

REQUISITOS DE MEDIDA Y CALIBRACIÓN EN INSTALACIONES FOTOVOLTAICAS

IEC 61724-1: Part 1 - Monitoring

José Pedro Silva Montero

PROPÓSITO DE IEC 61724-1

- Establecer definiciones y términos para tratar la monitorización y el análisis de los SFV.
- 2. Establecer una clasificación de los sistemas de monitorización en función de su complejidad y requisitos técnicos, a adoptar en caso de declarar conformidad con IEC 61724.
- 3. Definir las variables a medir (e.g. irradiancia, temperatura), así como los sensores (tipo, precisión, etc.), su instalación (localización, alineación, etc.), requisitos de recalibración, mantenimiento, etc.
- Describir en líneas generales la metodología de las medidas, el procesado de datos y los parámetros a calcular.

PROPÓSITO DE LA MONITORIZACIÓN

- Evaluar el rendimiento de un sistema individual y localizar fallos potenciales:
 - Requiere una alta resolución en el análisis del sistema (implica realizar análisis de subsistemas y strings), mediante la determinación de parámetros de rendimiento:
 - Yields o rendimientos:: Y
 - Factores de pérdidas: L
 - Ratios de rendimiento (performance ratios): PRs
 - Indices (power and energy performance index): PPI, EPI, BPPI, BEPI, etc.
 - Requiere analizar la repetitividad y correlaciones (influencia de parámetros).
- Evaluar el **cumplimiento de previsiones** y garantías:
 - Realizando el análisis de datos globales del sistema, en períodos (anuales).
 - Finalmente, evaluar la consistencia entre mediciones y predicciones (modelos).
- Comparación entre distintos sistemas:
 - Sistemas en diferentes configuraciones o diseños.
 - Sistemas instalados en diferentes localizaciones.

DEFINICIONES Y TÉRMINOS IEC 61724-1

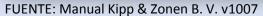
- Concernientes a la adquisición de datos:
 - Muestreo (sample) e intervalo de muestreo (sample interval, e.g. 100 ms), registro (record) e intervalo de registro (record interval, e.g. 1 min), informe (report) y período entre informes (reporting period, e.g. 1 año).
- Componentes de la Irradiancia, e irradiación:
 - Irradiancia (G), irradiancia en el plano de incidencia (G_i ó POA), irradiancia global horizontal (GHI), radiación circumsolar, irradiancia directa normal (DNI), ratio circumsolar (CSR), irradiancia horizontal difusa (G_d ó DHI), irradiancia directa en plano ($G_{i,b}$), irradiancia difusa en plano ($G_{i,d}$), irradiación (H).
- Otros:
 - Condiciones Estandar de Medida (STC), ratio de ensuciamiento (soiling ratio, SR), soiling level (SL), potencia activa (P), potencia aparente (S), factor de potencia (λ).

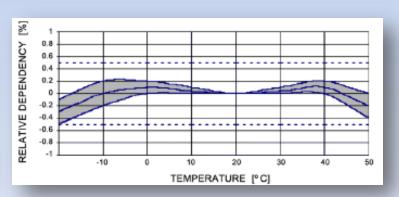
CLASIFICACIÓN de la Monitorización

- Monitorización de *Clase C* (requerimientos de precisión básicos):
 - Requerimientos básicos de precisión, muchos aspectos de la norma no aplican a Clase C.
 - Supone simplemente una evaluación básica del rendimiento del sistema, en cuanto a su producción final AC.
 - Medida o estimación:
 - Irradiancia en el plano de medida (In-plane irradiance, $POA ilde{o} G_i$). Medida o estimación.
 - Temperatura ambiente, T_{amb} . Medida o estimación.
 - Potencia final en alterna, P_{AC} . Medida.
 - Producción energía, E_{AC}. Medida.
- Monitorización de Clase B (precisión media; admite estimaciones):
 - Precisión media; admite varios parámetros estimados, no medidos.
 - Irradiancia (en general), factores ambientales.
 - Opcional (según necesidad de la aplicación): SR, snow, HR, DC voltage, current and power.
 - Requisitos correspondientes a la Clase C y otros adicionales:
 - Documentación de garantía de rendimiento (PR, PR_{STC}, PR_{ea-anual})
 - Análisis de pérdidas del sistema generador y balance del sistema (LA, LBOS).

