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A B S T R A C T   

Aerosols affect air quality, weather and climate through many mechanisms and are dangerous to human health. 
They are mostly concentrated within the atmospheric boundary layer (ABL) its height is affected by the radiation 
emitted by the surface, causing turbulence and evolving along the day, influencing the vertical mixing of the air 
pollutants generated near the surface and therefore, their ground-level concentration from local sources. Lidars 
have demonstrated their capabilities to study the aerosol vertical distribution and their spatio-temporal evolution 
can provide very complete information on the ABL dynamics. In this work, machine learning techniques are 
employed to predict the ABL height. The meteorological variables measured at ground-level are used as features 
of the algorithm and the ABL height estimated by the STRATfinder algorithm using ceilometer profiles, a small 
lidar instrument with enhanced characteristics for unassisted continuous operation, are considered the truth in 
the supervised regression algorithm. The machine learning models allow considering combination of features in 
the regression algorithm and also allow characterizing the importance of each of the predictors to determine the 
final result. This property is used to study different boundary layer regimes. The ABL is difficult to study in 
certain parts of the day due to transitions between atmospheric regimes. In order to improve the performance of 
the model, each day was divided in four parts (nighttime, morning, daytime and evening). The Madrid ceilometer 
profile database has been studied for the year 2020, splitting the training datasets for the machine learning 
algorithm into season and part of the day, and the importance of predictors analyzed. Major influence of tem
perature and relative humidity is found in most of the situations, but also wind velocity in certain circumstances 
and pressure. The influence of radiation is small, contrary to expected. The main advantage of the proposed 
method is that MLHs and ABLHs can be retrieved directly from widely available ground-level meteorological 
data. Future work will focus on more relevant predictors, as latent heat or turbulence.   

1. Introduction 

The atmospheric boundary layer (ABL) regulates the exchange of 
energy and moisture between the surface and the atmosphere, playing a 
critical role in air quality forecasts (Monks et al., 2009) and greenhouse 
gas concentration budgets (Gerbig et al., 2008). It is defined as the layer 
located at the lowermost region of the troposphere that is directly 
influenced by the Earth's surface and responds to surface forcing over a 
short period of time (Stull, 1988). It is mainly characterized by turbulent 
processes and presents a daily evolution cycle depending on the solar 
radiation (Mahrt, 1999). The cycle, in clear-sky situations, starts with 
the increase of ground surface temperature after sunrise, which in
tensifies the convection, producing ascension of warm air masses and 
downward displacement of colder air masses, which creates a growing 

mixing layer (ML), named after the vertical mixing process generated by 
the ascending air parcels (White et al., 2009). During the early evening 
transition period, the gradual reduction of incoming solar irradiance 
causes a reduction of the convective processes and a weakening of the 
turbulence, producing a transition of the ML into two layers, a stable 
stratified boundary layer called the nocturnal boundary layer (NBL) 
close to the surface and a residual layer (RL) which is a remnant of the 
daytime ML and is just above the NBL. The next day starts with an early 
morning transition period from sunrise until the time when the NBL is 
eroded and a new ML begins to grow rapidly. The underlying surface 
plays also a crucial role for the ABL development, influenced by the 
surface albedo because different surfaces respond differently to the solar 
heating (Sailor, 1995). Another aspect that plays a role in shaping the 
boundary layer height is the orography, with different behavior between 
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mountainous terrains with respect to urban or rural flat environment 
(Trentmann et al., 2009). The pollutants emitted by ground-level local 
sources into the ML are dispersed by turbulence, both horizontal and 
vertically, until they are completely mixed providing enough time is 
given and no significant sinks are present (Seibert et al., 2000). A 
detailed understanding of ABL processes would improve forecasting of 
pollution dispersion and cloud dynamics in the context of future climate 
scenarios, as it determines the available volume that the anthropogenic 
pollutants emitted at surface can occupy, affecting their concentration 
and consequently the air quality (Geiß et al., 2017). A strong aerosol 
gradient normally occurs at the ABL top at daytime due to turbulent 
vertical mixing process, the primary process by which aerosol particles 
are transported vertically in the atmosphere (Pal et al., 2010), and it can 
be used as proxy of the ABLH estimation. During other periods, the 
ABLH is more difficult to determine from the aerosol gradient, as the 
strongest aerosol gradient sometimes corresponds to the top of RL and 
others to growing layers within, yielding inaccuracy results. 

