
Manuscript, submitted to the Journal of Supercomputing - October 11 2021

1

Error Resilience of Three GMRES Implementations
under Fault Injection

José A. Moríñigo1, Andrés Bustos, Rafael Mayo-García

Dept. de Tecnología, CIEMAT
Avda. Complutense 40, Madrid 28040, Spain

1Corresponding author. E-mail: josea.morinigo@ciemat.es

Abstract. The resilience behaviour of three GMRES prototyped implementations (with
Incomplete LU, Flexible, and randomized-SVD -based preconditioners) has been analized with
a soft errors injection approach. A low-level fault injector is inserted into the GMRES solvers,
which randomly select locations in the program to inject the fault across multiple executions.
This fault injection approach combines the configurability of high-level and the accuracy of
low-level techniques at the same time, so the effect of faults may be closely emulated. In order
to gather enough statistical data, a set of eighteen sparse matrix-based linear systems Ax=b
has been solved with these GMRES implementations in the injection experiments and
monitored. The results of this prototype-based fault injection suggest an improved error
resilience behaviour of the randomized-SVD -based preconditioned GMRES version in many of
the analyzed matrices, which points out to its interest in supercomputing applications where
silent errors are more prominent.

Keywords: Randomized SVD, preconditioned GMRES, LLFI, fault injection, iterative solvers.

1- INTRODUCTION

Numerical solvers need to improve their tolerance for faults and failures in the operational
environment set by a supercomputing facility. As the exascale era approaches and HPC
systems become larger and more complex, recreation of failure scenarios becomes harder but
necessary to scientific codes developers. Thus, fault injection tools are important to evaluate
the behaviour of algorithmic implementations, by deploying an emulation-based computing
environment, then making possible to guide decisions about the more convenient way to design
a solver to be used with a class of problems. These tools imply the capacity to inject faults

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

2

mimicking the real scenario under some assumptions, as well as gathering the statistics of error
and failures to monitor their effects. It should be stressed that the focus of this work is on
software-implemented fault injection, which permits to emulate hardware faults at the software
layer [1-3] (i.e., silent data corruption provoked by transient bit-flips in memory cells) following a
low level approach, that is by operating at the assembly or machine code; or even using
high-level mechanisms, which operate closer to the source code (i.e., fault injection is
performed onto program variables and statements). Pros and cons of both are balanced by the
fault model used in this study, based onto an intermediate representation level, which has been
demonstrated to be accurate compared to assembly-level fault injections [1] [4] and permits to
explore the effect of various fault injections parameters on the solver resilience. This
methodology is presented in the next section. Opposite to them, another technique is the
hardware-implemented fault injection [3] intended to tackle with faults which impose a
permanent value onto a point in a circuit, which is out of the scope of this investigation.

Among the iterative methods to solve linear systems of equations, those based on Krylov
subspace techniques with suitable preconditioners are commonly considered a good choice to
attain both robustness and efficiency [5-8]. An important class within them is the Generalized
Minimum RESidual (GMRES) method, which is common in many research and commercial
solvers of a wide variety of scientific and technological disciplines (fluid and structural dynamics,
electromagnetism, multiphysics simulation,...). This scheme permits to solve general sparse
non-symmetrical linear systems of equations. Another iterative scheme, competitor to GMRES
in computational efficiency, but limited to symmetric linear systems of equations, is the
Conjugate Gradient (CG) scheme, not focused here since this work circumscribes to the more
general scenario of non-symmetrical matrices. A characterization of the resilience behaviour
under fault injection of three variants of GMRES has been accomplished in this investigation.

These three variants correspond to different preconditioners embedded into the GMRES: the
common Incomplete LU factorization (ILU) [9], of widespread usage; a so-called “Flexible”
variant [9] [10], which permits to vary the preconditioner in each step of the GMRES inner-loop;
and a novel preconditioner based on a randomized implementation of the Singular Value
Decomposition (SVD) algorithm, built on an error matrix which measures the deviation of ILU
from the LU decomposition of the problem matrix [11]. These are described in section 3. Prior to
their analysis, a set of kernels extracted from the Parboil [12] and Linpack [13] suites has been
benchmarked under fault injection to identify important aspects for the setup of the experiments
performed with the GMRES solvers, prototyped in C code.

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

3

In summary, this paper makes the next contributions:

- The Randomized-SVD -based GMRES prototype is analysed (for the first time to the authors’
knowledge) under fault injection, to assess its resilience across other versions. The results over
18 sparse matrices suggest a competitive resilient behaviour compared to the Flexible GMRES
version.

- The randomized-SVD algorithm is identified as a promising mathematical tool to be exploited
in the design of GMRES versions intended to be used in error prominent environments.

A major result of this investigation is that the GMRES with randomized-SVD -based
preconditioning performs notably better than the other two GMRES implementations in terms of
attained resilience, being then a promising idea to exploit by iterative solvers intended for
supercomputing applications.

This paper is organized as follows. Section 2 introduces the fault injection tool used to analyse
the error resilience of the benchmarks considered. Their behaviour has been assessed and
major guidelines are set to conduct injection tests on the C-prototypes of the GMRES
implementations. The three GMRES variants are described in section 3, with emphasis on the
algorithmic differences. Section 4 presents the collection of sparse matrices selected on which
the GMRES solver has been executed embedded into the fault injection framework. A
discussion of the results follows in section 5. Last, a survey of related work is given and some
conclusions provided.

2- FAULT MODEL AND BENCHMARKING

The fault model used in the present investigation, which drives the design of the Low Level
Fault Injection (LLFI) tool [1] [2] [14], relies on the following assumptions. Transient and
intermittent faults may occur in the CPU, typically provoked by the impact of alpha particles or
cosmic rays onto flip flops and logic devices. Both arithmetic-logic units and memory addresses
are considered susceptible of experiencing a fault (on the contrary, memory components -as
the cache- are excluded as these used to be protected at the architectural level by ECC or
parity). Neither faults affecting the control logic of the CPU (it is a small physical area of the
CPU), not the instructions encoding (handled through control-flow checking techniques) are
accounted for.

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

4

2.1 Fault injection tool

This study exploits the LLFI fault injection tool to analyse the resilience of scientific programs by
allowing fault-injection at defined program points during execution. LLFI is built on the LLVM
compiler infrastructure [15] and works at the LLVM compiler’s intermediate representation (IR)
level in a closely integrated manner. The IR code is then used internally by a compiler to
represent the source code without loss of information, and permits further optimization or
translation. In particular, LLVM can translate code from C/C++ to IR and to translate it back
from IR to machine code for various architectures (x86 processors, ARM...). The program
source code is given as input to the LLVM to translate it to IR. In a second step, LLFI
instruments the IR code using fault injection functions in all those program points where a fault
can be potentially injected. The fault types and program points (injection sites) are defined
based on a set of compile-time options given by the user in an input file, read in the
instrumentation step. At execution, following the run-time options specified by the user, injection
sites are randomly chosen from the total number of possible injection sites, then a fault is
injected by a custom fault injection library and the program is run to completion. Further details
on the LLFI workflow (see Figure 1) and architecture may be found in the above mentioned
references.

Among the several fault injection types of LLFI, the present work has focused on the bit-flip fault
type. Those bit-flip events span different sets of instructions, source registers and operands as
random injection targets in each experiment. Execution behaviour after fault injection is
classified according to four types of program outcomes:

▪ Crash: a bit flip may trigger the termination of the application by the operating system due to
an exception (i.e., a bit flip modifies a pointer variable and the corrupted address is outside the
process address space, causing a segmentation fault). There is no simple way to recover from
crashes, which are more related to hard faults. That is why both SDC and OK executions are
the two more relevant group in this study.

▪ Hang: it occurs when the program takes much more run time than the reference solution and
times out.

▪ OK (or masked) execution: a successful output of the application, not affected by the
presence of an error. The fraction of OK executions quantifies application resilience. Some
algorithms are, to some extent, intrinsically resilient (i.e., iterative solvers as the GMRES and
others) and may still produce correct results in the presence of faults at the cost of executing a
larger number of iterations to converge.

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

5

▪ Silent Data Corruption (SDC): an undetected error silently contaminates application data
structures, leading to an erroneous output but without triggering an error (the output deviates
from the reference solution more than an acceptable range). This may be assessed by
comparison with a reference solution computed in a fault-free execution.

