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H I G H L I G H T S

• New software for thermoluminescence glow curve deconvolution has been developped.

• Accurate algebraic equations for first order and general order kinetics have been obtained.

• New equation for a continuous trap distribution has been obtained.

• Both discrete and continuous trap equations, the considered parameters can be estimated from the glow curve analysis.

• Results with simulated glow curve is presented and discussed.
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A B S T R A C T

Deconvolution analysis of the thermoluminiscent (TL) glow curves proved to be a good complementary method
to characterize the individual glow peaks by fitting their kinetic parameters. In this work, new software has been
developed for the automatic deconvolution of TL glow curves, assuming either discrete or continuous dis-
tribution of trapping centres. The guess estimation of the kinetic parameters is done automatically and can be
manually modified, thus allowing the use of the software for routine, processing a large number of measure-
ments, as well as for research purposes. The equations, the methods and the results of the first test are described
in detail. The software has been developed by integrating Fortran code and Visual Studio tools to create a
graphic easy-to-use environment and permits to obtain the fitted values for the parameters according to the
considered model.

1. Introduction

The analysis of thermoluminescence (TL) glow curves (GC) has been
extensively used to characterize the glow peak structure over some
thirty years (Horowitz and Yossian, 1995), starting from early works
using first order kinetics and simplifications like Podgorsak approx-
imation (McKeever, 1980; Horowitz and Moscovitch, 1986; Delgado
and Gómez-Ros, 1988, 1990) to recent advances dealing with theore-
tical and practical considerations about peaks overlapping (Sadek and
Kitis, 2018; Kitis and Pagonis, 2019). The fitting methods depend on the
assumed models for TL emission, their mathematical equations and the
corresponding parameters that permit to describe quantitatively the
GC. Because of the complexity of the models dealing with multiple
trapping and recombination centres that cannot permit to obtain ex-
plicit equations for TL emission, first order kinetics (FOK) (Muñiz et al.,
1995; Gómez-Ros et al., 1999; Puchalska and Bilski, 2006) and general
order kinetics (GOK) (Gómez-Ros et al., 2002a; Gómez-Ros and Kitis,

2002) are commonly used in the glow curve deconvolution software.
In all the cases, fitting procedures require a first estimation for the

parameters, accurate enough to get convergence and such estimation
needs to be automatically obtained when a large number of GCs is going
to be analysed. Moreover, either discrete or continuous distribution of
traps can be found in TL materials (McKeever, 1988), making more
difficult to obtain a guess estimation for the kinetic parameters directly
from the GC shape in case of a continuous distribution.

This communication describes the TL equations, methods and re-
sults of newly developed automatic glow curve deconvolution software,
suitable to analyse TL glow curves assuming FOK, GOK and continuous
distributions of trapping centres. The analysis of discrete trap dis-
tribution is mainly based on previous works for FOK (Muñiz et al.,
1995; Gómez-Ros et al., 1999) and GOK (Gómez-Ros and Kitis, 2002)
but adding an improved capability for the automatic detection of in-
dividual glow peaks and the automatic initial guess estimation of fitting
parameters. For the continuous distribution of traps, an entirely new
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method has been developed.

2. Materials and methods

2.1. Fitting equations

The TL intensity for a glow peak following first order kinetics (FOK),
i.e. when retrapping probability is negligible, is given in case of linear
heating by the equation (McKeever, 1988):
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where n0 is the initial density of trapped charge carriers, s is the fre-
quency factor, k is the Boltzmann constant, E is the activation energy
and T(t)= T0+βt is the linear heating profile. The kinetics parameters
(E, s, n0) can be replaced by the set of parameters (E, TM, IM), where the
temperature and intensity of the maximum, TM and IM, are obtained
from the maximum condition (dI/dT)= 0 thus giving:
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so equation (1) becomes:
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The use of (E, TM, IM) to characterize individual glow peaks instead
of (E, s, n0) is more convenient as they all three have a geometrical
meaning (width, position and intensity, respectively) so it is easier to
get a first estimation from the analysis of the glow curve shape, in
particular using the calculated 1st and 2nd derivatives and their local
minima, as it will be explained in next section.