Nowadays, the most common dataset used for ABLH determination 
are radiosoundings, the unique officially accepted measurements at 
global scale, but they are usually taken only twice per day (00:00 and 
12:00 UTC) mainly at airports in western countries in the Northern 
Hemisphere, in the frame of the World Meteorological Organization 
(WMO) radiosounding global network (Durre and Yin, 2008). The 
infrequent observation and sparse spatial coverage compromise their 
representativeness for urban and regional scales. Better temporal 
coverage in order to capture the ABL diurnal cycle is needed to improve 
mesoscale analyses that are used to drive short-term model predictions 
of aerosol dispersion and reanalysis (Haeffelin et al., 2012). Different 
remote sensing techniques have been introduced into ABLH studies over 
the past several decades, improving the spatial and temporal capabilities 
thanks to their continuous operation and network developments (Baars 
et al., 2008). Among them, aerosol lidar has developed as a powerful 
remote sensing instrument to retrieve the ABLH through detecting 
aerosol vertical profiles (Pal et al., 2013). As mentioned above, aerosols 
can be used to trace the ABLH from the vertically resolved profiles. The 
aerosol lidar-derived ABLH is actually the height of aerosol layers and it 
can disagree with the radiosounding-derived ones due to the inconsis
tency between the thermal profiles and the aerosol profile, especially 
during morning or evening transitions (Emeis and Schäfer, 2006). The 
spatial coverage of lidar instruments has improved recently with the 
organization of networks, such as EARLINET (Pappalardo et al., 2014) 
and E-PROFILE (Illingworth et al., 2015; E-profile, 2021). This last 
network employs ceilometers, a small lidar with enhanced characteris
tics for unassisted continuous operation. The recently available high 
temporal and spatial density of these observations has driven a devel
opment of the ABLH retrieval algorithms for these instruments. The 
determination of the atmospheric layers using the aerosol profiles as 
proxy is based in two assumptions: firstly, the aerosols emitted at surface 
level are well-mixed within the ABL, with a cleaner upper free atmo
sphere, producing a strong negative gradient clearly observable in the 
backscatter profiles (Flamant et al., 2001); secondly, the interface pre
sents considerable fluctuations in aerosol concentration, due to constant 
interexchange of airmasses, some clear from the free troposphere, 
moving downward, some polluted with aerosols, moving upward. This 
fact increases the variance of the backscatter profile at that height 
(Menut et al., 1999). The first assumption is applied in classical meth
odologies, such as gradient method (Flamant et al., 1997) and wavelet 
covariance transform (Brooks, 2003). The second is applied in the 
standard deviation analysis (Hooper and Eloranta (1986)). Further de
velopments have applied both assumptions in combination (Emeis et al., 
2008). 

Considering the four different dynamic regimes mentioned above, it 
can be established that during the daytime period, with the mixed layer 
well developed, the ABLH is equal to the MLH because the distribution 
of aerosol concentration is dominated by turbulent mixing. On the other 
hand, when the surface heating is weaker than that of the previous day, 

the MLH may not reach the height attained by the previous day's ABL, 
showing some stratification. It can be determined by applying both as
sumptions, as the variance is particularly strong at the top of the mixed 
layer during daytime when air from the free troposphere is being mixed 
into the lowest atmospheric layer. But for the nighttime period, the 
height determined by aerosol lidar is either the nocturnal layer devel
oped near the surface when it cools down after sunset or the top of a 
residual layer from the previous mixed layer left behind when the tur
bulence is “switched off”. The transition periods are more difficult to 
study. For instance, during the morning growth, variance can be 
particularly strong at the top of the ML because air from the residual 
layer may be mixed, but the gradients are weaker than when the air 
masses come from the free troposphere. 

One recent advance in the field is the use of edge detection method 
(Poltera et al., 2017) based on temporal gradients in the attenuated 
backscatter signal. It started with the structure of the atmosphere 
(STRAT) method (Morille et al., 2007), that was extended in two di
mensions (Temporal and vertical) by the STRAT-2D (Haeffelin et al., 
2012) in order to guarantee temporal consistency of the resulted ABLH. 
A recent development, called pathfinder (de Bruine et al., 2017), applies 
graph theory to track the diurnal evolution. The combination of these 
methodologies has produced a reliable method, called STRATfinder, 
which applies a backward propagating layer, from the end of the day, 
and decides the type of layer from the forward and backward de
terminations by minimizing a cost function. This layer attribution is the 
most uncertain step (Haeffelin et al., 2012) and it can be assisted by 
commonly available surface measurements of radiation and tempera
ture. More details are provided in (Kotthaus et al., 2020). Recent de
velopments follow the line of two dimensional analysis, such as 
morphological image processing techniques (Vivone et al., 2021). 

The MLH and ABLH provided by the STRATfinder algorithm have 
been employed as true values in machine learning algorithms in order to 
predict them from ground-based meteorological data. The main 
advantage of machine learning algorithms is the contribution from 
multiple features simultaneously (McGovern et al., 2017). Traditional 
fitting algorithms (for instance, linear regression) cannot consider the 
influence of multiple meteorological variables at the same time. This 
constraint is solved using machine learning approach, which has the 
potential for a fast, robust, accurate, and automated ABLH estimation. 
Machine learning models are becoming increasingly important due to 
the availability of large datasets, difficult to analyze with traditional 
methods. For instance, these models have proved faster and more reli
able in automated inspection, defect detection, autonomous cars and 
predictive maintenance (Hastie et al., 2001). Beyond these most 
commonly recognized ones, they are starting to be used in other fields, 
such as atmospheric remote sensing, thanks to their generalization and 
fast training speed (Wei et al., 2019; de Moreira et al., 2022). Developing 
a predictive model follows a determined workflow, from data prepara
tion, including cleansing, selection of the best algorithm for the prob
lem, splitting the database into a dataset for training of the model and 
another for testing, and some feature discrimination and performance 
analysis in an iterative scheme. Identifying the right algorithm is often a 
process of trial and error because every problem requires a properly 
tuned machine learning algorithm. The adequate selection of the fea
tures is critical in the performance of the model, as models with larger 
number of features require more computational resources during the 
training stage, and using too many features leads to overfitting. 
Removing features without useful information or redundant optimizes 
performance of a simpler model less likely to overfit and with reduced 
computational cost. Feature selection is a process of selection the most 
relevant features for the specific problem that will capture the essential 
patterns in the data. 