For each of the analised programs under fault injection, these four rates have been calculated
by simply dividing the number of their respective ocurrences in the program outcome by the
total number of fault injection experiments. To avoid confusion, given a program which has
been run in N injection experiments, being Ni (with i = OK, SDC, Crash and Hang) the number
of ocurrences of the failure type i, the rates are calculated with the formulae Rate i (%)=100Ni /N,
where ƩNi=N. The statistical accuracy of these rates is estimated with the squared root of the

number of the ocurrences, i.e. ∆Ni =√Ni . And in %, the expression reads ∆Rate i (%) =100

√Ni/N. These errors appear indicated in parenthesis in the tables of the benchmarks and

GMRES versions in the next sections, affecting then the last significative digit of each rate (in
this way, 13 (4) %, means 13∓4 %).

2.2 Benchmarking

The Parboil benchmark suite [12] of the University of Illinois is a collection of accelerated,
heterogeneous programs emphasizing throughput-oriented computing. It comprises a variety of
algorithms: iterative methods, dense and sparse array operations, data-dependant memory
access patterns, etc. Each benchmark kernel is intended to be scalable and may be tested with
a series of small to large input datasets included in the distribution. Besides, multiple
architecture-optimized implementations are available in the suite (multithreaded CPU-coded,
heterogeneous CPU+Accelerator sources...), also written in different programming models (C,
C++, OpenCL and CUDA) to support benchmarking comparison scenarios. These benchmarks
are relatively simple compared to end-to-end user applications.
In this study, the baseline accelerated CPU version has been analysed under fault injection with
the LLFI tool. A constrain that should be noticed is that LLFI only works with CPU-coded serial
programs [14]. An extension of LLFI to analise MPI-based parallel programs has been
accomplished in [16] [17], albeit not included in the official development [14]. The four selected
benchmarks of Parboil (see Table 1) are described next.

a. factorial: factorization of an integer provided as input. It spans ten to twelve lines of code
with only three integer storage variables. It is included into the Parboil suite as an example,
not as a benchmark itself.

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

6

b. stencil: corresponds to an iterative Jacobi solver, which results from the discretization of
the 3D heat equation on a structured grid. It may be seen as a building block of more
advanced multi-grid partial differential equations (PDEs) solvers.

c. spmv: sparse matrix - dense vector multiplication. It is a basic repetitive operation of many
iterative solvers and leads to memory-bandwidth boundness for very large matrices, mainly
in such cases of irregular access over non-zero elements patterns of both matrix and vector.
Typically, the sparse matrix is stored in a compressed notation to reduce the data
allocation requirements.

d. sgemm: product of two dense matrices, which appears as a common building block in
many numerical linear algebra codes and packages (i.e., the numeric library BLAS - Basic
Linear Algebra Subprograms-, typically provided by hardware vendors in highly optimized
versions: MKL, CUBLAS,...). Dense matrix operations are ubiquitous, thus their relevance.

Table 1 Benchmarks used in sensitivity analysis

Benchmark Input / size Short description

factorial - Factorization (n!)
stencil Small / 128 x 128 x 32 3D stencil operation
spmv Small / 1138 x 1138 Sparse-matrix Dense-vector multiplication

sgemm1 Small / 128 x 160 Dense matrix-matrix multiplication
linpack_bench2 256 x 256 Linear system of equations solver

1 Portions written in C++ have been adapted to C for their use with the faults injector software.
2 C program which mimics the corresponding Ax=b LINPACK benchmark program.

In addition to the Parboil benchmarks, a fifth benchmark called linpack_bench has been also
tested (see Table 1). It is a C program corresponding to the LINPACK solver of linear systems
of equations by LU factorization of the system matrix [13]. It is noticed that four of these
benchmarks clearly mimic code portions of the preconditioned GMRES versions. In particular,
sgemm is an iterative algorithm over a sparse matrix with a convergence criterion based on a
residual norm, like GMRES; spmv occurs every time a vector of the Krylov space is generated
into the inner-loop of the GMRES; the product of two dense matrices (sgemm) is executed into
the preconditioner portion of code when the randomized-SVD is built in the third variant of
GMRES. And finally, the LU decomposition coded into linpack_bench to solve a linear system

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

7

is similar to the incomplete LU used every time the preconditioner is applied. Only sgemm is
specific of the Randomized-SVD -based GMRES implementation. As seen, the toy problem
factorial is not directly related to the GMRES algorithm, but its simplicity is taken here as an
example to stress the effect of silent data corruption even in very simple scenarios, for
completion purposes.

Table 2 Classification of the benchmarks failure types obtained under single-bit flip injection. Four failure
types are considered at code execution: crash, hang, successful execution (OK) and silent error (SDC)
rates (error in the last significative digit is indicated in parenthesis. For those rates strictly zero, the error
calculation is not well defined; so it is indicated as “(-)”).

Number of experiments per test

102 103 104 105

factorial

Crash (%) 13 (4) 8.6 (9) 10.0 (3) 10.2 (1)
Hang (%) 0 (-) 0 (-) 0.1 (1) 0.07 (1)
OK (%) 16 (4) 21 (1) 20.9 (5) 21.4 (1)
SDC (%) 71 (8) 71 (3) 69.1 (8) 68.4 (3)

spmv

Crash (%) 48 (7) 44 (2) 44.6 (7) 45.5 (2)
Hang (%) 0 (-) 0 (-) 0 (-) 0.02 (1)
OK (%) 50 (7) 55 (2) 54.0 (7) 53.0 (2)
SDC (%) 2 (1) 1.4 (4) 1.4 (1) 1.3 (1)

stencil

Crash (%) 37 (6) 38 (2) 39.7 (6) 39.5 (2)
Hang (%) 0 (-) 0 (-) 0.06 (1) 0.06 (1)
OK (%) 21 (5) 25 (2) 23.7 (5) 23.3 (2)
SDC (%) 42 (7) 38 (2) 36.6 (6) 37.2 (2)

sgemm

Crash (%) 32 (6) 32 (2) 33.7 (6) 34.0 (2)
Hang (%) 0 (-) 0 (-) 0 (-) 0 (-)
OK (%) 14 (4) 11 (1) 10.6 (3) 10.5 (1)
SDC (%) 54 (7) 57 (2) 55.8 (7) 55.5 (2)

linpack_bench

Crash (%) 32 (6) 41 (2) 41.5 (6) 41.5 (2)
Hang (%) 0 (-) 0 (-) 0 (-) 0 (-)
OK (%) 11 (3) 6.5 (8) 7.3 (3) 7.6 (1)
SDC (%) 57 (8) 53 (2) 51.2 (7) 51.0 (2)

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

8

In the experimental LLFI setup, the general scenario of injecting bit flips in any instruction type
of the LLVM IR code (arithmetic, logical, load instructions,... see [1] for further details) and in
any source register of the benchmark programs, has been considered. The number of
executions is prescribed as part of the input to LLFI, thus gathering enough outcomes of failure
types statistics in every LLFI test. When an instruction uses more than one register, LLFI
randomly choses one to inject into it. The previously enumerated four failure types are
considered at runtime: crash, hang, successful execution (OK) and silent data corruption
(SDC).

A sequence of fault injection tests, each comprising 100, 1000, 10,000 and 100,000
experiments, has been executed for all the benchmarks (an experiment is a definite benchmark
execution with a single or double-bit flip injection). Single-bit flip injection results are
summarized in Table 2. The very few allocated variables and instructions into the factorial
program explain such a small number of crashes, high rate of SDC and moderate rate of
successful executions. On the contrary, the smpv benchmark shows a very low contribution of
SDC (1.4%) and rather large crash rate (45%), which is justified by the compact storage of the
sparse matrix involved (few data allocation is needed), then a small memory zone is susceptible
of experiencing a bit-flip data corruption. Stencil, sgemm and linpack_bench are more
extensive and complex C codes, with larger data structures which seems to be in consonance
with the higher rate of crashes and SDC observed during the experiments and, as a result, a
lower rate of successful executions (that is, 23%, 11% and 8% respectively). All experiments
revel that the hang failure type is a rare event, under a 0.1% rate.