The integral appearing in equations (1) and (3) can be expressed in
terms of the exponential integral function of second order E2(x)
(Abramowitz and Stegun, 1980):
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Because of the integral cannot be solved in an analytical form,
asymptotic approximations have been used in previous works (Chen
and McKeever, 1997; Kitis et al., 1998). Alternatively, E2(x) can be
evaluated using rational approximations as the following (Abramowitz
and Stegun, 1980):

≈ = − + +
+ +

x E x R x x x
x x

exp( ) ( ) ( ) 1 0.250621 2.334733
1.681534 3.3306572

2

2 (5)

As it is discussed in the annex, the rational approximation (5) is
more accurate than the asymptotic one for values of E/kT < 50.
Moreover, the comparison between the values obtained using equation
(5) and the built-in implementation of E2(x) in Matlab and Maple shows
a relative discrepancy lower than 0.4% within a wide range (0.5 < E/
kT < 600), that covers the combination of E and T usually found and it
is low enough to be used for fitting purposes.

Then, equation (4) is can be written as:

Fig. 1. Example of the deconvolution software work flow: a) file(s) selection; b)
graphical parameter estimation; c) fitted glow curve; d) fitted parameters.
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and equation (3) can be rewritten as
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that includes only algebraic operations so it is adequate to be used in
fitting algorithms where many iterative evaluations are required.

For general order kinetic (GOK) and a linear heating rate, β, the TL
intensity is given by (McKeever, 1988):
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where b is the kinetic order. The kinetic parameters s and n0 can be

Fig. 2. Schematic energy levels and transitions scheme corresponding to one
electron trap and one recombination centre (OTOR). The parameters are de-
scribed in the text.

Table 1
Kinetic parameters values used to simulate the glow peak due to a continuous
trap distribution. For every value of E0, two values of s and five values of σ have
been considered (6× 2×5=60 combinations of values, either for an ex-
ponential and a Gaussian distribution).

distribution type n0 (cm−3) E0 (eV) s (s−1) σ

exponential 106 0.60 106, 107 0.05, 0.075, 0.1, 0.125,
0.150.80 108, 109

1.00 1010, 1011

1.20 1012, 1013

1.40 1014, 1015

1.60 1016, 1017

Gaussian 106 0.80 106, 107 0.05, 0.063, 0.076,
0.089, 0.1021.00 108, 109

1.20 1010, 1011

1.40 1012, 1013

1.60 1014, 1015

1.80 1016, 1017

Table 2
Comparison between the fitted and reference TM, E and area values for the glow
curve REFGLOW.001 (β=1K/s). FOM is compared with the values obtained
by the participants in the GLOCANIN project.

parameter peak

TM (K) reference 490.5
fitted 490.6
deviation 0.02%

E (eV) reference 1.1824
fitted 1.1798
deviation −0.22%

area (a.u.) reference 490003
fitted 489299
deviation −0.14%

FOM GLOCANIN 0.010%–3.98%
fitted 0.017%

Table 3
Comparison between the fitted and reference TM, E and area values for the glow
curve REFGLOW.002 (β=8.4 K/s). FOM is compared with the values obtained
by the participants in the GLOCANIN project.

parameter peak 2 peak 3 peak 4 peak 5

TM (K) reference 417.2 456.6 484.1 511.7
fitted 417.3 456.6 484 511.7
deviation 0.05% 0.00% −0.02% 0.00%

E (eV) reference 1.3834 1.4833 1.5832 2.0038
fitted 1.382 1.4819 1.5808 1.9911
deviation −0.10% −0.09% −0.15% −0.63%

area (a.u.) reference 11100 16898 27401 47302
fitted 11094 16859 27229 47535
deviation −0.05% −0.23% −0.63% 0.49%

FOM GLOCANIN 0.01%–4.46%
fitted 0.06%

Table 4
Fitted TM, E and area values for the glow curve REFGLOW.010 (β=6K/s).
Because of this is an experimentally measured curve, only the FOM is compared
with the values obtained by the participants in the GLOCANIN project.

parameter peak 2 peak 3 peak 4 peak 5

TM (K) fitted 415.0 454.2 482.3 509.5
E (eV) fitted 1.281 1.462 1.441 2.118
area (a.u.) fitted 4278 4220 6606 9636