In this paper, we present an estimation of the MLH and ABLH from 
ground-based measurements using machine learning methods, validated 
with ceilometers profiles and STRATfinder estimations. The capability 
of machine learning models to consider multiple features to establish 
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correlation between variables, and the use of widely available ground- 
level meteorological data are the main advantages of the proposed 
method. 

Tha manuscript is organized as follows: Section 2 is a description of 
the location as well as a summary of all the instruments, datasets and the 
algorithm used in this work. Section 3 describes the statistical indicators 
(RMSE, R2, MAE and predictors importance) for the different datasets, 
when machine learning is applied to the ABLH or MLH estimations. 
Finally, the results and discussion along with the main conclusions are 
presented in section 4. 

2. Material and methods 

2.1. Experimental site: Madrid 

The experimental site belonging to the Department of Environment 
of the CIEMAT is located in the center of the Iberian Peninsula (40.45 N; 
3.72 W; 669 m. a.s.l.) in the northwest part of Madrid city. The Madrid 
air basin is bordered to the north-northwest by a high mountain chain, 
Sierra de Guadarrama (max. Altitude 2420 m. a.g.l.), 40 km from the 
metropolitan area; to the south by another mountain system, Montes de 
Toledo, and finally to the northeast and east by lower mountainous 
terrain. The population of this metropolitan area including the Madrid 
city and surrounding towns is nearly 6 million inhabitants, one of the 
most populated regions in Spain. The Madrid air pollution plume is 
considered as typically urban, fed by traffic emissions and residential 
heating, given that industrial activity is comprised of light factories and 
it does not represent an important atmospheric pollutant source (Artı
ñano et al., 2003). The Madrid climate is continental Mediterranean, 
with hot dry summers and cold winters, and most days present clear-sky 
conditions (López et al., 2019). The Azores high-pressure system gov
erns the atmospheric situation in these latitudes during a great part of 
the year and in winter high pressure systems over the Madrid area 
produces periods of stagnation with high stability, poor ventilation and 
increases in air pollution. 

2.2. Ceilometer profiles and ABLH estimation algorithm (STRATfinder) 

The site has in operation a Lufft CHM15k-Nimbus ceilometer since 
December 2019. This instrument employs the infrared light at 1064 nm 
from a pulsed Nd: YAG laser, emitting 60 mW per pulse of output power 
at a repetition frequency ranging between 5 and 7 kHz. Vertical profiles 
are obtained with a temporal resolution of 15 s and a vertical resolution 
of 15 m, reaching a maximum height of 15 km. Regarding the minimum 
height, the system is biaxial, so the laser beam enters into the telescope's 
field of view gradually, obtaining a complete overlap at about 1.5 km. 
Taking into account the laser beam divergence (0.3 mrad) and the 
telescope field of view (0.45 mrad), a correction function is applied to 
reduce the incomplete overlap, producing a useful signal down to 240 m 
(Molero and Jaque, 1999). The backscattered signal is detected with an 
avalanche photodiode in photon-counting mode, allowing the study of 
aerosols, which produce a return signal weaker than clouds. 

The daily files are processed by means of the STRATfinder algorithm, 
available under the GNU General Public License v3.0. The temporal 
resolution is reduced to 10 min, in order to match the meteorological 
data resolution before analyzing both dataset using the tree regression 
algorithm. The STRATfinder algorithm provides estimations of the MLH 
and ABLH. It also estimates an auxiliary layer height that is tracked 
backwards in time from midnight to noon to assist ABLH detection 
during the evening decay of the mixed layer. The Dijkstra algorithm 
(Dijkstra, 1959) is applied to track MLH, ABLH and the auxiliary layer 
and individual paths are connected to determine MLH and ABLH for the 
whole 24 h period, merging the auxiliary layer and the preliminary 
ABLH to provide the final ABLH estimate. Cases of rain, snow and low 
clouds aren't included in the dataset, as they are filtered by the 
STRATfinder algorithm. The algorithm employs a fast Fourier transform 

function to avoid high signals associated with rain, snow and low clouds 
by setting a threshold and exclude periods when MLH cannot reliably be 
determined from attenuated backscatter profile observations from the 
analysis. Each day is divided into four parts, namely Nighttime (NT: 
Sunset +2 h until sunrise), Morning (MO: Sunrise until Sunrise +4 h), 
Daytime (DT: Sunrise +4 h until sunset – 2 h) and Evening (EV: Sunset – 
2 h until Sunset +2 h) in order to simplify the model predictions taking 
into account the distinct characteristics of the ABL and ML development 
during the diurnal cycle. 

