Cloud-

book needs to find out within the code in order to successfully make parallel an initial

serial code. These two problems are the N-body problem [19] and the tower of Hanoi

game [20]. According to the results, they have been used as valid proof of concept for

this work.

For the sake of completion, the results related to the N-body problem executed on

Cloudbook can be watched in a video [21], where it is demonstrated how the code is

run in the four aforementioned raspberries. The time spent in the algorithm by Cloud-

book is lower than the sequential version, from a certain number of bodies. The bene-

fit is bigger when the number of bodies processed by one invocation is high, and the

communication time becomes non relevant. Regarding the performance and taking

into account the test bed, Cloudbook starts performing better than the serial version

from ~3,000 bodies on. From this point, the speed up grows linearly, close to a 4x

factor as is depicted in Fig. 3.

11

Fig. 3. Results of the N-body execution on the Cloudbook test bed. X-axis reads for number of

bodies and Y-Axis for seconds; they are not included in the Figure for readability reasons

With respect to the Hanoi game and in a similar way, it is also found out that

Cloudbook provides potentially 4 times bigger stack for recursive invocations in the

aforementioned testbed, but what it is most important is to notice how this recursive

problem is able not to collapse thanks to Cloudbook. It has been demonstrated that for

a ten of pieces a sequential version would crash meanwhile Cloudbook is able to keep

on working on finding out the solution. Speed in recursive invocations is not im-

proved but stack size is increased linearly with the number of agents involved.

In order to test the solution proposed with a different approach, some tests have

been performed with Cloudbook executing an Intrusion Detection System (IDS). This

way, the focus is put most on dataset management and process. The comparison be-

tween one machine and Cloudbook execution is shown in Table I below.

Table 1. Local and Cloudbook execution times for an IDS.

Data size (lines) Local execution time (s) Cloudbook execution time (s)

100,000 5.67 4.25

1,000,000 51.82 25.52

5,000,000 257.06 139.70

10,000,000 529.09 300.96

50,000,000 2,737.52 1,363.32

157,602,189 13,846.43 6,451.53

12

6.2 HPC cluster

Two more computationally demanding tests have been carried out on a HPC envi-

ronment. We run with CloudBook a genetic algorithm in the XULA cluster, located at

the CIEMAT data center. We use the new partition of the cluster (upgraded in March

2020, named Xula2), which is composed of 56 computing nodes and connected

through IB HDR100. Each node contains 2 processors Intel® Xeon® Gold 6254

(18C, 36T) @3.10GHz and 192 GB of RAM memory. The common folder for Cloud-

book is mounted on a Lustre filesystem.

 Fig. 4. Results of the DiVoS execution profiting from the Cloudbook solution and the Multi-

processing Python built-in library (homogenous tasks)

The genetic algorithm adapted to Cloudbook is DiVoS [22]. DiVoS is a simulation

code that finds the minimum energy of a superconducting layer by finding the optimal

position of its magnetic vortices. In the genetic algorithm, the chromosomes are the

position of the vortices and the fitness function is precisely the (negative) energy of

the system. By means of heritage, crossovers, and natural selection rules, the algo-

rithm finds the best individual of the population, i.e. the one with lowest energy and

thus the most likely state of the system.

The DiVoS adaptation to CloudBook is rather straightforward: we have parallel-

ized a parameters scan in the input configuration file. In this way, we can easily per-

form physical parameters sweeps and numerical convergence studies in a fast and

easy way from the user point of view. We must point out that this parallelization does

13

not require any communication between the agents. The two tests carried out are in-

tended to show the scaling of the computing time with the number of agents for a

fixed problem size and to compare the performance with the Multiprocessing Python

built-in library. For Cloudbook, the time measure is the execution time of the cloud-

book_run.py program, not taking into account the time needed to make, deploy, or

activate the agents.

Fig. 5. Results of the DiVoS execution profiting from the Cloudbook solution and the Multi-

processing Python built-in library (heterogeneous tasks)

In the first test we consider a problem that consists of 128 identical tasks, and

measure the execution time in terms of the number of agents (or CPUs) used for the

computation both with Cloudbook and the Multiprocessing library. A number of tasks

equal to the number of available agents is run simultaneously, with a

#__CLOUDBOOK:SYNC__ pragma at the end of each batch of tasks. Each case is

executed 5-10 times, using the average value and assuming an error equal to twice the

standard deviation. We also calculate the execution time corresponding to ideal scal-

ing in the two cases. The results are plotted in Fig. 4.

In the second test the problem is formed by 80 inhomogeneous tasks. Due to the

synchronization step, the scaling here is a bit worse, as can be seen in Fig. 5:

We can extract two conclusions from these tests:

- Cloudbook presents very similar performance as the Multiprocessing library

within the error bars.

14

- Cloudbook can scale up much more than the Multiprocessing library, be-

cause the latter is limited to the number of available processors in each node

(36 in Xula2) and Cloudbook allows the deployment between any number of

nodes.

7 Conclusions

In this work, a new tool called Cloudbook that automatically and unattendedly paral-

lelizes serial codes is presented. Unlike previous similar solutions, it is focused on

Python codes and has produced tangible results on production infrastructures at scale,

which are also reported via digital content. Cloudbook does not only make the paral-

lelization, but also is aware of the number and main characteristics (performance,

bandwidth connection, etc.) that the available resources provide in order to decide a

smart distribution of the parallel tasks (DUs) in order to optimize the performance.

The limits of the efficiency of parallel programming with Cloudbook are given by

the size of the problem and the cost of communication. Performance results can be

improved by taking advantage of the multi-processing in the agents, using their avail-

able cores.