FOM GLOCANIN 4.12% – 8.22%
fitted 3.15%

Fig. 3. Glow curve fitting of the reference GC REFGLOW.010.
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again replaced by the temperature and intensity of the maximum, TM

and IM, applying the condition (dI/dT)= 0:
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and now equation (7) can be rewritten as:
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where the four parameters (TM, IM, E, b) have a geometrical meaning in
the peak (position, intensity, width and symmetry respectively). equa-
tion (9) can be also rewritten using the rational approximation (4,5)
resulting:
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All the equations considered above, either for first order or general
order kinetics, describe the TL emission due to discrete trapping cen-
tres, characterized by single values of activation energy E and frequency
factor, s. The TL can also arise from an energy distribution of traps, n
(E). Assuming first order kinetics and a linear heating rate, β, the TL is

given by (Kitis and Gómez-Ros, 2000; Chen and McKeever, 1997;
Gómez-Ros et al., 2006c):
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Following previous works (Gómez-Ros et al., 2006a), two mathe-
matical forms of the trap distributions have been considered: an ex-
ponential and a Gaussian distribution. For the Gaussian distribution,
the trap density is:
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and for the exponential distribution, it is:
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where n0 is the total concentration of trapped charges, and E0 and σ are
constant describing the position and width of the distribution.

In the case of a continuous traps distribution, the conditions for the
temperature and intensity of the maximum, ==dI dT( / ) 0T TM , I
(TM)= IM applied to equation (11) does not permit to rewrite it ex-
plicitly in terms of TM and IM. Nevertheless, it is possible to define two
new parameters, TN and IN, fulfilling the conditions:
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It should be noted that neither TN is the temperature of the max-
imum nor IN is the corresponding maximum intensity but, as it will be
detailed in section 3, it has been found they are close enough to TM and
IM values respectively to be use as a guess estimation for the fitting of a
glow curve due to a continuous traps distribution.

Using definitions (14) and (15), it is possible to rewrite equation
(11), both in case of Gaussian and exponential distribution, replacing s
and n0 by TN and IN, thus giving after some algebraic manipulation:
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where n(E)= n0 f(E).

Fig. 4. Fitting results for GOK glow curves
assuming a) recombination/retrapping
ratio= 1, A=AR; and b) dominant re-
combination, A < AR. approximations
conditions. In both cases, squares are the
simulated glow curve (left y-axis), solid line
is the fitted GC (left y-axis) and dashed line
is the concentration of trapped carriers
(right y-axis).

Table 5
Comparison between the fitted and reference E values for two glow curve si-
mulated assuming the OTOR model and fitted by the GOK equation. The fitted
kinetic order, b, is also compared with the trapping and recombination pro-
babity values, respectively A and AR.

parameter (A=AR) (A < AR)

A (cm3s−1) reference 10−7 10−9

AR (cm3s−1) reference 10−7 10−7

b fitted 2.00 1.58

E (eV) reference 1.20 1.20
fitted 1.19 1.28
deviation −0.5% 6.8%

FOM fitted 0.26% 2.3%
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Fig. 5. Fitting of glow curves produced by continuous exponential trap distributions. (σ=0.075): a) E0= 1eV, s= 1010s−1; c) E0= 1eV, s= 1011s−1; e)
E0=1.4eV, s= 1010s−1; g) E0=1.4eV, s= 1010s−1; and Gaussian trap distributions (σ=0.065): b) E0= 1eV, s= 108s−1; d) E0= 1eV, s= 109s−1; f) E0= 1.6eV,
s= 1014 s−1 h) E0= 1.6eV, s= 1015 s−1. In all the cases, squares are the simulated glow curve, solid line is the fitted curve, vertical solid line is the maximum
temperature, TM, and vertical dashed line is the TN parameter.

Table 6
Comparison between the fitted and reference E0, σ and s values for ten glow curves simulated assuming a continuous exponential distribution of traps (β=5K/s).

E0 (eV) σ s (s−1) FOM

ref. fitted dev. ref. fitted dev. ref. fitted dev.

1.00 0.975 −2.5% 0.05 0.049 −1.6% 1010 6.0× 109 −39% 0.57%
1.00 0.967 −3.3% 0.05 0.049 −2.1% 1011 4.7× 1010 −52% 0.85%
1.00 0.975 −2.5% 0.075 0.074 −1.6% 1010 6.1× 109 −39% 0.46%
1.00 0.967 −3.3% 0.075 0.073 −2.2% 1011 4.8× 1010 −52% 0.66%
1.00 0.975 −2.5% 0.1 0.098 −1.6% 1010 6.1× 109 −39% 0.38%
1.00 0.968 −3.2% 0.1 0.098 −2.3% 1011 4.8× 1010 −52% 0.55%
1.00 0.976 −2.4% 0.125 0.123 −1.6% 1010 6.2× 109 −38% 0.33%
1.00 0.968 −3.2% 0.125 0.122 −2.3% 1011 4.9× 1010 −51% 0.45%
1.00 0.976 −2.4% 0.15 0.147 −1.7% 1010 6.3× 109 −37% 0.30%
1.00 0.968 −3.2% 0.15 0.146 −2.5% 1011 4.9× 1010 −51% 0.47%
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As it has been done for discrete traps, equation (16) can be rewritten
using the rational approximation (4,5), obtaining the equation:
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In both equations (16) and (17), the two energy integrals cannot be
solved so they need to be evaluated numerically, for instance using the
extended Simpson's Rule (Abramowitz and Stegun, 1980).