CLASIFICACIÓN de la Monitorización

- Monitorización de Clase A (precisión alta; parámetros medidos en planta):
 - Requiere una alta precisión, con parámetros medidos en planta (on-site sensors).
 - Requisitos correspondientes a la Clase B y otros adicionales:
 - Interacción con la red eléctrica (conversión *DC/AC*, factor de potencia, disponibilidad de la red, etc.)
 - Localización de fallos (alarmas, rangos de operación, redundancia, triangulación, comparación, inspección, etc.)
 - Evaluación de la tecnología FV (producción DC, evolución **P** ó **E** medida Vs. esperada, análisis pormenorizados de pérdidas)
 - Medida precisa de la degradación (evolución de resultados, normalizados y/o referenciados, en el largo plazo).




- Determinación de incertidumbres:
 - Determinación de la fuentes de incertidumbre sistemática (incert. de tipo B).
 - Incertidumbre asociada a la *calibración* (certificado de calibración).
 - Fuentes de error sistemáticas de medida (especificaciones técnicas, medidas ad hoc, experiencia, etc.) por temperatura, posicionamiento, precisión, offset, etc.
 - Determinación o estimación de la componente aleatoria (incert. de tipo A).
 - Dispersión de las medidas por *factores aleatorios o no cuantificados*, de valor promedio cero.
 - Aplicación del principio de propagación de la incertidumbre y cálculo de la incertidumbre total.
 - Trasladar la incertidumbre en cada parámetro a la variable final, por medio de su relación funcional o su composición y evaluación de resultados (Monte Carlo).

- Determinación de incertidumbres:
 - Consideraciones IEC 61724-1:
 - Considerar todo el rango de temperaturas de funcionamiento (condiciones outdoor mínimas y máximas).
 - Estimar la *no-linealidad de las medidas* en dicho rango (e.g. desviación de las condiciones de operación respecto de las condiciones de calibración de los sensores).

FUENTE: Manual Kipp & Zonen B. V. v1007

- Calibración inicial obligatoria:
 - Sensores (señal analógica tensión, corriente, resistencia o digital)
 - Electrónica de acondicionado de señal, si existe.
- Recalibración:
 - Período máximo, según fabricantes o norma:
 - Sensores de irradiancia: anual (Clase A), bianual (Clase B), según fabricante (Clase C).
 - <u>Temperatura de módulo</u>: bianual (*Clase A*), según fabricante (*Clase B*), no aplica (*Clase C*).
 - <u>Temperatura ambiente</u>: bianual (*Clase A*), según fabricante (*Clase B*), no aplica (*Clase C*).
 - <u>Velocidad de viento</u>: según fabricante (*Clases A, B y C*).
- Medidas cruzadas:
 - Medidas de control (aseguramiento de la calidad de los resultados).

- Redundancia (medidas simultáneas con varios sensores):
 - Medidas independientes, según el tamaño y tipo de instalación (ver norma)
 - Por motivos de salvaguarda, para realizar comprobaciones y estudios a posteriori, etc.
 - La redundancia minimiza errores de calibración en sensores, degradación o fallo del sensor, errores de medida (mala instalación, desconexión) y adquisición, etc.
 - Medidas y cálculos en diferentes subsecciones o subcomponentes (paralelismo entre diferentes strings y comprobación de las distintas secciones de la instalación).
- Consumos parásitos:
 - Consumos de seguimiento, monitorización, otros sistemas auxiliares de operación.
 - Deben ser considerados pérdidas del sistema, no cargas alimentadas por éste.

Documentación:

- Especificaciones técnicas de todos los componentes del sistema de monitorización, incluyendo sensores y electrónica de acondicionado de la señal, guías de uso, etc.
- Cuadernos de mantenimiento y limpieza (sensores, módulos FV, etc.).
- Registro de eventos, cambio de componentes, recalibraciones, cambios del sistema de adquisición de datos, cambios en la operación del sistema, fallos, accidentes, etc.

Inspección:

- Mínimo una vez al año para sistemas Clase A o Clase B. Para sistemas Clase C, según requisitos específicos de la localización.
- Puntos específicos de inspección:
 - Daño o desplazamiento de sensores, presencia de suciedad o humedad.
 - Conexiones eléctricas defectuosas.
 - Despegado de sensores de temperatura, debilitamiento de uniones, etc.
 - Otros problemas potenciales.