Fig. 1 shows an example of the STRATfinder estimations for one day, 
16 July 2020 in this case. The MLH (black crosses) is close to the min
imum (232 m agl) during night and part of the morning, while the ABLH 
(red circles) follows the residual layer from the previous day, with some 
difficult decisions between 3:00 and 9:00 am due to layer appearance 
and disappearance. The most pronounced layer edge usually occurs 
between the ABL and the free troposphere above, but sometimes aerosol- 
rich layers appear in the ceilometer field of view, as it happens this day 
between 3:00 and 10:00, with a layer located between 500 m and 1 km. 
The convection starts at sunrise (4:59 am), observable in the figure as 
vertical cyan lines between 5:00 and 10:00, detecting the strong upward 
movement of airmasses. When the convective growing layer extends 
over the whole ABL, both estimations are equal, as it happens at 10:00, 
although later on, the algorithm estimates lower MLH from 11:00 to 
15:00, probably due to some inner structure in the aerosol layer. Both 
estimations agree between 15:00 and 19:48, sunset time, when the MLH 
estimation drops to the first detected layer close to the ground, while the 
ABLH tracks the residual layer that slowly transitions into the next day. 
The parts of the day are labelled in white, showing the more difficult 
task of identifying the layers in the morning (MO) and evening (EV) 
parts, where the largest transitions occur. 

2.3. Ground-based meteorological data 

Meteorological information in Madrid was obtained at CIEMAT 
(Molero et al., 2014). Surface meteorological parameters, such as tem
perature, relative humidity, wind speed and wind direction were ob
tained from an automatic meteorological station (U3-NRC, Onset HOBO, 
USA) and recorded every 10 min, obtaining a total of 48,839 sets of 10 
min averaged data. The temperature is measured at two heights (4 and 
50 m) in order to characterize the inversion. Fig. 2 shows the temporal 
evolution of the estimated MLH (black crosses) and the ABLH (red cir
cles) in the top panel (Fig. 2-A) for eight days of July 2020. As it can be 
seen, the boundary layer during those days of summer usually reaches 2 
km in height, with a daily evolution starting at 7:00 UTC (9:00 local 
time, day saving hour applied) and growing along the morning. A sharp 
decrease is observed after sunset. Regarding the ABLH (red circles), it 
loosely follows the same daily dynamics, but remains at heights between 
1 and 2 km overnight, as a reminder of the previous day mixing layer. 
Several prediction variables are plotted in Fig. 2.B (4 m temperature), 2. 
C (Relative humidity) and 2.D (Solar radiation), in order to compare the 
daily evolution of those variables with the atmospheric layers. As it can 
be observed, the temperature (Fig. 2.B) and solar radiation (Fig. 2.D) 
visually correlate with the MLH directly, although a delay in the growth 
of the ML is observed. The delay of the ABL growth each morning respect 
to the solar radiation and rise of temperature is a relevant feature, with 
this last one better correlated with the ABL peak but wider curve, while 
the solar radiation shows similar width curves but displaced respect to 
the ABL. Regarding the water vapor relative humidity, the correlation is 
inverse, but no delay is observed, with the peak of the ABL nearly 
coincident with the RH minimum. As it will be shown later, this has a 
distinct effect on the results, as the machine learning algorithm will take 
advantage of all these correlations to weight the importance of each 
predictor. 
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Fig. 1. Temporal evolution of the ABL the day 16 July 2020, obtained by plotting the attenuated backscatter in color scale, against UTC time (x-axis) and height (y- 
axis). Black crosses and red circles are the MLH and ABLH, respectively, estimated by the STRATfinder algorithm. Parts of the day are labelled and separated by solid 
lines, except sunrise, highlighted as a dash white line, and sunset as dash red line. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 2. Temporal evolution of atmospheric layers (A) and predictors: Temperature (B), RH (C) and solar irradiance (D) from the 13 to the 20 July 2020.  
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2.4. Machine learning 

Since the algorithm will predict results within a continuous output, 
the MLH and ABLH, with a “true” response determined by the STRAT
finder algorithm, it is a supervised regression problem. The one-year 
dataset from January 2020 to December 2020 is break down into 
three datasets, with percentages: training dataset: 60%, cross validation 
dataset: 20% and test dataset: 20% selected randomly, using cross- 
validation by the standard K-fold error estimation method. The testing 
dataset is only used to evaluate model performance, without being 
involved in the training of the model. The input variables provided by 
the meteorological station, are selected as features and normalized to 
avoid scale problems, using the mean and standard deviation of the 
training dataset. Several algorithms were tested (linear regression, 
regression tree, support vector machine and Gaussian process regres
sion), and for each model, the performance was analyzed by inspecting 
the RMSE (Validation) score and also several diagnostic scores such as 
model accuracy, and plots, such as a response plot or residuals plot, 
obtaining the best results for regression tree. The function fitrtree within 
the Matlab environment is employed to obtain a regression tree based on 
the ground-level meteorological variables (also referred as predictors or 
features) and the MLH and ABLH values provided by the STRATfinder 
algorithm as true response. The returned tree is a binary tree where each 
branching node is split based on the values of a column of features. The 
trained model yields the importance of each predictor in a tree by 
summing changes in the node risk due to splits on every predictor, and 
then dividing the sum by the total number of branch nodes. These pre
dictors importance will be used to determine the boundary layer dy
namics. The accuracy of the model is usually measured by the mean 
absolute error (MAE) or the root mean square error (RMSE), accounting 
for the deviation between the retrieved results and the true values, and 
the squared correlation coefficient (R2), characterizing the goodness of 
the fitting. 