2.2. Deconvolution program

A new GC deconvolution software has been developed to deal with
FOK, GOK and continuous distribution of traps, based on equations (6),
(10) and (17) discussed above (an example of the work flow is illu-
strated in Fig. 1). The software uses Intel® Parallel Studio XE 2015
Composer Edition for Fortran Windows Integration, Microsoft Visual
Studio 2010, and Visual Basic for Applications and Microsoft Office
Package to create two-tier architecture that integrates FORTRAN code
with the latest version of Visual Studio (2010) through the creation of
new DLLs to provide a visual environment to operate the code. The
application permits to open the output files from different TLD readers
(Harshaw, Risø, Panasonic) and performs the following tasks: i) in-
dividual background subtraction; ii) first estimation of the glow peaks
fitting parameters: (TM, IM, E) in case of FOK, (TM, IM, E, b) for GOK, (TN,
IN, E0, σ) for a continuous trap distribution; iii) global glow curve fit-
ting; and iv) calculation of glow peak areas and the kinetic parameters
not directly obtained from the fitting (frequency factor).

Assuming a linear heating profile, background signal is fitted by the
sum of a constant and an exponential part:

= +I Aexp T B C( / )background (19)

where either A or C can be zero. In case of discrete traps, the guess
estimation of the glow peaks parameters TM, IM is obtained from the
analysis of the calculated first and second derivatives (Gómez-Ros et al.,
1999). The initial value for activation energy, E, is not so critical for
most of the values usually found (between 0.5 and 2.5 eV), once an
accurate estimation of the position and intensity of the maximum is
provided. Therefore, a default value of 1.8 eV is assumed to guarantee
the initial shape of the peaks is narrow enough to avoid strong over-
lapping. Analogously, a default guess value of 1.5 is assumed for the
kinetic order, b although it is possible to change it whenever needed.

In case of a continuous trap distribution, although the values for TM
and IM do not exactly correspond to TN and IN, they are respectively
close enough to provide a good initial guess for these parameters, as it is
discussed in section 3.

The glow curve fitting is performed using an iterative
Levenberg–Marquard algorithm to minimise the χ2 defined as:

∑= − … … …χ I F T x x y y[ ( , , , )]
i

i i n n
2

1 1
2

(20)

where … … …F T x x y y( , , , )n n1 1 is the function used to describe the glow
curve by a sum of n individual peaks, each one characterized by a set of
parameters depending on the considered kinetic model and the corre-
sponding equation (6) and (10)or (16). Then, the figure of merit (FOM)
is used as a measure of the goodness-of-fit for the whole glow curve
(Horowitz and Yossian, 1995):

∑= − ×FOM I I x
Area

( ) 100
i

i
fitted

i

(21)

2.3. TL glow curves

Three sets of TL glow curves have been used to analyse the per-
formance of the developed software, based on the methods and the
corresponding equations described in section 2.1.

For first order kinetics, the reference glow curves from the GLOC-
ANIN project (Bos et al., 1993, 1994) have been used: REFGLOW.001,
(a single synthetic glow peak), REFGLOW.002 (four synthetic glow
peaks) and REFGLOW.010 (LiF:Ti,Mg TLD-100 glow curve, read at a
linear heating rate of 6 °C/s after irradiation at 200 μGy absorbed dose).

For general order kinetic, the one-trap- one-recombination-centre
(OTOR) model (McKeever, 1988; Gómez-Ros et al., 2006b) was used to
produce a set of 80 synthetic glow curves for the same number of
combinations of trapping parameters (Gómez-Ros et al., 2006b). The
corresponding energy level diagram with the allowed transition is

Table 7
Comparison between the fitted and reference E0, σ and s values for ten glow
curves simulated assuming a continuous Gaussian distribution of traps
(β=5K/s).