ADQUISICIÓN DE DATOS

Definiciones:

- Muestra ("sample") se define como un conjunto de datos, aún sin procesar, adquiridos por un sensor o dispositivo de medida, a intervalos definidos por un "sampling interval". No necesitan ser guardados de modo permanente.
- **Registro** ("record"), es un conjunto de datos basados en las muestras (su valor máximo, mínimo, promedio, etc.), computados y guardados cada unidad de tiempo τ ("recording interval", múltiplo del "sampling interval"). Un período de 1 h debe contener un número entero de veces τ . Un registro puede contener información estadística adicional de las muestras que contiene.
- Informe ("report"), es un conjunto agregado de registros durante un período ("reporting period")
 que varía entre días, semanas, meses o años.
- Períodos máximos de muestreo y de registro, según IEC 61724
 - Muestreos: 3 s (Clase A), 1 min (Clase B), 1 min (Clase C) (soiling, Iluvia, viento, humedad: 1 min).
 - Registros: 1 min (*Clase A*), 15 min (*Clase B*), 60 min (*Clase C*).

Multiplicidad de sensores:

- De modo proporcional al tamaño de la instalación (ver Tabla 4 IEC 61724-1).
- En instalaciones con múltiples secciones con diferentes tecnologías de módulo, y/ó
- Instalaciones con situaciones geográficas diferentes

Medidas eléctricas:

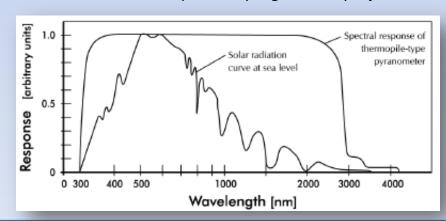
- <u>Capacidad de medida</u>: hasta el 120 % de potencia de salida en condiciones STC (alta irradiancia, baja temperatura), o la máxima potencia admitida por el inversor, manteniendo los requerimientos de precisión hasta dichos valores.
- Precisión requerida: ±2 % en tensión, corriente y potencia DC y AC (*Clase A*), ± 3% en tensión, corriente y potencia AC (*Clase B*). No aplica para *Clase C*.

Condiciones del sistema eléctrico externo:

- Deben documentarse las restricciones al vertido de la potencia máxima:
 - Por restricción del factor de potencia o de la potencia reactiva inyectada.
 - Por limitación de la potencia vertida, etc.

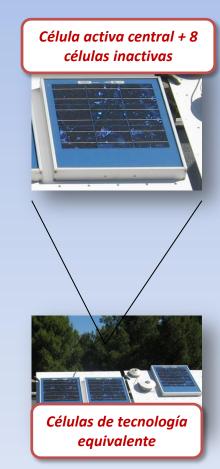
- Irradiancia solar en el emplazamiento de la instalación:
 - En el plano de incidencia (POA), mediante piranómetro, dispositivo FV (módulo o célula de referencia) con un ángulo de apertura mínimo de 160°, en paralelo al plano del array.
 - Irradiancia normal directa (DNI), mediante pirheliómetro con seguimiento a dos ejes. Es la irradiancia de referencia en los cálculos realizados para concentración sin captación de componente difusa.

- Irradiancia solar en el emplazamiento de la instalación:
 - <u>Irradiancia horizontal global (GHI)</u>, mediante sensor de irradiancia en plano horizontal (comparación con datos históricos), útil para documentación del emplazamiento y garantías de rendimiento.
 - Irradiancia horizontal difusa (DHI), mediante piranómetro en horizontal sombreado con banda o esfera (medidas de control para confirmación de medidas de global y directa, uso en modelos climáticos para estimación de producción, etc.).
 - Irradiancia en el plano para concentradores (G_i):
 - Si no aprovechan la fracción difusa: G_i = G_{i, b}
 (irradiancia incidente = componente directa)
 - Si aprovechan fracción difusa: G_i = G_{i,b} + f_d (G_i G_{i,b}) (irr. Incidente = directa + fracción de difusa)


- Irradiancia solar en el emplazamiento de la instalación:
 - <u>Localización y alineación de los sensores</u>. Coplanares, evitando sombras y reflejos, condensación, salidas de aire, elementos que generen calor, etc.
 - Mantenimiento de los sensores. Limpieza semanal (Clase A) o según aplicación (Clase B).