2.5. Dataset distribution 

Statistics are split by part of the day using the above-mentioned di
vision (NT, MO, DT & EV), and they are also split by season, with winter 
corresponding to December, January and February months, and labelled 
as DJF, and the other season accordingly as spring: MAM, summer: JJA 
and autumn: SON. Taking into account that data is averaged each 10 
min. Table 1 summarizes the measurements employed in the study. 

Data was obtained each 10 min and 48,439 datasets were recorded 
during 2020. It corresponds to 92.2% of the total possible data (52560). 
Some instrument failures occurred on 28–29 January, 4–14 April, 21. 26 
May, 7–18 September and 29–31 October, explaining the slight differ
ences in the amount of data for the four seasons, with the largest amount 
of data recorded in summer (JJA) and the smallest in spring (MAM), but 
the distribution is fairly constant along the year. Regarding the amount 

of data recorded during the different parts of the day, the morning (MO) 
and Evening (EV) periods show a constant percentage of the recorded 
data, around 16%, as it will be expected for those constant four hours 
periods. The nighttime (NT) and daytime (DT) periods show variation 
with the season, with the largest percentage of data recorded for the NT 
period during the winter (50.6%) and autumn (45.7%) seasons, and the 
opposite occurs for the DT period, with largest percentages in spring 
(30.1%) and summer (35.4%), due to the length of day changes along 
the year. Data availability by season and part of the day are sufficient for 
adequate model training and statistical analysis. 

Firstly, the dataset is analyzed splitting by the part of the day 
(Table 2), taking into account the whole year. As indicators of the fitting 
quality, the root mean square error (RMSE), mean absolute error (MAE) 
and the coefficient of determination (R2) are applied to quantify the 
agreement between STRATfinder and machine learning estimation, in 
order to assess the performance of each model. RMSE represents the 
difference between predicted and actual values, and the coefficient of 
determination quantifies the amount of variance explained by the 
model. After training the model, these scores are provided for the train 
dataset, shown at the top of Table 2, but these values are usually arti
ficially good due to overfitting of the data. Also, the error of the dataset 
with which the model is trained will be lower than the error on any other 
dataset. In order to better assess the quality of the predictions, a second 
dataset, named test dataset, is used and the results are shown at the 
bottom of the table. Both set of scores allow the estimation of the effect 
of the overfitting and the amount corrected by the test dataset. The 
importance of the predictors, expressed as percentage, is also shown. 

3. Results 

3.1. MLH estimations 

Fig. 3 shows the results for the training (3.A) and testing datasets (3. 
B) for the case of daytime and MLH. As it can be observed, the linear fit 
of the predicted data, respect to the true response, or STRATfinder 
values, shows a reasonable good agreement, with a R2 of 0.96 for the 
training dataset and 0.66 for the testing dataset. The effect of the 
overfitting caused by the model is clearly observable in these two fig
ures, with the lower correlation coefficient of the test dataset. The main 
discrepancies are due to wrong predictions of the lowest height (232.15 
m, limited by the partial overlap of the laser and telescope fields of view 
in the ceilometer). The importance of the different predictors is shown in 
the bottom left panel (Fig. 3.C), with a strong importance of the relative 
humidity, due to the correspondence of the MLH highest value with the 
RH minimum, as it was mentioned before, and contributions from 
pressure, temperature and radiation. The residuals, not shown, produce 

Table 1 
Number of measurements, and percentage of total in brackets, by season and 
part of day. Percent values for the total measurements by season (All) refers to 
the total number of measurements, while those for each part of day refers to the 
measurements in the corresponding season.   

All NT MO DT EV 

Winter (DJF) 12,871 
(26.6) 

6510 
(50.6) 

2136 
(16.6) 

2067 
(16.0) 

2158 
(16.8) 

Spring 
(MAM) 

11,040 
(22.8) 

4051 
(36.7) 

1824 
(16.5) 

3317 
(30.1) 

1848 
(16.7) 

Summer 
(JJA) 

13,152 
(27.2) 

4115 
(31.3) 

2198 
(16.7) 

4655 
(35.4) 

2184 
(16.6) 

Autumn 
(SON) 

11,376 
(23.5) 

5203 
(45.7) 

1896 
(16.7) 

2381 
(20.9) 

1896 
(16.7) 

TOTAL 48,439 out of 52,560 
(92.2)     

Table 2 
Model quality indicators and predictors importance for MLH estimations split by 
parts of the day.   