E0 (eV) σ s (s−1) FOM

ref. fitted dev. ref. fitted dev. ref. fitted dev.

1.00 0.990 −1.0% 0.05 0.050 −0.2% 108 8.9× 107 11% 0.13%
1.00 0.989 −1.1% 0.05 0.050 0.04% 109 8.8× 108 12% 0.17%
1.00 0.990 −1.0% 0.075 0.063 −0.3% 108 8.9× 107 11% 0.10%
1.00 0.989 −1.1% 0.075 0.063 −0.2% 109 8.8× 108 12% 0.13%
1.00 0.987 −1.3% 0.1 0.076 −0.5% 108 7.9× 107 20% 0.08%
1.00 0.988 −1.2% 0.1 0.076 −0.5% 109 8.6× 108 14% 0.10%
1.00 0.986 −1.4% 0.125 0.088 −0.9% 108 8.2× 107 18% 0.07%
1.00 0.976 −2.4% 0.125 0.087 −2.1% 109 6.4× 108 36% 0.09%
1.00 0.974 −2.6% 0.15 0.099 −2.5% 108 6.3× 107 37% 0.07%
1.00 0.960 −4.0% 0.15 0.098 −3.9% 109 4.4× 108 56% 0.09%

Fig. 6. Comparison of asymptotic and rational approximations to TL integral
evaluated using a built-in function of the second order exponential integral,
E2(E/kT). See the text for the discussion.
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shown in Fig. 2: electron trapping (with probability A), thermal release
of trapped electron (with probability −s exp E kT( / ), where s is the fre-
quency factor, E is the activation energy, k is the Boltzmann constant
and T is the temperature) and electron radiative recombination (with
probability AR).

For the continuous distribution of traps, a new set of synthetic glow
curves have been obtained by direct evaluation of equation (11). To
consider a representative group of possible situations, 120 different
combination of values for E0, s and σ, has been employed, summarize in
Table 1.

3. Results and discussion

As a first test to analyse FOK glow curves, the software has been
used with the reference GLOCANIN curves. For the synthetic glow
curves (Tables 2 and 3), the obtained FOM is in the order of the best
value obtained by the participants in the GLOCANIN project. Moreover,
the relative deviation between the fitted and the reference parameters is
negligible for TM and very low for E and the individual glow peak area
(< 0.7%). For the experimentally measured glow curve REFGLOW.010
(Table 4 and Fig. 3), there are not reference values to compare the fitted
parameters but the obtained FOM (3.15%) is better than those obtained
by all the participants in GLOCANIN (4.12%–8.22%).

To evaluate the case of GOK glow peaks, the set of synthetic glow
curves based on the OTOR model described in section 2.3 has been
used. Fig. 4 and Table 5 show the result for two selected representative
cases. When A=AR (retrapping-recombination ratio= 1), a very good
fitting by a second order kinetic glow peak (b=2) is obtained (low
FOM and fitted activation energy E very close to the reference value).
When A < AR (recombination is the dominant process), the glow peak
is fitted by a kinetic order value between 1 and 2. In this case, the GOK
model is actually an empirical approximation that permits to fit the
shape of the glow peak (FOM in the order of 3%, fitted E deviated from
the reference value around 10%) (McKeever, 1988; Gómez-Ros et al.,
2006b).

The situation in case of a continuous traps distribution is more
complicated because an initial estimation for the parameters in equa-
tion (11) cannot be easily obtained from the glow curve itself. There-
fore, equation (17), depending on E0, σ and alternative parameters TN
and IN defined in equations (14) and (15) of equation (17), has been
used to fit the set of 120 simulated glow curves described in section 2.3.

Fig. 5 illustrates the results for eight selected glow curves, four of
them corresponding to exponential distributions (a, c, e and g) and the
other four to Gaussian distributions (b, d, f, h). Similar results have
been obtained in all the cases, where the use of TM and IM values, di-
rectly calculated from the glow curve, as guess values for TN and IN
proved to be good enough to permit the convergence of the fitting al-
gorithm with a resulting FOM lower than 1%.