Table 2 clearly shows that failure rates within the range 10,000 to 100,000 experiments flatten
on definite values, which leads to say that 100,000 experiments is appropriate to attain reliable
figures of the failure type rates. This criterion of performing such large number of experiments
has been enforced as well in the GMRES fault injection tests described in the next sections.
Failure rates flattening is also visible in the SDC rate plot in Fig. 2 (also to 100,000 experiments
performed for each benchmark has been plotted). The large differences in SDC rates stresses
their very different behaviour in terms of resilience, therefore the need to carry out a specific
analysis for each class of code since they differ in data volume allocation, loops and conditional
branching, structures calls, etc.

A repetition of the tests has been conducted including double-bit flip injection per execution and
identical sequence of increasing number of experiments (up to 100,000) to get an insight on

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

9

how the benchmarks failure types are affected. The second bit-flip is injected randomly either in
the same source register or in another register as the first bit-flip (injection in different registers
mimics those double-bit flip faults that may occur within a narrow time window, but not at the
same location). The performance attained with single-bit and double-bit flip test injections is
plotted side-by-side in Fig. 3. The results show that doubling the bit-flip injection implies an
increase in the crash rate, as well as a decrease in the successful execution rate across all the
benchmarks. As a result, the trend of the SDC rate is to decrease, although the factorial
benchmark is an exception to this rule. These trends are discernible by the fact that with
100,000 experiments, the error in the four measured rates is below 0.3%. This bit-flip behaviour
is in agreement with other reported work [1] [18] and matches the intuitive reasoning that as
fault injection rate per experiment increases, proner is the code to exhibit a crash.

Since a major concern of this study is to analyse the resilience of the GMRES solvers under
silent data corruption, and being the SDC rate typically larger for single-bit flip injections, the
scenario of single-bit flip has been adopted in the GMRES tests.

3- GMRES IMPLEMENTATIONS

The original preconditioned restarted GMRES iterative solution method of Saad and Schultz [19]
and two additional modified versions, all of them using right-preconditioning, are described in
this section. It is noticed that this work is restricted to matrices and vectors of real numbers, but
a more general GMRES formulation to deal with complex numbers arithmetic is possible. For
any linear system Ax=b, A is a square non-symmetric, non-singular, real n x n matrix; and b is
an n-length, real vector. The system solution x is computed iteratively using the residual r=b-Ax
to update an m-dimensional {A, r, m}-Krylov space [9].

The present study prescribes the same size of the Krylov subspace and termination criterion for
the three GMRES variants. In particular, the inner-loop builds a Krylov subspace with m=20
direction vectors, and the outer-loop restarts twenty times (hence, a maximum of 400 iterations
is permitted. Once this value is reached, a non-convergence flag is raised by the solver
execution). Convergence of the GMRES is evaluated using the equations residuals (RHS) as
iteration progresses. A termination criterion based on both absolute and relative residuals
norms decay is checked after each inner-loop iteration, such that the process is stopped as
soon as they drop below the tolerance, set to 10-13.

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

10

3.1 Restarted (Standard) GMRES

Let x0 be an initial guess for this linear system, r0=b−Ax0 be its corresponding residual and M−1

the right-preconditioner, prescribed for the whole iteration and which is some approximation to
the matrix A. The modified system solved by the GMRES is reformulated as: AM−1(Mx) = b.
Pseudocode may be found elsewhere [9] [19] [20] and it is laid out in Fig. 4 for clarity of the
notation and comparison of the GMRES versions. It is noticed that AM−1 is not needed explicitly.
But efficient preconditioning implies that the operation Mzj=vj has to be solved for zj whenever it
is required. Hence, M−1vj should be easily computable for an arbitrary vj.

In this method, the Arnoldi loop builds an orthogonal basis of the preconditioned m-dimensional
Krylov subspace using the modified Gram-Schmidt algorithm. The last step of the pseudocode
(see Fig. 4) generates the solution as a linear combination of the preconditioned vectors, that is:
zj = M−1vj , with j =1,2..., m, where the preconditioning matrixM −1 is the same for all the vectors.

This m-dimensional Krylov restarted version, shortly GMRES(m), sets M as a low-accuracy LU
factorization of the sparse matrix A. This is a widely used alternative that avoid making the
factorization of A too expensive because of the much higher level of fill-in of the lower and upper
triangular factors (L and U, respectively). Typically, LU factors are kept under a given threshold
to enforce better sparsity. The incomplete LU version adopted here is the zero-order LU
factorization, in short ILU(0), which corresponds to a sparsity pattern of LU equal to A and
makes the direct solve of Mzj=vj cheap.

3.2 Flexible GMRES (FGMRES)

In 1993, Saad [10] introduced the FGMRES, which extends the GMRES(m) method by allowing
the preconditioner to change in each step of the Arnoldi process, leading to a more flexible
preconditioner (this added flexibility is suggested by its acronym) and a moderate additional
computational cost. As in the standard GMRES, it satisfies the residual norm minimization
condition over the preconditioned Krylov subspace.

A formally important drawback of this idea is that the construction of a Krylov subspace does
not allow the preconditioner to change from step to step in strict sense, and no general proven
statement of convergence may be given. That is, mathematically it may break down. On the
contrary, the GMRES(m) cannot break down, regardless of the positiveness of A. Another
drawback of the FGMRES formulation is that it typically has a similar arithmetic cost but
doubles the memory requirement compared to the standard GMRES framework, depending on

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

11

the preconditioner formulation. Since with a varying preconditioner, it is zj = Mj−1vj for j=1,2,...m
(being Mj specific at the j-th iteration step), there is a need to store the intermediate sequence of
vectors zj of the Arnoldi process. Hence, the solution is updated by composing the approximate
solution as xm=x0 + ZmYm (see Fig. 5 for notation details), were Zm=[z1,....zm] is an
m-dimensional Krylov subspace.

In practical terms, any iterative solution method may be used as a preconditioner in the
FGMRES version, because its normwise termination criterion generates a de-facto Mj, different
for every zj. Under this approach, the preconditioner is not explicitly set, but implicitly stated via
some computation (some few steps of an iterative method) [9]. Particularly, the iterative
GMRES(m) procedure (preconditioned with ILU(0) itself) may play this role, as a preconditioner
of the outer GMRES(m). This is the chosen method in the FGMRES implementation of this work.
For the situation in which GMRES(m) is embedded as preconditioner of an outer GMRES, a
more efficient memory implementation may be designed, precisely because there is a
corresponding allocation matching with the available free vectors already allocated during the
outer-loop, which can be reused by the preconditioner vectors.

In addition, it should be stressed that a key point behind letting the preconditioner change (even
unboundedly) in successive inner solves, is that faults affecting memory data or arithmetic
involved in the preconditioning portion of the algorithm, may be taken as part of a new
preconditioner itself in the iteration sequence. Thus, a somehow fault-tolerant behaviour seems
to be inherent to the idea of a changing preconditioner.

3.3 Randomized-SVD -based GMRES

An approximated LU factorization of A can be written as A = L0U0 + ∆A, with L0, U0 the factors
obtained from the ILU(0) decomposition. Compared to the standard GMRES(m), this approach
improves the fidelity of the incomplete LU factorization of A by introducing an error matrix E
linked to ∆A. Following the previous notation, the expression of the error matrix is E = M−1A - I,
which under the ILU(0) based preconditioning, it reads E = U0-1L0-1A- I, with the expectation of
accelerating the convergence by E retaining the low-rank properties of A-1.
This form of novel preconditioning can deal with both well-conditioned and ill-conditioned
sparse matrices (that is, κ(A) = ‖A‖ ‖A-1‖ >>1, where ‖A‖ is the Frobenius norm of A). However,
accordingly to [11], it seems to be especially efficient to cope with the ill-conditioned cases
since E is likely to have low numerical rank (a further mathematical analysis on why

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

12

ill-conditioned matrices used to have a small population of small singular values can be found in
[11]).This approximation of A-1 leads to a preconditioner defined as

M-1 = (I + E)-1U0-1L0-1 ≈ (I + Ek)-1U0-1L0-1

where Ek with k<<n is a rank-k approximation to E, to make the inverse of I+Ek within an
affordable time [22]. Two important issues must be stressed at this point: first, E is less sparse
than A. And, second and fundamental in the adopted approach, the dense matrix Ek obtained
as a truncated randomized-SVD of E, is conducted to exploit this SVD-decomposition in the
above mentioned inverse building. Both randomized and non-randomized SVD approaches
lead to express the matrix E as a product of factors, say E=USVT (where U, V are orthonormal
matrices; and S a diagonal matrix with the singular values), but they imply rather different
computing cost. These mathematical details are not presented here for brevity, to avoid a
cumbersome presentation. A more thoroughly description may be found in [11] [23] [24]. In
addition, the pseudocode of the Randomized-SVD -based GMRES is provided in Fig. 6 (the
details of the randomized-SVD itself is given at the end of Fig. 6).