- Irradiancia solar en el emplazamiento de la instalación:
 - Tipo de sensores:
 - Piranómetros de termopila:
 - Sensibilidad espectral casi nula (respuesta espectral "plana").
 - Miden el <u>recurso total</u> (prácticamente, la energía total contenida en el espectro solar) en su rango (e.g. 300 nm 2500 nm)
 - Mayor tiempo de respuesta que los dispositivos FV (cierto "desacople" sensor módulos, bajo condiciones muy cambiantes)
 - Pérdidas espectrales y angulares muy bajas.

FUENTE: Manual Kipp & Zonen B. V. v1007


- Irradiancia solar en el emplazamiento de la instalación:
 - Tipo de sensores:

Piranómetros y células de referencia

- Dispositivos fotovoltaicos de *tecnología equivalente*:
 - Sensibilidad espectral. Curva de respuesta espectral de la tecnología FV utilizada (e.g. 300 nm – 1120 nm en m-Si,).
 - Afectados de pérdidas angulares y espectrales.
 - Necesitan compensación en temperatura (desviaciones a niveles altos de irradiancia).
- Fotodiodos. Dispositivos de bajo coste y baja precisión.

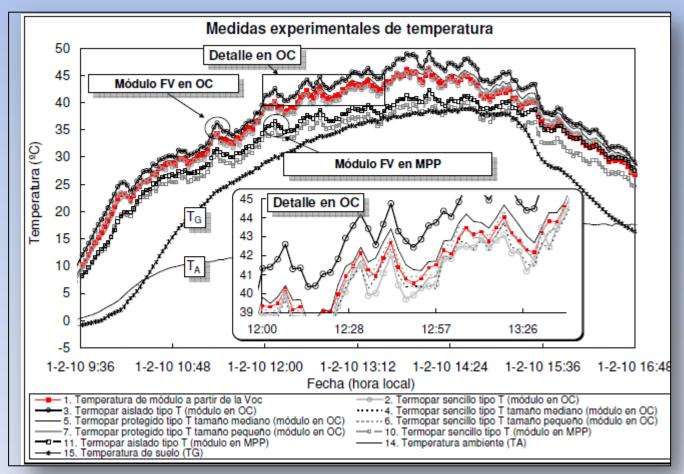
- Irradiancia solar en el emplazamiento de la instalación:
 - Su capacidad de medida debe estar entre 100 W/m² 1500 W/m².
 - Clase de los sensores:
 - <u>Piranómetros Clase A</u>, antiguo secondary standard (ISO 9060) ó dispositivo FV < 3% incertidumbre de medida, para instalaciones Clase A.
 - <u>Piranómetros Clase B</u>, antiguo first class (ISO 9060) ó dispositivo FV < 8% incertidumbre de medida, para instalaciones Clase B
 - Sin especificación en instalaciones *Clase C*.
 - No aplicable para fotodiodos.

- Medidas indirectas de irradiancia por mediciones de satélite:
 - Admitida en instalaciones de Tipo B no monitorizadas o de Tipo C.
 - Aminora costes de mantenimiento.
 - Es un método de medida indirecto, más preciso sobre períodos largos:
 - El satélite mide la **radiancia** emitida o reflejada por la superficie terrestre en determinadas bandas **visible** e **IR**.
 - Las medidas están afectadas por el paso de la radiación a través de la atmósfera (nubes, polvo, etc.).
 - Se infiere la irradiancia horizontal incidente sobre la superficie, con modelos de transferencia por radiación.
 - Las demás componentes de la irradiancia (POA, etc.) se estiman posteriormente.
 - Las medidas deben ser validadas, verificando su precisión en la localización de interés.
 - Los modelos pueden ser ajustados localmente medidas in-situ.
 - Pueden alcanzar precisiones del 2% a 1000 W/m² (20% a 100 W/m²) en GHI, los mejores incluso 1%.
 - Para ángulo inclinado, la incertidumbre se estima usualmente en 1,25 veces la de GHI.
 - La incertidumbre asociada a la DNI puede pasar de 4% a 2% a 1000 W/m².