NT MO DT EV 

Train rmse 108.81 87.82 168.30 193.17 
Train R2 0.90 0.86 0.96 0.95 
Train MAE 47.19 38.11 90.83 94.66  

Predictors (%) 
Temp 50 m 14.42 21.23 9.93 9.81 
Temp 4 m 12.78 10.20 3.85 14.84 
RH 20.49 20.82 45.51 26.52 
Wind dir 17.95 7.91 5.50 11.88 
Wind speed 7.07 7.21 5.31 6.38 
Precipitation 0.12 0.39 0.15 0.01 
Pressure 27.17 24.74 20.73 21.65 
Radiation 0.00 7.49 9.01 8.91 
Test rmse 267.69 174.99 454.15 474.24 
Test R2 0.36 0.28 0.66 0.69 
Test MAE 128.57 95.16 261.56 244.32  

F. Molero et al.                                                                                                                                                                                                                                  



Atmospheric Research 279 (2022) 106401

6

reasonable Gaussian fit between 0.1 and 0.9 probability, and the tails of 
the distribution of the residuals diverging from the random error due to 
the effect of the minimum estimation value of the algorithm and the 
partial overlap of the ceilometer instrument at low heights. Fig. 3 D 
compares the predictions obtained from the model for the testing dataset 
between the 13 and 20 July, same period selected in Fig. 2. Reasonable 
agreement is obtained for the growing MLH from 1 to 3 km along the 
day, with occasional mistakes as in day 15, with predictions close to 1 
km, while the ceilometer profiles reached 2.5 km, and opposite, on day 
19, when the ceilometer data produces a strange low MLH, between 200 
and 700 m probably due to algorithm error, but the model predicts a 
similar growth as the other days, reaching 3 km at 15:00 local time. The 
same analysis has been applied to each of the cases and the results 
summarized in the following tables (Tables 2, 3 and 4). 

Table 2 shows the machine learning results for the MLH estimations 
for the different parts of the day, taking into account all the year. It can 
be observed that the performance of the model for NT and MO is rather 
poor, with R2 equal 0.36 for NT and 0.277 for MO, when the test dataset 
is predicted. It improves for the other two parts of the day, with R2 

equals 0.66 for DT and 0.69 for EV. This indicates that the model 

Fig. 3. Results from fitting the MLH for daytime cases for the whole year. (A) Predicted response, provided by the tree regression algorithm, vs true response, 
provided by the STRATfinder code, for the training dataset. (B) Same as A but for the testing dataset. (C) Predictors importance. (D) Comparison of MLH predictions 
vs true response for the time period 13–20 July, same as in Fig. 2. 

Table 3 
Model quality indicators and predictors importance for MLH estimations split by 
season.   

DJF MAM JJA SON 

Train rmse 77.35 128.66 209.67 97.72 
Train R2 0.95 0.96 0.96 0.96 
Train MAE 39.73 64.92 96.31 49.18  

Predictors (%) 
Temp 50 m 17.06 14.14 5.48 8.06 
Temp 4 m 7.03 7.25 34.38 18.33 
RH 27.41 27.66 16.20 19.39 
Wind dir 8.00 10.38 8.99 12.44 
Wind speed 8.43 6.48 6.63 11.42 
Precipitation 0.04 0.62 0.00 0.00 
Pressure 22.65 17.93 9.60 21.22 
Radiation 9.38 15.54 18.72 9.13 
Test rmse 182.03 330.29 525.91 240.96 
Test R2 0.73 0.70 0.73 0.79 
Test MAE 100.19 175.67 262.11 127.80  
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performs better when the mixing layer is fully developed, justifying the 
discrimination of the different parts of the day. The predictor's impor
tance indicates that at NT and MO, no main predictor influences the 
model, with similar importance for temperature, RH and pressure. On 
the other hand, when DT and EV are trained, the main predictor is RH, 
with less influence of pressure. As a curious note, it can be observed that 
radiation increases its importance as day progresses, with zero influence 
at NT, obviously, but also small influence at MO, due to the above- 
mentioned shift between the radiation intensity and the mixing layer 
growth. 

Table 3 shows similar results than Table 2, but separating the results 
by season. In this case, the model performs reasonably well in all cases, 
with R2 values always above 0.7. The predictors' importance is still 
shared between the temperature, RH and pressure, with more influence 
of temperature and radiation during spring and summer, and during 
autumn and winter, of relative humidity and pressure. 

Finally, Table 4 summarizes the results when the analysis is 
discriminated by both the part of the day and the season. Due to space 
reasons, the table is reorganized in transpose mode, with the predictors' 
importance as columns and only the performance indicators for the test 
dataset are shown. The separation in both criteria improves the per
formance of the model for NT and MO, with R2 values rising above 0.4 
except for summer, with very low value at NT (0.03). This dataset was 
further analyzed in order to understand the difficulty for the model and 
it is related with the minimum MLH assigned by the STRATfinder al
gorithm, due to the partial overlap at low heights of the ceilometer in
strument. The model overweights these values, yielding a high 
prediction of low MLH when the test dataset is employed. Further 

development, related with the handling of the low MLH, very frequent at 
nighttime, is required to improve this prediction. 

As a relevant feature, the most important predictor for DT in winter is 
the wind velocity, with 39.42% of estimate of importance. This is the 
only case in which it happens, indicating that turbulence driven by wind 
is more important than that driven by heat. For the other seasons, the 
expected temperature contribution occurs in spring and summer, and a 
balanced combination of temperature, RH and pressure for autumn. The 
radiation is never the most important predictor, probably due to the 
mismatch in the duration mentioned above. Its importance grows along 
the day for summer, from NT, when it is zero as there is no radiation in 
this part of the day, to EV, when it reaches its largest value. For the other 
seasons, the progression is less clear, with largest value in the morning 
for autumn and spring and in the winter case, the DT value is larger than 
the evening one. 