Detailed numerical results for the ten glow curves corresponding to
E0=1eV are listed in Table 6 (exponential distribution) and Table 7
(Gaussian distributions). The relative difference between fitted and
reference values for E and σ ranges in 1%–3%. Nevertheless, the fitted s
values are very different from the reference ones, up to 50% for ex-
ponential distributions. This is a consequence of the dependence of TL
intensity on s and E parameters, following a relationship of the type:

⎛
⎝

− ⎞
⎠

s exp E
K T (22)

where relatively big changes in frequency factor, s, can be compensated
by small changes in activation energy, E (E0 and σ in case of a con-
tinuous distribution), as it can be observed in Table 6. Therefore, the
glow curve deconvolution in case of a continuous trap distribution
provides a good way to characterize the activation energy distribution
although the frequency factor may result inaccurately determined.
Dealing with experimentally measured glow curves, the combined use
of complementary techniques, glow curve deconvolution, initial rise

(IR), various heating rates (VHR), TM-TSTOP, can be required (Chen and
McKeever, 1997).

4. Conclusions

New software for automatic glow curve deconvolution has been
developed. The program works in a fully visual environment and pro-
vides the values of kinetic parameters, glow peak area and FOM as-
suming discrete (FOK, GOK) or continuous distribution of traps. In all
the cases, the guess estimation for the fitting parameters is auto-
matically obtained from the glow curve shape although it can be
manually modified, if desired.

The analysis of GLOCANIN reference curves shows improved results
in case of FOK. For GOK, the FOM also indicates a very good fitting, in
particular when second order kinetics is found due to similar retrap-
ping-recombination probabilities. In the other cases, a good fitting is
also obtained, considering that GOK is an empirical approximation to
the OTOR model used to simulate the synthetic glow curves.

The modified equation (17) for a continuous distribution of traps
demonstrated that the new parameters TN, IN, are close enough re-
spectively to the temperature and the intensity of the maximum, TM and
IM, to obtain a good convergence using them as initial guess estimations
for TN, IN.

4.1. Annex: evaluation of the TL integral and their approximations

The equations appearing in the description of TL emission, requires
evaluating the integral (Chen and McKeever, 1997):

∫= ⎛
⎝

−
′
⎞
⎠

′F T E( , ) exp E
kT

dT  
0

T

(23)

Although this integral cannot be solved in terms of elementary
functions, it can be evaluated using the second order exponential in-
tegral, E2(x) (Abramowitz and Stegun, 1980):

= ⎛
⎝

⎞
⎠T

F T E E1 ( , ) E
kT2 (24)

Several asymptotic approximations have been developed to be ap-
plied for large enough values of E/kT. One of them is (Chen and
McKeever, 1997; Kitis et al., 1998):

= ⎛
⎝

− ⎞
⎠

⎛
⎝

− ⎞
⎠T

F T E kT
E

kT
E

1 ( , ) exp E
kT

1 2asym
1
( )

(25)

And another more accurate one (Chen and McKeever, 1997):

=
+

⎛
⎝

− ⎞
⎠T

F T E kT
E kT

1 ( , )
2

exp E
kT

asym
2
( )

(26)

As an alternative to equations (24) and (25), rational approxima-
tions can be also used (Abramowitz and Stegun, 1980). The general
form is:

= ⎛
⎝

− ⎞
⎠

⎛
⎝

⎞
⎠T

F T E R E
kT

1 ( , ) T exp E
kT

rat( )
(27)

where:

= − + +
+ +

R x x x
x x

( ) 1 0.250621 2.334733
1.681534 3.330657

2

2 (28)

Or:

′ = −

−

+ +
+ +

+ +
+ +

R x

x x
x x

x x
x x

( ) 1

0.2677737343 8.6347608925 18.0590169730
8.5733287401

3.9584969228 21.0996530827 25.6329561486
9.5733223454

2

3 4

2

3 4 (29)

Fig. 6a compares accuracy of the asymptotic approximations (24)
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and (25) and the rational approximation (27) as a function of E/kT. As
it can be seen, rational approximation is better for E/kT < 49.5 in case
of equation (24) and for E/kT < 31.7 in case of equation (25). More-
over, this rational approximation shows a relative difference with re-
spect to the built-in E2 function lower than 0.004 for 0.5 < E/kT <
600, enough for fitting purposes taking into account the usually ex-
pected uncertainties.

For completeness, Fig. 6b also compares the asymptotic approx-
imations (24) and (25) and the rational approximation (28) as a func-
tion of E/kT. In this case, rational approximation is better for all the
values of E/kT. Relative difference with respect to the built-in E2
function is lower than 5.5× 10−6 for 1 < E/kT < 600.
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