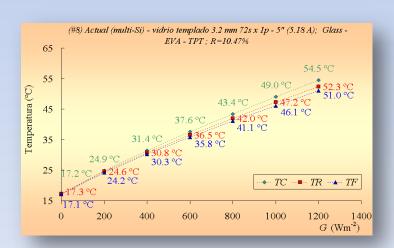
- Variables ambientales:
 - Temperatura del módulo FV:
 - Mediante sensor posterior o a partir de la Voc de un módulo de referencia calibrado (IEC 60904-5)*

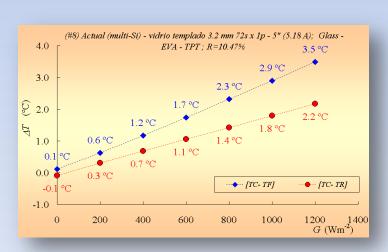
*Es una buena estimación para calcular la temperatura del módulo de referencia, pero éste está en Voc, no en carga.

- La incertidumbre total de la medida debe ser inferior o igual a 2°C.
- Para instalaciones de *Tipo A*, debe recalibrarse al menos de modo bianual. Para *Tipo B*, según fabricante.
- Utilizar un **adhesivo apropiado** para <u>uso en exterior</u>, y de <u>alta</u> conductividad.



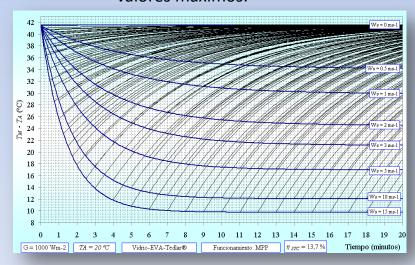
GOBIERNO




Evolución de la temperatura de dos módulos idénticos, uno en Voc y otro en Pmax.

- Variables ambientales:
 - Temperatura del módulo FV:
 - Considerar que la temperatura posterior es entre 1°C y 3°C inferior a la temperatura de célula.
 - **Determinar valores medios** representativos a partir de varias medidas repartidas en la instalación (influyen multitud de parámetros: viento, diferencias de orientación, etc.).

Modelo térmico: temperatura de célula y superficies frontal y posterior en módulo de silicio cristalino.



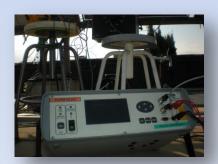
- Variables ambientales:
 - Temperatura ambiente:
 - En localizaciones representativas de los arrays.
 - Resolución inferior o igual a 0,1°C, incertidumbre máxima ± 1°C
 - Recalibración bianual (instalaciones *Tipo A*) o según fabricante (*Tipo B*).

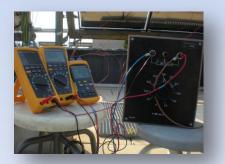
- Variables ambientales: Velocidad y dirección del viento.
 - Interviene en los modelos térmicos para la determinación de la temperatura de módulo.
 - Interviene en las garantías por daño a módulos FV.
 - El registro de rachas de viento requiere una resolución temporal aceptable (e.g. 3 s) y el registro de valores máximos.

Modelo térmico: evolución de la temperatura ante rachas de viento en módulo de silicio cristalino.

Diferencias en la orientación de módulos

- Variables ambientales: Velocidad y dirección del viento.
 - La dirección de viento debe medirse con una resolución mínima de 5° sexagesimales.
 - Recalibración según recomendaciones del fabricante, en instalaciones tipo A, B y C.




- Variables ambientales: Ensuciamiento (soiling).
 - Se mide el SR (soiling ratio, e.g. 0,98) o el SL (soiling level, e.g. 0,02), siendo SL = 1 SR.
 - Puede ser variable, luego requiere promedios diarios.
 - Cálculo obligado en instalaciones Tipo A, con pérdidas esperadas superiores a 2%.
 - Métodos de medida de SR: sobre la potencia (#1) o sobre la corriente de cortocircuito (#2).
 - Mejor sobre la **potencia** que sobre la **intensidad de corriente** (con ensuciamiento no uniforme, la I_{sc} del módulo tiende a quedar limitada por la menor I_{sc} , esto es, la I_{sc} de la célula más sucia).