4- SET OF PROBLEMS AND METHODOLOGY

A group of real, sparse, non-symmetrical, squared matrices has been analysed in the present
work. All of them are taken from the SuiteSparse Matrix Collection, which comes from the
initially called Sparse Matrix Collection of the University of Florida [25], a widely used, large
repository of matrices, easily accessible, actively growing and many of them derived from real
world applications. A presentation of this matrix dataset may be found in [26].

Hence, in the linear system Ax=b to be solved by GMRES, the n x n matrix A is taken from this
dataset. The vector b is computed by initializing the solution vector to all ones and its last
element to n. Then computing b=Ax ensures that the system of equations has a valid solution.
Several criteria have driven the selection of the analysed matrices among the diversity of them
included in the collection. First, all they derive from a discretized system of equations, casted
into matrix form, so they have a clear mathematical sense. This is a relevant issue as some of
the SuiteSparse matrices correspond to combinatorial problems, graphs or images (thus, not
appropiate to search for a solution using GMRES). In addition, a vast range of the condition
number has been explored. Hence, these tests comprise a number of 18 matrices (see Table 3
for the full list), which have been classified into three different types: a set of 6 matrices with low

condition number, that is κ(A)≈O(1) - O(102). Another set of 6 matrices with high condition

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

13

number κ(A)≈O(103) - O(104). And a third subgroup of 6 matrices, with very high condition
number κ(A) ≈ O(106) - O(1012). The effect of the condition number is discussed in section 5.

Table 3 Set of square, non-symmetrical matrices taken from the SuiteSparse Matrix Collection [25][26].
Matrices are classified into three types according to their condition number κ(A).

Matrix Size κ(A) Application

Low condition number: κ(A) ≈ O(1) - O(102)

dw256B 512 x 512 3.7 Electromagnetism
pde225 225 x 225 39 Model Partial Differential equation
cdde4 961 x 961 68 Convection-Diffusion model

poisson2D 367x367 133 Poisson PDE in two-dimension
ex37 3565 x 3565 180 Computational Fluid Dynamics
bfwa62 62 x 62 553 Electromagnetism

High condition number: κ(A) ≈ O(103) - O(104)

bwm200 200 x 200 2.4 103 Chemical Processes
ex1 216 x 216 3.3 104 Computational Fluid Dynamics
ex22 839 x 839 3.3 104 Computational Fluid Dynamics

orsirr_2 886 x 886 6.3 104 Computational Fluid Dynamics
tub100 100 x 100 1.3 104 Tubular Reactor model
olm100 100 x 100 1.5 104 Computational Fluid Dynamics

Very large condition number: κ(A) ≈ O(106) - O(1012)

pores_1 30 x 30 1.8 106 Computational Fluid Dynamics
steam1 240 x 240 2.8 107 Oil-Steam modelling
DK01R 903 x 903 5.9 107 Turbulent Flow
saylr1 238 x 238 7.9 108 Computational Fluid Dynamics
steam3 80 x 80 5.0 1010 Oil-Steam modelling
lung1 1650 x 1650 4.9 1012 Bio-Fluid Mechanics - Multiphysics

It is noticed that matrix symmetry has been avoided in the selection because it is well known
that the iterative Conjugate Gradient (CG) method turns to be more efficient than GMRES in
this class of problems. So the chosen matrices circumscribe to the more realistic scenario of
matrix A exhibiting a non-symmetric pattern (either geometric or numerical) within.

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

14

Last but not least, an important criterion is related to the matrix size, to cope with the number of
LLFI injection experiments set to 100,000 to attain injection-independence results at affordable
computing cost. To this regard, matrix size has been restricted to rather small dimensions since
LLFI is a serial application and this constitutes a bottleneck for its application to very big
matrices.
As seen in Table 3, the field of application of most of the matrices is closely related to numerical
fluid dynamics in its diversity of branches (from canonical transport problems, reacting and
turbulent flows, multiphysics, etc). To extend the silent error statistics and balance the number
of analysed matrices of each type (in terms of condition number), a couple of matrices of the
electromagnetism area has been added to the low condition number subgroup. Matrices of the
SuiteSparse Matrix Collection are read with the Rutherford-Boing (RB) format [26], which only
stores the non-zero entries and creates a data structure accordingly to their location. It is simple
and easy to use and exploits the compressed column representation of the sparse matrix as
only three vectors. This format has its origin in the Rutherford Sparse Matrix Collection
repository [27] for research in sparse linear algebra, being itself an update of the Harwell-Boing
collection and data format. A RB-reader has been C-coded as part of the data input portion of
the solvers and it is shared by the three implementations of GMRES.

A total of 54 tests (18 matrices per GMRES version), each corresponding to a population of
100,000 injection experiments, have been carried out. The strategy of injecting the faults only
within the preconditioner portion of the C-code of each solver has been adopted; that is, into the
part of code which is specific of the GMRES versions. This is an important aspect as the fault
injection location is randomly set by LLFI and, under this approach, the entire set of injections
may be concentrated. Hence, the combination of a random fault injection location; large size of
the experiments population; and a definite, bounded extension of C-code within the injection is
performed, guarantees a rather informative statistics of the GMRES solvers under injection.
Computations have been done on the Ubuntu14.04 -based virtual machine of LLFI, available
from [14] and sized with 14 CPUs Intel Xeon (4 cores) X5560 @ 2.80GHz and 20Gbs of RAM,
set in a Ciemat server to accelerate the completion of the experiments. The repetition of half of
the tests on a Centos7 -based laptop with one CPU Intel i7-8565U (4 cores) @ 1.80GHz has
demonstrated that the obtained results are insensitive to the computing platform. All
computations have been performed in double precision. The number of iterations needed to
converge strongly depends on the GMRES version and dataset, and it ranges from 2 to 400
(once this last number is reached, iterated solutions are tagged as non-converged and stopped
in the GMRES implementations).

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

15

5- RESULTS AND DISCUSSION

For clarity and better identification of the resilience performance, Figs. 7 and 8 group the
behaviour of each dataset for the three GMRES variants according to the following two criteria:
Fig. 7 is plotted with the premise of checking the same equations residual (RHS) than the
baseline solution to accept the execution as correct (OK flag). Fig. 8 corresponds to a less
restrictive criterion which includes into the OK group those executions that achieve the
prescribed tolerance (RHS ≤ tolerance) in fewer or equal number of iterations than the baseline

solution (that is, iter ≤ iterbaseline). As a result, both plots exhibit the same length of the crash bar,
but differ in the other rates. Their comparison under these two criteria stresses that the number

of OK executions increase when iter ≤ iterbaseline is used, which is something expected to occur
since the solver convergence according to the second criterion is set in a wider sense.

It should be mentioned that iterations-to-converge strongly depend on the dataset (that is,
matrix properties) and the solver version itself. This work focuses on resilience and not
assesses the convergence acceleration provided by each particular algorithm, which is another
important issue that deserves further research and is not addressed in this work. Several
representative cases of the statistical distribution of iterations-to-solution are shown in Fig. 9.
Because the error injection affects the distribution of iterations-to-converge, there is typically a
set of executions which converge within fewer iterations compared to the baseline case (a kind
of super-convergence) to match the same tolerance criterion of convergence. These cases are
precisely counted for within the criterion provided in Fig. 8 and then included into the OK
executions. Most of the tests reveal that the population of executions that exhibit
super-convergence contributes to the OK type within a very small amount, less than 1%. Only in
very few tests this contribution has reached up to about 5% of the OK rate.
The criterion including super-converged executions, instead of the one based on looking for
convergence with strictly the same number of iterations than the baseline solution, has been
preferred and is plotted in Fig. 8 because of its higher relevance when discriminating
well-converged solutions in practical terms.

Overall, the Crash rate is within the interval 26% to 57%, with average between 45% and 51%
depending on the GMRES version (see Fig. 10 for more details). In addition, SDC rates are
within 11% and 68% for the criterion RHS=RHSbaseline of Fig. 7. It is observed that the
percentual contribution of the Hang event is very low (of about 0.1% in the worse cases), so it is
not discernible in the plots.