3.2. ABLH estimations 

The STRATfinder algorithm also provides estimations for the ABLH. 
In this case, it follows better the aerosol layer detected by the ceilometer, 
although the layer identification using the back-propagating layer is also 
applied. The same machine learning analysis and study of the impor
tance of the predictors can be done for this estimation. 

Table 5 shows the performance of the model when the dataset is 
discriminated by the parts of the day. In this case, the four parts of the 
day attain reasonable performance, with R2 values close to or larger than 
0.7. The most important predictors for all the cases are temperature, 
followed by RH. It is noteworthy to observe that the radiation does not 
follow the pattern of increasing as day progresses, with largest value for 
DT and decreasing from there. This is caused by the different behavior of 
the ABL, in respect to the ML, as it can be seen in Fig. 1. The ML is 
estimated as the lowest gradient observed in the aerosol profile by the 
STRATfinder algorithm, after sunset, but the ABL remains estimated as 
the strongest gradient, normally signaling the separation of the aerosol 
layer and the cleaner free troposphere. The radiation cannot contribute 
to this last estimation, producing the difference respect to the MLH 
results. 

When the dataset is separated by season, shown in Table 6, the model 
performs reasonably well, with R2 values above 0.7, except for the case 
of summer, with R2 = 0.57. The predictor's importance is still shared 
between the temperature, RH and pressure, with more influence of the 
temperature during summer, and pressure during autumn and winter. 
This feature can be a lousy proxy of the synoptic situation, but a better 
predictor should be found to establish such relationship. 

Additional insight can be obtained by discriminating according to 
both the part of the day and the season, shown in Table 7. The 

Table 4 
Model quality indicators and predictor's importance for MLH estimations split by 
both the part of the day and season. Only Test dataset quality indicators are 
shown.   

Temp 
50 m 

RH Wind 
sp 

Pressure Radiation Rmse R2 

DJF – 
NT 

14.09 24.91 7.38 30.43 0.00 180.53 0.63 

DJF – 
MO 

14.93 32.79 6.06 29.65 6.14 111.42 0.54 

DJF – 
DTs 

8.22 26.90 39.42 10.24 6.87 212.53 0.67 

DJF – 
EV 

12.77 22.10 21.86 22.40 3.37 215.59 0.74  

MAM – 
NT 

14.87 26.94 9.93 18.82 0.00 284.11 0.42 

MAM – 
MO 

17.33 10.11 8.37 25.68 9.55 127.93 0.65 

MAM – 
DT 

23.26 29.53 8.72 20.37 8.55 323.26 0.69 

MAM – 
EV 

22.41 22.80 5.27 18.72 9.23 447.80 0.57  

JJA – 
NT 

14.23 23.80 12.71 13.22 0.00 287.18 0.03 

JJA – 
MO 

44.06 14.38 7.48 17.05 6.14 194.44 0.34 

JJA – 
DT 

13.99 27.51 9.54 14.66 20.55 567.31 0.54 

JJA – 
EV 

10.54 17.59 5.63 16.08 31.05 796.47 0.51  

SON – 
NT 

6.55 11.49 8.96 33.81 0.00 235.07 0.48 

SON – 
MO 

22.46 21.63 6.02 17.57 12.14 117.15 0.57 

SON – 
DTs 

7.69 38.10 17.07 23.03 5.40 257.46 0.75 

SON – 
EV 

11.32 24.41 17.03 25.49 6.95 292.87 0.77  

Table 5 
Model quality indicators and predictors importance for ABLH estimations split 
by parts of the day.   

NT MO DT EV 

Train rmse 191.56 166.18 196.16 172.64 
Train R2 0.96 0.97 0.96 0.97 
Train MAE 98.55 87.16 105.99 91.39  

Predictors (%) 
Temp 4 m 7.88 48.79 44.88 51.33 
Temp 50 m 41.13 4.89 4.54 3.34 
RH 14.22 9.90 13.83 9.16 
Wind dir 8.62 6.95 7.15 7.64 
Wind speed 7.06 5.91 4.53 4.42 
Precipitation 0.02 0.13 0.04 0.07 
Pressure 21.07 18.90 19.74 22.53 
Radiation 0.00 4.53 5.29 1.50 
Test rmse 514.44 537.36 493.75 489.16 
Test R2 0.73 0.69 0.74 0.78 
Test MAE 277.91 277.07 289.05 246.01  
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performance of the model is again poor for summer, with R2 values 
below 0.6 except for the MO case. Studying the predictor's importance, it 
can be seen that in this case, the temperature is the most important 
predictor, while in the other cases, Pressure, RH and temperature attain 
similar values. Further study of this behavior is required to improve the 
prediction for summer. Similarly, to the MLH, the wind speed predictor 
is important at daytime in winter, with 26.17% of estimate of 

importance, indicating that turbulence driven by wind is more impor
tant than that driven by heat for both the MLH and ABLH. 