- Variables ambientales: Ensuciamiento (soiling).
 - Necesarios dos dispositivos de referencia:
 - Un *dispositivo FV limpio*, de *tecnología equivalente*, con I_{sc} calibrada en condiciones de referencia (irradiancia y temperatura), para medida de irradiancia.
 - Otro a ensuciar (representativo de la tasa de ensuciamiento) cuya P_{max} y/o I_{sc} y temperatura se medirán antes de ensuciar y se corregirán en irradiancia y temperatura a las condiciones de referencia, que serán los valores esperados P*_{max_limpio} y/o I*_{sc_limpio}, utilizando el dato de irradiancia a partir del dispositivo limpio.
 - Tras el ensuciamiento, la I_{sc} ó P_{max} medidas se llevarán a las condiciones de referencia, obteniéndose $P^*_{max_sucio}$, y/o $I^*_{sc_sucio}$, evaluándose $SR = P^*_{max_sucio}$, $P^*_{max_limpio}$ ó $SR = I^*_{sc_sucio}$, $I^*_{sc_limpio}$.

- Otras variables ambientales:
 - Lluvia y nieve (estimación indirecta de la limpieza), no es necesario si se mide SR.
 - Humedad (cambios en el espectro incidente).
 - Medida de humedad + temperatura en estudios de condensación, ó sensores de condensación superficial.

- Sistema de seguimiento:
 - Medida del posicionamiento en sistemas de eje simple, mediante contadores de posición, en ocasiones insertados en el propio mecanismo (sin instrumentación separada).
 - Medida de posicionamiento en sistemas de seguimiento a dos ejes, mediante un sensor de error de posicionamiento, que debe calibrarse en condiciones de cielo claro y viento entre 0,5 ms⁻¹ y 3 ms⁻¹.
 - Situando el tracker por delante del movimiento del Sol, esperando su avance, medir el error.
 - Representar el *error de posicionamiento medido* junto con el cociente P_{max}/DNI .
 - El error de posicionamiento debe ser cero cuando P_{max}/DNI sea máximo.

PROCESADO Y CONTROL DE CALIDAD

- Restricción a horas con luz diurna (mayor ó igual a 20 W/m²).
- Filtrado de datos:
 - Límites máximos y mínimos de los parámetros medidos.
 - Limitación de velocidad de cambio de los parámetros medidos.
 - Valores anómalos, por comparación entre sensores.
 - Marcar límites establecidos por contrato (parámetros de rendimiento).
 - Registrar el código de los mensajes de error.
 - Identificar entradas redundantes, datos perdidos, valores "atascados", etc.
 - Verificar marcas de tiempo (huecos de datos, redundancia, etc.) e informes generados por el sistema.
- Tratamiento de datos perdidos ("missing data"):
 - Pueden reemplazarse por datos válidos anteriores o posteriores, por valores promedio en ese intervalo, tratarse de modo específico según indicaciones del contrato, o directamente como datos faltantes o no válidos, reportándolo de cualquier modo.

PARÁMETROS CALCULADOS

- Irradiación: ["irradiation", Wm-2s ó kWhm-2]: $H = \sum_k G_k \tau_k$
- Energía ["Energy", Ws ó kWh]:
 - Energía **DC**: $E_A = \sum_k P_{A,k} \tau_k$
 - Energía **AC**: $E_{out} = \sum_k P_{out,k} \tau_k$
- Potencia nominal ("rated power", [k, kw, Mw]):
 - Potencia nominal DC: Power rating")
 - Potencia nominal AC: Po, AC ("Array AC Power rating")
- Rendimiento ("yield", [s, h]):
 - Rendimiento de captura ("PV array energy yield"): $Y_A = {}^{E_A}/{}_{P_0}$
 - Rendimiento final ("Final system yield"): $Y_f = \frac{E_{out}}{P_0}$
 - Rendimiento de referencia ("Reference yield"): $Y_r = \frac{H_i}{G_{i,ref}}$