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

16

Interestingly, Crash bars show that there is a general trend of having lower percentage of
crashes when applying the Randomized-SVD -based preconditioner, independently of the
matrix condition number. To this respect, the average and range of crashes across all matrices
for each solver are plotted in Fig. 10 and it is seen that the Randomized-SVD -based GMRES
version incurs in a 10% less crashes than the other two when taken into consideration (since
the Hang rate is very small, this observed drop of the Crash rate implies an increase of the OK
rate, SDC rate, or both in this version of GMRES). Likewise the Standard GMRES, the
FGMRES exhibits similar margin and average numbers for the Crash event. Besides it is well
known that iterative solvers provide an inherent resilient behaviour compared to their direct
counterparts, it is seen from Figs. 7, 8 and 10, that the Randomized-SVD -based GMRES
provides a beneficial outcome in terms of extra resilience with the prescribed settings coded in
its algorithm.

Table 4 Convergence success (%) for (RHS, iter) ≤ (tolerance, iter)baseline1 for the three types of matrices.
The best combination matrix-GMRES version is shown with bolded numbers (error in the last significative
digit is indicated in parenthesis).

Low condition number: κ(A) ≈ O(1) - O(102)

GMRES dw256B pde225 cdde4 poisson2D ex37 bwfa62

Standard 50.1 (2) 25.8 (2) 37.7 (2) 31.0 (2) 48.1 (2) 28.9 (2)
Flexible 55.6 (2) 45.8 (2) 49.5 (2) 22.6 (1) 58.6 (2) 43.4 (2)

Randomized-SVD 50.5 (2) 37.5 (2) 34.8 (2) 31.6 (2) 24.9 (2) 30.3 (2)

High condition number: κ(A) ≈ O(103) - O(104)

GMRES bwm200 ex1 ex22 orsirr_2 tub100 olm100

Standard 28.0 (2) 32.3 (2) 29.6 (2) 35.9 (2) 28.9 (2) 21.1 (1)
Flexible 43.5 (2) 44.6 (2) 47.9 (2) 46.7 (2) 44.2 (2) 42.1 (2)

Randomized-SVD 27.9 (2) 36.0 (2) 32.9 (2) 51.4 (2) 43.1 (2) 54.4 (2)

Very large condition number: κ(A) ≈ O(106) - O(1012)

GMRES pores_1 steam1 DK01R saylr1 steam3 lung1

Standard 33.0 (2) 52.1 (2) 28.7 (2) 28.9 (2) 48.2 (2) 49.9 (2)
Flexible 43.5 (2) 52.5 (2) 51.6 (2) 44.2 (2) 46.4 (2) 58.4 (2)

Randomized-SVD 44.0 (2) 31.0 (2) 51.1 (2) 38.0 (2) 52.6 (2) 46.8 (2)

1 This criterion corresponds to Fig. 8.

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

17

It is stressed that no attempts of searching for a set of optimal, tuned parameters into the
Randomized-SVD -based GMRES has been done in this study, and the same parameters
values have been applied to the entire population of matrices analysed. Under this, say, rough
approach, the mentioned improvement has been obtained.

Convergence success is shown in Tables 4 and 5 for the three types of matrices according to
their condition number. While Table 4 counts as converged solutions all the executions which
satisfy the double condition stated as (RHS, iter) ≤ (tolerance, iter)baseline, Table 5 comprises
also those solutions that converge according to RHS < tolerance; that is, no matter the number
of iterations needed, but less than the maximum permitted (400 iterations).

Table 5 Convergence success (%) for criterion RHS ≤ tolerance, for the three types of matrices. The
best combination matrix-GMRES version is shown with bolded numbers (error in the last significative
figure is indicated in parenthesis).

Low condition number: κ(A) ≈ O(1) - O(102)

GMRES dw256B pde225 cdde4 poisson2D ex37 bwfa62

Standard 56.2 (2) 45.9 (2) 50.5 (2) 45.0 (2) 58.3 (2) 44.3 (2)
Flexible 57.2 (2) 45.8 (2) 52.6 (2) 71.1 (3) 58.5 (2) 43.5 (2)

Randomized-SVD 56.7 (2) 48.4 (2) 50.3 (2) 73.8 (3) 69.0 (3) 52.8 (2)

High condition number: κ(A) ≈ O(103) - O(104)

GMRES bwm200 ex1 ex22 orsirr_2 tub100 olm100

Standard 44.0 (2) 49.0 (2) 48.6 (2) 46.3 (2) 45.7 (2) 42.4 (2)
Flexible 43.6 (2) 47.3 (2) 48.3 (2) 46.7 (2) 44.9 (2) 42.2 (2)

Randomized-SVD 50.3 (2) 47.5 (2) 51.5 (2) 57.3 (2) 47.6 (2) 54.4 (2)

Very large condition number: κ(A) ≈ O(106) - O(1012)

GMRES pores_1 steam1 DK01R saylr1 steam3 lung1

Standard 46.2 (2) 52.8 (2) 52.3 (2) 45.7 (2) 49.8 (2) 55.1 (2)
Flexible 43.7 (2) 52.3 (2) 52.2 (2) 44.4 (2) 46.4 (2) 59.7 (2)

Randomized-SVD 51.3 (2) 61.9 (2) 56.7 (2) 48.9 (2) 53.8 (2) 50.1 (2)

It is noticeable that no linking pattern of the SDC and OK rates with the condition number is
observed in the plots and tables. Nevertheless, the criterion RHS=RHSbaseline set in Fig. 7 points

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

18

out to an increase of the rate of OK executions for the matrices with very-high condition number.
It is noticed that this is not strictly related to the Randomized-SVD -based GMRES algorithm
itself, as it was expected to be observed from the discussion provided in [20]. On the contrary,
the results suggest that the three GMRES versions behave especially well in those very
ill-conditioned linear systems under fault injection. Unfortunately, the population of matrices
considered is not large enough to be conclusive on this.

Table 6 Comparison of convergence success with the three GMRES versions.

Metric Standard Flexible Randomized-SVD

RHS ≤ tolerance1 1 2 15

(RHS, iter) ≤ (tolerance, iter)baseline 0 13 5

1 This metric counts every converged experiment, not considering how many iterations
takes to reach the tolerance criterion. The (RHS, iter) - metric is more demanding as it
counts only equal- and super-converged solutions w.r.t. the baseline experiment.

If the above mentioned convergence success is taken as the metric (see Tables 4 and 5), the
results show that FGMRES and Randomized-SVD -based GMRES clearly outperform the
Standard GMRES algorithm. Table 6 summarizes in which scenarios each GMRES may be the
preferred option: while FGMRES typically achieves faster iterations-to-solution behaviour, the
Randomized-SVD -based GMRES version provides a larger population of converged
executions, with a significant drop of observed crashes, but paying the cost of being less
competitive in time-to-solution, at least under the present parameter set in its prototyped
implementation. Obviously, a much more accurate performance comparison of the Flexible and
Randomized-SVD -based GMRES versions in terms of time-to-solution behaviour, would
require their parallel implementation, not accomplished in the present study. In a massive
parallelization scenario, delicate aspects regarding the limits of scalability of several specific
algorithmic portions of the GMRES versions (i.e., number of matrix-vector multiplications,
Householder orthogonalization, randomized-SVD,...) should be addressed and tested. For the
present serial, prototyped implementation of the GMRES versions, the iteration-to-solution
behaviour is emphasized in Fig. 9, where the criterion iter=iterbaseline is plotted in dark gray.

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

19

Finally, it should be noticed that the completion of 100,000 injection experiments per test case
is rather time consuming for the bigger matrices analysed. Therefore, a better resilience
assessment of the targeted applications (that is, the GMRES versions in the present study)
would be desireable. In this context, an important issue is the understanding of SDC
propagation in codes [28] [29], to lower the number of experiments required to gather an
informative, confident resilience statistics.