4. Discussion and conclusions 

This study proposes a machine learning approach for atmospheric 
boundary layer heights estimation using meteorological data. ABLH 
estimations provided by the STRATfinder algorithm using ceilometer 
vertical profiles are considered the true values for the supervised 
regression model. Ground-level meteorological variables (temperature, 
pressure, relative humidity, solar radiation, wind direction and speed 
and precipitation) are employed as predictors in the machine learning 
model. The complete year 2020 is analyzed, with data averaged 10 min, 
obtaining a total number of points of 48,480 (92.2% of total possible 
data). In order to study the different atmospheric regimes, diurnal and 
seasonal variations have been investigated. For the MLH, the perfor
mance of the model was better for DT and EV than for NT and MO, 
indicating that the model performs better when the mixing layer is fully 
developed. This is supported by the results for the ABLH, where the four 
parts of the day attain reasonable performance. When the results are 
separated by season, the model performs reasonably well in all cases for 
the MLH, but all except summer for the ABLH. This may be related to 
synoptic situation, but a better predictor should be found to establish 
such relationship. The importance of predictors, an estimation of the 
error provided by changes in the order, was used to analyze the results. 
Several relevant aspects were obtained; an important contribution to the 
regression was obtained for relative humidity in most of the cases. A 
potential explanation can be the better correlation between these data 
and the MLH and ABLH estimations than for the other variables, espe
cially radiation, although it is negatively correlated in this case. The 
influence of temperature is smaller than expected, although major 
contribution was obtained in daytime. Only a different dynamic was 
obtained in winter at daytime, with the largest importance of the wind 
speed, indicating a mechanically driven mixing layer. Finally, an un
expectedly limited influence of radiation was found, probably caused by 
mismatch in periodic duration, which affects the training of the model. 
The major advantage of the proposed method is that MLHs and ABLHs 
can be retrieved directly from widely available ground-level meteoro
logical data. Future work includes the study of other features more 
relevant to the ABL dynamics, such as latent heat, turbulence or mete
orological situations. One challenge is the input of that information into 
the machine learning algorithm in adequate form. Also, no time corre
lation was considered among the measurements, as the data partition 
was done randomly. It can be considered in future studies with a better 
designed partition. Additionally, further efforts should focus on 
improving predictions in the transition times, when growing or decaying 
turbulent mixing occur. This approach may help the remote sensing 
techniques in the challenging task of layer attribution. 
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ñano: Conceptualization, Formal analysis, Funding acquisition, Inves
tigation, Methodology, Project administration, Writing – review & 
editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Table 6 
Model quality indicators and predictors importance for ABLH estimations split 
by season.   

DJF MAM JJA SON 

Train rmse 166.52 170.35 199.13 132.61 
Train R2 0.95 0.96 0.94 0.97 
Train MAE 77.64 92.28 111.59 70.34  

Predictors 
Temp 50 m 10.17 22.38 34.19 23.18 
Temp 4 m 8.83 6.06 4.94 7.20 
RH 19.69 23.68 15.16 19.11 
Wind dir 10.74 13.09 12.58 8.30 
Wind speed 18.27 6.36 8.53 12.42 
Precipitation 0.10 0.10 0.00 0.00 
Pressure 28.09 23.04 16.86 24.26 
Radiation 4.12 5.30 7.75 5.52 
Test rmse 376.27 463.49 546.36 358.61 
Test R2 0.73 0.72 0.57 0.78 
Test MAE 196.74 259.97 315.10 186.32  

Table 7 
Model quality indicators and predictor's importance for ABLH estimations split 
by both the part of the day and season. Only Test dataset quality indicators are 
shown.   

Temp 
4 m 

RH Wind 
sp 

Pressure Radiation Rmse R2 

DJF – 
NT 

11.18 27.17 18.73 19.71 0.00 397.93 0.69 

DJF – 
MO 

9.64 22.08 7.78 38.63 3.19 260.08 0.87 

DJF - 
DTs 

14.87 10.99 26.17 18.79 12.28 358.63 0.75 

DJF - 
EV 

10.74 26.08 15.34 26.29 1.15 326.07 0.77  

MAM – 
NT 

18.65 21.03 4.68 29.16 0.00 392.47 0.81 

MAM - 
MO 

27.41 16.50 4.90 30.19 8.28 408.66 0.75 

MAM - 
DT 

32.49 13.57 8.39 24.08 6.44 424.26 0.71 

MAM - 
EV 

25.00 15.27 7.52 34.22 0.91 475.51 0.71  

JJA – 
NT 

9.07 18.57 6.35 21.95 0.00 547.36 0.52 

JJA – 
MO 

13.43 14.32 10.02 18.09 7.08 539.91 0.65 

JJA – 
DT 

34.01 16.18 4.89 18.21 11.84 560.77 0.52 

JJA – 
EV 

27.26 20.07 8.45 24.60 1.22 483.98 0.52  

SON – 
NT 

11.20 17.47 5.11 29.46 0.00 399.67 0.72 

SON – 
MO 

31.49 12.79 8.43 21.61 5.03 303.86 0.83 

SON - 
DTs 

25.97 22.91 9.01 21.04 9.32 407.19 0.69 

SON - 
EV 

15.09 11.72 16.17 24.98 0.91 379.73 0.81  
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