Cloudbook follows the model of HPC and HTC computing in a versatile way and

can be adapted to a large set of problems, without forcing the programmer to make a

distributed design of the problem. The main contributions of Cludbook are:

- Provision of automatic splitting

- Generic, not simply bounded to master-slave based programs, for example

- Valid for both distributed and parallel environments

- Dynamic redeployment based on performance

- Low required level of knowledge

Having demonstrated its correctness, the methodology that Cloudbook applies for

making parallel a serial code is also extended to dynamic environments in which re-

sources are continuously integrated and decommissioned into/from the available in-

frastructure, while the tool successfully responds to that on-the-fly.

References

1. Barve, A., Khandelwal, S., Khan, N., Keshatiwar, S., Botre, S. Serial to parallel code con-

verter tools: a review. Int. J. Res. Advent Tech, vol. Special Issue National Conference

“NCPCI-2016” (2016)

2. Varsha, K.R. Automatic parallelization tools: a review. IJESC 7(3), 5780–5784 (2017)

3. Barve, A., Khomane, S., Kulkarni, B., Katare, S., Ghadage, S. A serial to parallel C++

code converter for multi-core machines. In: Proc. International Conference on ICT in

Business Industry & Government (2016)

4. Alsubhi, K. An architecture for translating sequential code to parallel. In: Proc. 2nd Inter-

national Conference on Information System and Data Mining, pp 88–92 (April 2018)

5. André, F., Le Fur, M., Mahéo, Y., Pazat, J.L. The Pandore data-parallel compiler and its

portable runtime. In: Hertzberger B., Serazzi G. (eds) High-Performance Computing and

15

Networking. HPCN-Europe 1995. Lecture Notes in Computer Science, vol. 919. Springer,

Berlin, Heidelberg (1995)

6. Chapman, B., Jost, G., van der Pas, R. Using OpenMP. The MIT Press, Cambridge (MA)

(2008)

7. Chavarria-Miranda, D. Mellor-Crummey, J. An evaluation of data-parallel compiler sup-

port for line-sweep applications. In: Proc. Int. Conf. Parallel Architectures and Compila-

tion Techniques, pp. 7-17 IEEE, New York (2002).

8. Chavarría-Miranda, D., Mellor-Crummey, J., Sarang, T. Data-Parallel Compiler Support

for Multipartitioning. In: Sakellariou R., Gurd J., Freeman L., Keane J. (eds) Euro-Par

2001 Parallel Processing. Euro-Par 2001. Lecture Notes in Computer Science, vol 2150.

Springer, Berlin, Heidelberg (2001)

9. Di Martino, B., Esposito, A., D'Angelo, S., Maisto, S.A., Nacchia, S. A Compiler for Ag-

nostic Programming and Deployment of Big Data Analytics on Multiple Platforms. IEEE

Transactions on Parallel and Distributed Systems, 30 (9), 1920–1931 (2019)

10. Hsu, A.W. A data parallel compiler hosted on the GPU. Bloomington, Ind.: Indiana Uni-

versity (2019)

11. Kotsifakou, M. HPVM: heterogeneous parallel virtual machine. In: Proc. 23rd ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming pp. 68–80

ACM Digital Library, (2018)

12. Iserte, S. et al. Dynamic Management of Resource Allocation for OmpSs Jobs. In: Proc.

First PhD Symposium on Sustainable Ultrascale Computing Systems, NESUS COST Ac-

tion, Timisoara (2016)

13. Becker T., Karl W., Schüle T. Evaluating Dynamic Task Scheduling in a Task-Based

Runtime System for Heterogeneous Architectures. In: Schoeberl M., Hochberger C., Uhrig

S., Brehm J., Pionteck T. (eds) Architecture of Computing Systems – ARCS 2019. Lecture

Notes in Computer Science, vol 11479. Springer, Cham (2019)

14. Ramírez-Velarde, et al. Adaptive Resource Allocation with Job Runtime Uncertainty. J

Grid Computing 15, 415–434 (2017)

15. Becker, T., Busse, P., Schuele, T. Evaluation of Dynamic Task Scheduling Algorithms in a

Runtime System for Heterogeneous Architectures. In: 31th International Conference on

Architecture of Computing Systems, pp. 1-8, Braunschweig, (2018)

16. Rodríguez-Pascual, Mayo-García, R., M, Llorente, I.M.. Montera: A framework for effi-

cient execution of Monte Carlo codes on grid infrastructure. Computing and Informatics,

32, 113–144 (2013)

17. Rubio-Montero, A.J., Rodríguez-Pascual, M.A., Mayo-García, R. A simple model to ex-

ploit reliable algorithms in cloud federations. Soft Comput 21, 4543–4555 (2017)

18. Kumar, A., Shorey, R. Performance analysis and scheduling of stochastic fork-join jobs in

a multicomputer system. IEEE Tran. Parallel and Distributed Systems 4, 1147-1164 (1993)

19. Heggie, D.C. The Classical Gravitational N-Body Problem..Encyclopaedia of Mathemati-

cal Physics, Elsevier (2006)

20. Romik, D. Shortest paths in the Tower of Hanoi graph and finite automata. SIAM Journal

on Discrete Mathematics 20, 610–622 (2006)

21. Demo of the N-Body proof of concept and how it performs, available at

https://drive.google.com/open?id=193f30luFq22cy8QUjzzWHgMA8zKfUAv4

22. Rodríguez-Pascual, M.A. et al. Superconducting Vortex Lattice Configurations on Period-

ic Potentials: Simulation and Experiment. J Supercond Nov Magn. 25, 2127–2130 (2012)