6- RELATED WORK

Error injection to understand their impact in HPC, may be performed at various abstraction
levels: from circuit to application level. Circuit-level is probably the most accurate, but quite
demanding since it requires sophisticated radiation-exposure facilities to irradiate hardware to
induce bit flips in a CPU or other components. A common approach is to expose a processor’s
area to a proton or neutron beam, and then to measure soft error rates [30-32], but these
methods are used to be very costly in time and budget (besides, to mention that these kind of
experiments introduce new uncertainties, such as in the measurement of the distance between
the CPU and radiation source; or the radiation source fluence itself). A survey on these
approaches and a detailed list of the most known tools to tackle fault injection may be found in
[3] [33] [34]. Another approach is to exploit Register Transfer Level (RTL) simulation. To this
respect, most of the RTL-based tools presented in these references (Verify, Mefisto_C), as well
as other developments to inject faults on CPUs and/or memory (Ferrari, Ftape, Fiat, Doctor,...)
had their origin within very few years (1995-1997) in the past. They provide pointers to specific
papers for further details on their usage.

On the other side of the abstraction level, there is the application-level methodology (that is,
software-implemented fault injection tools), which permits to carry out fault injections in an
accelerated fashion and do not require expensive hardware. The related frameworks are more
recent developments and rather similar to the LLFI tool (compiler-level injectors), all using the
LLVM infrastructure and IR code instrumentation to simulate transient faults. These are KULFI
[35] [36] and VULFI [37], which are configurable as LLFI; FLIPIT [38], intended to inject faults
into large-scale parallel applications; EDFI [39] which transforms the code at compile-time and
instruments it; or FlipTracker [40], a framework to analise the resilience properties and error
propagation using fine-grain tracking to identify resilient patterns in parallel applications, among
others. In particular, some attempts to extend the functionality of LLFI from sequential
applications to parallel ones have been conducted in [41], where various HPC parallel

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

20

applications have been analysed. The modified LLFI version randomly selects a participating
processor and injects a failure into it during the execution, to mimic the occurrence of a bit flip
on a arbitrary location. In [16] a more elaborated LLFI extension to MPI-based codes under fault
injection has been accomplished with regard to the effect of soft-errors affecting the MPI
communications as well. In [42] the performance of the REFINE compiler-based injection
framework is presented and compared to LLFI on the same benchmarking applications. In [43]
the high-level fault injector CAROL-FI is used to analyse the error propagation path and identify
the portions of the code that once corrupted, are more likely to affect the output. In this case the
authors focus on the appearance of SDC during executions of a set of benchmarks running on
Intel Xeon-Phi processors. Other tools for fault injection in programs running on GPUs exist [44]
[45].

Several works focus on the characterization of application resilience to SDC and their sensibility
to various types of fault injection models. Kestor et al. [16] investigate the fault behaviour in a
set of experiments carried out with distributed MPI-based scientific codes and assume one bit
flip error per application run. A comparative analysis of soft-error on five iterative methods
derived from the CG (CG itself, ICCG, BiCG, BiCGSTAB and CGS), is conducted by Kestor et
al. [17] using single and multi-bit flip (2 and 4-bit flip) with identical fault injection configuration
to evaluate the design of soft error injectors. Mutlu et al. [46-48] analyse the resilience of up to
six iterative CG solvers intended for symmetric matrices with an error-injection strategy based
on single, 2 and 4-bit flip injection in the same memory word and randomly chosen locations.
Both are close works, but they focus on CG variants (CG requires symmetric matrices) and do
not include the GMRES algorithm targeted in the present work for non-symmetrical matrices. As
they concluded, corruption of more bits instead of single-bif flip increases the likelihood of an
anomalous outcome (SDC and crashes).
Controversy exists about the need of taking into account single or multiple-bit flips in injection
experiments. The present study follows the guidelines of [18], [49], which states that single-bit
flip yields in most cases a higher SDC rate compared to multiple-bit flips. Besides, multiple-bit
flips do not cause as much difference in the SDC results of experiments conducted using
single-bit flip error, as other researcher have speculated [49]. Finally, considering that
multiple-bit flips injection is a more complex scenario due to the additional degrees of freedom
needed to explore (i.e., bit flips injected within the same or different memory words or registers;
the temporal gap among injections in a given execution,...), the present investigation bounds its
objectives at experiments performed with single-bit flip injection.

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

21

Regarding injection of soft-errors in preconditioned GMRES versions, Elliot et al. [50]
investigate the effect of SDC of bit flip type in preconditioners taken as a black box and faulty
portion of the solver. Both preconditioned GMRES and CG iterative solvers are considered in
their study. They demonstrated algorithm-based fault tolerance by adopting selective reliability
to protect portions of the solvers. In [20] the same authors discussed the robustness
improvements linked to the fault-tolerant FT-GMRES version, using the GMRES itself in the
inner-solve. They showed that a rather robust behaviour may be achieved given a single fault
injected in the orthogonalization phase of the inner-solve.

The idea of selective reliability is also explored in [21] by means of two Matlab prototypes of
FGMRES and FT-GMRES. They compared the number of iterations to converge under
fault-injections programmed in the data structures. They showed that convergence degrades as
the fault rate increases. Additional research on the robustness of preconditioned FGMRES and
FT-GMRES may be found in [51]. In [52] the effect of two soft error models is analysed with an
elliptic PDE problem. The authors performed fault injections in definite matrix times vector
operations and also on the preconditioner step. An investigation on the sensibility to the
injection pattern that causes SDC, also using the FGMRES and FT-GMRES solvers (here
preconditioned in a different way), may be found in [53], where the time-to-solution overhead in
the presence of faults injection has been analysed.

To the authors’ knowledge there is no previous analysis of the Randomized-SVD -based
GMRES version under fault injection. This investigation compares its performance to the
preconditioned standard and Flexible GMRES algorithms. Hence, this study aims at shedding
light on the resilience properties of this novel implementation.

7- CONCLUSIONS

A study of the error resilience behaviour of three GMRES versions has been accomplished. The
GMRES algorithm targets the iterative solution of large sparse non-symmetric linear systems
and underlies many scientific applications executed in supercomputers. Its ubiquitous usage
justifies the continuing efforts on improving its preconditioning portion, to attain shorter
iteration-to-solution and better error resilience.

The recent GMRES version based on randomized-SVD preconditioning has been C-prototyped,
in addition to the Standard GMRES and FGMRES. All they have been analysed under single

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

22

bit-flip injection across 100,000 experiments per test, to assess their properties in an ample
scenario of matrices, ranging 18 sparse non-symmetric linear systems, from well- to very
ill-conditioned problems and condition numbers within the range O(1) to O(1012).

The results show that both FGMRES and Randomized-SVD -based GMRES outperform the
Standard GMRES version in terms of resilience. The quite robust behaviour of FGMRES to
single events of SDC is well known from previous studies and here is also so assessed. Its
comparison with the Randomized-SVD -based GMRES clearly shows that preconditioning
using randomized SVD leads to a higher number of successes in terms of achieved
convergence, but typically, convergence needs more iterations than FGMRES.

Interestingly, even with the very general, non-optimized set of parameters included in the
Randomized-SVD -based preconditioner implemented in the GMRES, it performs well across
the variety of real-life matrices analysed and exhibits insensitivity to the degree of
ill-conditioning of the linear systems. Consequently, further improvements in its parameters
settings should be investigated. This is something to explore in the future, to identify a
black-box setting able to tackle efficiently a wide group of problems. Its potential usage points
out to another important issue that deserves attention: to assess its resilience on larger linear
systems at scale, by implementing a CPU-distributed Randomized-SVD -based GMRES or
CPU-GPU hybridized versions. These aspects are part of the roadmap to be walked next.

Acknowlegment

This work was partially funded by the Spanish Ministry of Science, Innovation, and Universities
CODEC-OSE project (RTI2018-096006-B-I00) and the Comunidad de Madrid CABAHLA-CM
project (S2018/TCS-4423), both with European Regional Development Fund (ERDF). It also
profited from funding received by the H2020 co-funded projects Energy oriented Centre of
Excellence for computing applications II (EoCoE-II, No. 824158), and Supercomputing and
Energy in Mexico (Enerxico, No. 828947). Last, the authors thank the clusters administrators at
CIEMAT: Pablo García-Muller and Antonio Rubio-Montero for their support.

References

[1] Lu Q., Farahani M., Wei J., Thomas A. Pattabiraman K. (2015): LLFI: An Intermediate Code-Level
Fault Injection Tool for Hardware Faults. In Procs. of IEEE Int. Conference on Software Quality,
Reliability and Security, Aug. 3-5, Vancouver, Canada. DOI: 10.1109/QRS.2015.13

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

23

[2] Thomas A., Pattabiraman K. (2013): LLFI: An Intermediate Code-Level Fault Injector for Soft
Computing Applications. In IEEE Workshop on Silicon Errors in Logic - System Effects (SELSE), March
26-27, Stanford, CA, USA.