PARÁMETROS CALCULADOS

- Pérdidas ("yield losses", s, h):
 - Pérdidas de **captura** ("array capture loss"): $L_A = Y_r Y_A$
 - Pérdidas del **balance de sistema** ("BOS loss"): $L_{BOS} = Y_A Y_f$
- Eficiencias ("efficiencies", [adimensional]):
 - Eficiencia **nominal** del array:

$$\eta_{A,0} = P_0 / (G_{i,ref} A_a)$$

• Eficiencia promedio real del array:

$$\eta_A = E_A/(H_i A_a)$$

• Eficiencia promedio final del sistema:

$$\eta_f = E_{out}/(H_i A_a)$$
, o bien: $\eta_f = \eta_{A,0} \ge PR$

• Eficiencia promedio final del balance de sistema:

$$\eta_{BOS} = E_{OUT}/E_A$$

("rated array DC efficiency")

("mean actual array (DC) efficiency")

("mean actual system (AC) efficiency")

("mean BOS efficiency")

PERFORMANCE RATIO

- Performance ratio (PR):
 - Expresado como cociente entre rto. final real y un rto. de referencia: $PR = Y_f/Y_{A,0}$
 - Descomponiendo el cálculo de rendimientos: $PR = (E_{out}/P_0)/(H_i/G_{i,ref})$
 - Descomponiendo los términos de energía: $PR = \left[\sum_{k} \frac{P_{out,k}\tau_{k}}{P_{0}}\right] / \left[\sum_{k} \frac{G_{i,k}\tau_{k}}{G_{i,ref}}\right]$
 - Finalmente, puede obtenerse una expresión:

$$PR = \left[\sum_{k} P_{out,k} \tau_{k}\right] / \left[\sum_{k} \frac{P_{0} G_{i,k} \tau_{k}}{G_{i,ref}}\right]$$

...que representa el cociente entre la energía medida realmente y la energía esperada ("expected energy"), únicamente ajustada por irradiancia y no por temperatura. El PR así calculado presenta variaciones estacionales (PRs mayores en invierno), por despreciar el coeficiente de temperatura de la potencia.

PERFORMANCE RATIO

Para subsanar esta desviación puede corregirse el término de potencia, obteniendo:

STC performance ratio (temperature – corrected)

$$PR'_{STC} = \left[\sum_{k} P_{out,k} \tau_{k}\right] / \left[\sum_{k} \frac{(C_{k} P_{0}) G_{i,k} \tau_{k}}{G_{i,ref}}\right]$$
, siendo: $C_{k} = 1 + \gamma \left(T_{mod,k} - 25^{\circ}\text{C}\right)$

Esta expresión representa el **cociente entre la energía medida realmente y la energía esperada** ("expected energy"), ajustada por irradiancia y por temperatura, es decir, **a la temperatura real del módulo**.

- $T_{mod,k}$ es la temperatura de módulo, en °C, del módulo en el intervalo k.
- Si se utiliza PR'_{STC} para compararlo con un *valor objetivo de PR* (e.g. por garantías), $T_{mod,k}$ debería calcularse en base a los datos meteorológicos del mismo modelo que estableció dicho *valor objetivo*.

PERFORMANCE RATIO

Con el fin de aproximar un PR calculado a un PR anual, puede calcularse en referencia a una temperatura promedio anual:

PR equivalente anual (annual temperature-equivalent)

$$PR'_{annual-eq} = \left[\sum_{k} P_{out,k} \tau_{k}\right] / \left[\sum_{k} \frac{(C_{k}P_{0})G_{i,k}\tau_{k}}{G_{i,ref}}\right]$$
, siendo: $C_{k} = 1 + \gamma \left(T_{mod,k} - T_{mod,avg}\right)$

A lo largo de un año, el promedio de los coeficientes C_k tienden a la unidad, y por tanto el valor $PR'_{annual-eq}$ tiende a PR_{annual} . No obstante, las pérdidas reales por temperatura dependen del período considerado.

El valor de temperatura promedio $T_{mod,avg}$ debe ser ponderado con la irradiancia, de modo que tenga un peso directamente proporcional a ella. Al final, $PR'_{annual-eq}$ debería ser semejante a un PR_{annual} calculado en base a datos históricos.

Si $PR'_{annual-eq}$ va a ser utilizado para comparación con un PR objetivo determinado a partir de un modelo, $T_{mod,avg}$ debería ser calculado a partir de datos meteorológicos históricos utilizando el mismo modelo de cálculo de PR.

Gracias por su atención