[3] Hsuen M.C, Tsai T..K, Iyer R.K. (1997): Fault Injection Techniques and Tools, Computer, pp. 75-82.
DOI:10.1109/2.585157

[4] Wei J., Thomas A., Li G., Pattabiraman K. (2014): Quantifying the Accuracy of High-Level Fault
Injection Techniques for Hardware Faults. In Procs. 44th Annual IEEE/IFIP Int. Conf. Dependable
Systems and Networks (DSN), pp. 375-382, DOI: 10.1109/DSN.2014.2.

[5] Saad Y., van der Vorst H..A. (2000): Iterative Solution of Linear Systems in the 20th Century. J. of
Computational and Applied Mathematics, Vol 123 (1-2), pp.1-33. DOI: https://doi.org/10.1016
/S0377-0427(00)00412-X.

[6] Benzi M. (2002): Preconditioning Techniques for Large Linear Systems: A Survey. Journal of
Computational Physics, Vol. 182 (2), pp. 418-477. DOI: 10.1006/jcph.2002.7176.

[7] Vuik C. (1995): New Insight in GMRES-like Methods with Variable Preconditioners. J. Comp. and
Applied Mathematics, Vol. 61 (2), pp. 189-204. DOI:10.1016/0377-0427(94)00067-B.

[8] Saad Y. (2019): Iterative Methods for Linear Systems of Equations: A Brief Historical Journey.
arXiv:1908.01083v1. DOI:10.1090/conm/754/15141.

[9] van der Vorst, H.A. (2003): Iterative Krylov Methods for Large Linear Systems. Cambridge
Monographs on Applied and Computational Mathematics, Cambridge University Press, UK.

[10] Saad, Y. (1993): A Flexible Inner-Outer Preconditioned GMRES Algorithm. SIAM J. Sci. Comput.
Vol. 14, pp. 461-469.Higham N.J, Mary Th. (2019): A New Preconditioner that Exploits Low-Rank
Approximations to Factorizations Error. SIAM Journal on Scientific Computing, Vol.41 (1), pp. A59-A82.
DOI: https://doi.org/10.1137/18M1182802.

[11] Higham N.J, Mary Th. (2019): A New Preconditioner that Exploits Low-Rank Approximations to
Factorizations Error. SIAM Journal on Scientific Computing, Vol.41 (1), pp. A59-A82. DOI:
https://doi.org/10.1137/18M1182802.

[12] Stratton J.A., Rodrigues C., Sung I.J., Obeid N., Chang L.W., Anssari N., Liu G.D., Hwu W.W.
(2012): Parboil: A Revised Benchmark Suite for Scientific and Comercial Throughput Computing,
IMPACT Technical Report, IMPACT-12-01.

[13] LINPACK benchmark:
https://people.sc.fsu.edu/~jburkardt/c_src/linpack_bench/linpack_bench.html

[14] LLFI software download: https://github.com/DependableSystemsLab/LLFI
[15] Lattner C., Avre V. (2004): LLVM: A Compilation Framework for Lifelong Program Analysis &
Transformation, in CGO 2004, pp.75-86. DOI: 10.1109/CGO.2004.128166.

[16] Kestor G., Peng I.B., Gioiosa R., Krishnamoorthy S. (2018): Understanding Scale-dependent
Soft-error Behaviour of Scientific Applications. In Procs. of IEEE/ACM 18th Int. Symposium on Cluster
and Grid Computing (CCGRID), May 1-4, Washington DC, USA. DOI: 10.1109/CCGRID.2018.00075.

[17] Kestor G., Mutlu B.O., Manzano J., Subasi O., Unsal O., Krishnomoorthy S. (2018): Comparative
Analysis of Soft-Error Detection Strategies: A Case Study with Iterative Methods. In Procs. of 15th ACM
International. Conference on Computer Frontiers (CF-2018), pp.172-182, May 8-10, Ischia, Italy.
https:/doi.org/10.1145/3203217.3203240.

[18] Ayatolahi F., Sangchoolie B., Johansson R., Karlsson J. (2013): A Study of the Impact of Single
Bit-Flip and Double Bit-Flip Errors on Program Execution. In: Bitsch F., Guiochet J., Kaâniche M. (eds)
Computer Safety, Reliability, and Security. SAFECOMP 2013. Lecture Notes in Computer Science, vol
8153. Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-642-40793-2_24

[19] Saad Y., Schultz M.H. (1986): GMRES: A Generalized Minimal Residual Algorithms for Solving
Nonsymmetric Linear Systems, SIAM J. Scientific and Statistical Computing, Vol.7(3), pp. 856-869. DOI:
https://doi.org/10.1137/0907058.

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

24

[20] Elliot J., Hoemmen M., Mueller F. (2014): Evaluating the Impact of SDC on the GMRES Iterative
Solver. In Procs. of IEEE 28th International Parallel and Distributed Processing Symposium (IPDPS’14),
pp. 1193-1202. DOI: 10.1109/IPDPS.2014.123.

[21] Bridges P. G., Ferreira K. B., Heroux M. A., Hoemmen M. (2012): Fault-tolerant Linear Solvers via
Selective Reliability. arXiv:1206.1390v1.

[22] Henderson H. V., S. R. Searle S.R. (1981): On Deriving the Inverse of a Sum of Matrices, SIAM
Review 23(1), pp. 53-60, https://www.jstor.org/stable/202983.

[23] Halko N., Martinsson P-G., Tropp J. (2011): Finding Structure with Randomness: Probabilistic
Algorithms for Constructing Approximate Matrix Decompositions. SIAM Review, Vol. 53 (2), pp. 217-288,
http://www.jstor.org/stable/23065163.

[24] Martinsson, P-G. (2019): Randomized Methods for Matrix Computations. In IAS/Park City
Mathematics Series. American Mathematical Society, Vol. 25, pp. 187-230.

[25] SuiteSparse Matrix Collection (University of Florida Matrix Collection): https://sparse.tamu.edu/
[26] Davis T.A., Hu Y. (2011): The University of Florida Sparse Matrix Collection. ACM Trans. Math.
Softw. 38(1), Article 1, 25 pages.

[27] Duff I.S., Grimes R.G., Lewis J.G. (1997): The Rutherford-Boing Sparse Matrix Collection. Report
of the Rutherford Appleton Laboratory, 62 pages, RAL-TR-97-031.

[28] Calhoun J., Snir M., Olson L.N., Gropp W.D. (2017): Towards a More Complete Understanding of
SDC Propagation. In Procs. 26th International Symposium on High-Performance Parallel and Distributed
Computing (HPDC '17). Association for Computing Machinery, New York, NY, USA, pp. 131–142, 2017.
DOI: https://doi.org/10.1145/3078597.3078617

[29] Li Z., Menon H., Mohror K., Bremer P.T., Livant Y., Pascucci V. (2021): Understading a Program's
Resiliency Through Error Propagation. In Procs. Principles and Practice of Parallel Programming
Conference (PPoPP), Feb. 27-March 3, Republic of Korea. https://doi.org/10.1145/3437801.3441589

[30] Oliveira D., Pilla L., De Bardeleben N., Blanchard S., Quinn H., Koren I., Navaux P., Rech. P.
(2017): Experimental and Analytical Study of Xeon Phi Reliability. In Procs. International Conference for
High Performance Computing, Networking, Storage and Analysis (SC '17). Association for Computing
Machinery, New York, NY, USA, Article 28, 1–12. DOI: https://doi.org/10.1145/3126908.3126960

[31] Oliveira D., Pilla L., Hanzich M., Fratin V., Fernandes F., Lunardi C.B., Cela J., Navaux P., Carro L.,
Rech P. (2017): Radiation-Induced Error Criticality in Modern HPC Parallel Accelerators. In Procs. 2017
IEEE International Symposium on High Performance Computer Architecture (HPCA), pp. 577-588,
DOI:10.1109/HPCA.2017.41

[32] Cher C., Gupta M.S., Bose P., Muller K.P. (2014): Understanding Soft Error Resiliency of Blue
Gene/Q Compute Chip through Hardware Proton Irradiation and Software Fault Injection. In SC '14:
Proceedings of the International Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 587-596. DOI: 10.1109/SC.2014.53.

[33] Ziade H., Ayoubi R.A., Velazco R. (2004): A Survey on Fault Injection Techniques. International
Arab Journal of Information Technology, Vol 1(2), pp. 171-186.

[34] Cho H., Mirkhani S., Cher C., Abraham J.A., Mitra S. (2013): Quantitative Evaluation of Soft Error
Injection Techniques for Robust System Design, in Procs. 50th ACM/EDAC/IEEE Design Automation
Conference (DAC), pp. 1-10. DOI: https://doi.org/10.1145/2463209.2488859

[35] Sharma V.C., Haran A., Rakamaric Z., Gopalakrishnan G. (2013): Towards Formal Approaches to
System Resilience. In Procs. IEEE 19th Pacific Rim International Symposium on Dependable Computing,
pp. 41-50. DOI: 10.1109/PRDC.2013.14

[36] Kooli M., Natale G.D., Benoit P., Bosio A., Torres L., et al. (2014): Fault Injection Tools Based on
Virtual Machines. In Procs. of IEEE 9th Reconfigurable and Communication-Centric Systems-on-Chip
(ReCoSoC), 26-28 May, Montpellier, France. DOI:10.1109/ReCoSoC.2014.6861351

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

25

[37] Sharma V.C., Gopalakrishnan G., Krishnamoorthy S. (2016): Towards Resiliency Evaluation of
Vector Programs. In Procs. IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pp. 1319-1328. DOI: 10.1109/IPDPSW.2016.187

[38] Calhoun J., Olson L., Snir M. (2014): FLIPIT: An LLVM Based Fault Injector for HPC. In: Lopes L.
et al. (Eds.) Euro-Par 2014: Parallel Processing Workshops. Lecture Notes in Computer Science, Vol.
8805. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-14325-5_47

[39] Giuffrida C., Kuijsten A., Tanenbaum A.S. (2013): EDFI: A Dependable Fault Injection Tool for
Dependability Benchmarking Experiments. In Procs. IEEE 19th Pacific Rim International Symposium on
Dependable Computing, pp. 31-40. DOI: 10.1109/PRDC.2013.12

[40] Guo L., Li D., Laguna I., Schulz M. (2018): FlipTracker: Understanding Natural Error Resilience in
HPC Applications. In Procs. SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 94-107. DOI: 10.1109/SC.2018.00011

[41] Ni X., L. V. Kale L.V. (2016): FlipBack: Automatic Targeted Protection against Silent Data
Corruption. In Procs. International Conference for High Performance Computing, Networking, Storage
and Analysis (SC '16), Salt Lake City, UT, USA, pp. 335-346, DOI: 10.1109/SC.2016.28.

[42] Georgakoudis G., Laguna I., Nikolopoulos D.S., Schulz M (2017): REFINE: Realistic Fault Injection
via Compiler-based Instrumentation for Accuracy, Portability and Speed. In Procs. of ACM Int. Conf. for
High Performance Computing, Networking, Storage and Analysis (SC '17), New York, USA, Article 29,
pp.1–14. DOI: https://doi.org/10.1145/3126908.3126972

[43] Oliveira D., Fratin V., Navaux Ph., Koren I., Rech P. (2017): CAROL-FI: An Efficient Fault-Injection
Tool for Vulnerability Evaluation of Modern HPC Parallel Accelerators. In Procs. of ACM Int. Conference
on Computing Frontier, May 15-17, Siena, Italy.

[44] Li G., Pattabiraman K., Cher C., Bose P. (2016): Understanding Error Propagation in GPGPU
Applications, in SC'16: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 240-251. DOI: 10.1109/SC.2016.20

[45] Tselonis S. Gizopoulos D. (2016): GUFI: A Framework for GPUs Reliability Assessment, in Procs.
IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 90-100.
DOI: 10.1109/ISPASS.2016.7482077

[46] Mutlu, B.O., Kestor, G., Manzano, J., Unsal, O., Chatterjee, S., Krishnamoorthy, S. (2018):
Characterization of the Impact of Soft Errors on Iterative Methods. In Procs. of 25th IEEE Int. Conf. on
High Performance Computing (HiPC-2018), pp. 203-214. https:/doi.org/10.1109/HiPC.2018.00031

[47] Mutlu, B.O., Kestor, G., Cristal, A., Unsal, O., Krishnamoorthy, S. (2019): Ground-Truth Prediction
to Accelerate Soft-Error Impact Analysis for Iterative Methods. In Procs. of IEEE 26th Int. Conf. on High
Performance Computing (HiPC-2019), pp.333-344. https:/doi.org/10.1109/HiPC.2019.00048

[48] Mutlu B.O. (2019): An Extensive Study on Iterative Solver Resilience: Characterization, Detection
and Prediction, University of Cataluña, 150 pages, Sept. 2019.

[49] Sangchoolie B., Pattabiraman K., Karlsson J. (2017): One Bit is (Not) Enough: An Empirical Study
of the Impact of Single and Multiple Bit-Flip Errors. 47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Denver, CO, USA, pp. 97-108. DOI: 10.1109/DSN.2017.30

[50] Elliot J., Hoemmen M., Mueller F. (2014): Tolerating Silent Data Corruptions in Opaque
Preconditioners, SAND2014-3452C.

[51] Patrick G. Bridges P.G., Hoemmen M., Ferreira K.B., Heroux M.A., Soltero Ph., Brightwell R.
(2012): Cooperative Application/OS DRAM Fault Recovery. In Procs. Euro-Par (Eds: Alexander M. et al.).
(Eds.), Part II, LNCS 7156, pp. 241–250, Springer-Verlag, Berlin, Heidelberg.

[52] Coleman E., Jamal A., Baboulin M., Khabou A., Sosonkina M. (2017): A Comparison of Soft-Fault
Error Models in the Parallel Preconditioned Flexible GMRES. In Procs. in Int. Conf. Parallel Processing
and Applied Mathematics, Sept. 2017, Lublin, Poland, pp. 36-46. DOI: 10.1007/978-3-319-78024-5_4

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

26

[53] Ashraf R.A., Hukerikar S., Engelmann Ch. (2018): Pattern-based Modeling of Multiresilience
Solutions for High-Performance Computing. In Procs. ACM/SPEC International Conference on
Performance Engineering (ICPE '18), NY, USA, pp. 80–87. DOI: 10.1145/3184407.3184421

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

27

LIST OF FIGURES

Fig. 1 LLFI workflow and design (taken from [1]).

Fig. 2 SDC rate as a function of the number of experiments performed with single
bit-flip injection for the five benchmarks considered.

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

28

Fig. 3 Comparison of failure type rates after 100,000 experiments in two fault injection
scenarios: single-bit and double-bit flip injection (1-bf and 2-bf, respectively). Hang rate
is undiscernible in the plot scale of the figure (its values for single-bit flip injection are
given in Table 2).

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

29

Fig. 4 Standard GMRES algorithm, preconditioned with ILU(0) and m-restarted.

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

30

Fig. 5 Preconditioned Flexible GMRES algorithm. Tthe variable preconditioner Mj is
implicitly set when applying the Standard GMRES-ILU(0) to solve for zj in the Arnoldi
process.

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

31

Fig. 6 Preconditioned Randomized-SVD -based GMRES algorithm. The preconditioner
construction and randomized version of the SVD are detailed in the last portion of the
pseudocode.

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

32

Fig. 7 Comparison of failure type rates for the set of matrices. OK executions
correspond to the strict criteron RHS=RHSbaseline (hang rate is undiscernible in the plot).

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

33

Fig. 8 Comparison of failure type rates for the set of matrices. OK executions
correspond to the criterion: number of iterations needed to atain RHS ≤ tolerance,
equal or lower than the baseline case (hang rate is again undiscernible in the plot).

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

34

Fig. 9 Histograms of iterations-to-converge (the maximum 400 iterations corresponds
to a non-convergence scenario). Matrices ex1 and poisson2D are shown as tests
solved with the three GMRES versions. The dark gray bar corresponds to iter=iterbaseline.

Manuscript, submitted to the Journal of Supercomputing - October 11 2021

35

Fig. 10 Crash rate comparison for the Standard, Flexible and Randomized-SVD -based
GMRES algorithms. Each percentage range is computed across the 18 matrices
(average value is indicated by the circle).

