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Abstract

In this paper we present a numerical study of the impact of heat losses and

the di↵erential di↵usion e↵ect on the flame-acoustics interaction, for flames

propagating from the open to the closed end of a planar channel. It has

been recently demonstrated [1] that for Le=1 symmetric and non-symmetric

flames produce di↵erent acoustic responses in adiabatic channels. The results

of the present study show that the interaction of the flame with the acoustic

field is significantly influenced by heat losses and the Lewis number through

a change in the shape of the flame: increasing the heat losses tends to make

the flames symmetric and low Lewis numbers result in non-symmetric flames.
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1. Introduction

It is well known that the coupling of the flame heat release fluctuations

and the acoustic waves traveling in a duct can result in thermo-acoustic in-

stabilities, producing noise, uncontrolled flame behaviour and even structural
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damage when the pressure oscillations are large. This phenomenon is espe-

cially noticeable when the flame propagates from the open to the closed end

of the duct, a configuration where the reflection of acoustic waves at the ends

of the channel can be very intense, as shown in experiments in [2–9].

In the numerical modeling of flames propagating in a duct, it has been

often assumed that the flame should be symmetrical about the middle of the

channel, when modeling planar channels, or about the channel central axis, in

channels with circular cross section. This assumption is convenient to reduce

computational costs, since the numerical domain can be reduced when the

appropriate symmetry boundary conditions are set. However, it has recently

been shown that, in addition to the symmetrical flame solution, other types

of flames can exist whose shape is not symmetrical [10–19]. These two types

of solutions can exist simultaneously, at least as mathematical objects, both

in the case of stationary flame propagation (with a constant velocity rela-

tive to the channel wall) and in cases where the flame velocity changes with

time. The specific shape of the flame that is actually realized, symmetrical

or asymmetrical, depends on the values of parameters such as the channel

width, the reactants mass flow rate, the wall thermal properties, the thermal

expansion rate or the reactants Lewis numbers [19]. An important practical

implication is that symmetric and non-symmetric flames present very di↵er-

ent flame burning and propagation speeds, with non-symmetric flames being

notably faster due to an increased flame surface area. Moreover, when the

two solutions exist, in a vast majority of cases, non-symmetric flames are sta-

ble while symmetric flames are unstable. It should be noted, however, that

despite the possible instability of symmetric flames, their numerical simula-
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tion can be easily carried out in a half channel and, thus, their properties

can be studied. This symmetry-breaking phenomenon can be linked to hy-

drodynamic and thermodi↵usive instabilities, so that non-symmetric steadily

propagating flames appear for Le < 1 and even at Le = 1 (for a given range

of flow rates and channel widths). The existence of non-symmetric flames

with oscillatory dynamics was also observed in [11] for Le > 1.

Morphological di↵erences between symmetrical and non-symmetrical flames

are, of course, reflected in the interaction of the flame with the acoustic field.

For Le = 1 flames propagating from the open to the closed end of an adi-

abatic channel the coupling flame-acoustics has been shown to depend on

the flame shape. As a consequence, symmetric and non-symmetric flames

not only propagate at di↵erent speeds but also present di↵erent acoustically-

driven oscillations [1]. The measured frequency of these oscillations was well

approximated in all the studied cases in [1] by the solution of the eigen-

mode equation for longitudinal acoustic waves in a narrow channel of length

L when the flame is considered as a moving passive thin surface separating

quiescent gases at the conditions of the fresh gases and the burnt gases. This

eigen-frequency is an increasing function of the flame distance to the channel

closed end, x/L. However, the flame response to acoustic forcing at these

eigen-frequencies, the flame transfer function, was shown to be di↵erent for

symmetric and non-symmetric flames. In particular, at the frequencies cor-

responding to the shorter channels studied in [1] (lengths about 800 times

the thermal flame thickness �T ), only symmetric flames had a small but ap-

preciable amplifying response and therefore only symmetric flames presented

self-sustained acoustic oscillations, that became more important as L was
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increased. For the longer channels, starting at about L = 1600 �T , both

non-symmetric and symmetric flames presented large enough amplification.

This analysis explained why for some channel lengths only symmetric flames

would present acoustic-driven oscillations while for other channel lengths only

non-symmetric flames would oscillate, but was only applicable to the case of

adiabatic channel walls. Other numerical studies on the two-way coupling

between flame and acoustics were presented in [20–22], also with adiabatic

walls. In [21, 22], however, the possibility of symmetric and non-symmetric

propagating flame solutions was overlooked.

The purpose of the present work is to extend our previous study [1] and

include the e↵ects of non-adiabatic walls and di↵erential di↵usion on the

flame shape and on flame-acoustics coupling. According to the authors,

this aspect of the interaction of the flame with the acoustic field has not

been considered before. A priori, two e↵ects would be expected when heat

losses are increased: on the one side the flame burning rate and therefore

the acoustic oscillations should be damped and on the other side symmetric

flames should become more stable, as reported in, e.g., [16, 19]. On the other

hand, for Le < 1 we should expect the flames to become non-symmetric and

as a consequence faster for a wider range of conditions. The combined e↵ect

of heat losses and Le < 1 may then result in damped or enhanced acoustic

oscillations and this is studied here using numerical calculations.

In [7, 23–25], where flames in vertical channels were investigated, it was

shown that the gravitational acceleration plays also an important role in the

acoustic flame instability. However, to limit the scope and extension of the

present work, we neglect gravity in the present study, and will study its e↵ect
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elsewhere. This research is also limited to the study of planar channels, due to

the increased cost involved in the study of three-dimensional configurations.

Results of three-dimensional studies will be presented in future work.

The paper is organized as follows: in Section 2 we present the equa-

tions governing the problem and the method used for their solution, Section

3 presents results of simulations of symmetric and non-symmetric Le = 1

flames in channels with heat losses and Section 4 focuses on the e↵ect of

varying the Lewis number. Finally, Section 5 presents conclusions and a

summary of the results.

2. Mathematical formulation and numerical solution

Consider a premixed flame propagating in an open-closed planar channel

of width D and length L, filled with a fuel/air mixture at initial temperature

T0. The unburned mixture in the region between the moving flame and the

closed end of the channel at the left side remains motionless on average, ex-

cept for the movement of gas particles produced by sound waves (as shown

in [1], the oscillating pressure gradient induces a small flux in the fresh gases,

switching between positive and negative values opposed in phase to the pres-

sure oscillations). A parabolic-like velocity profile drives the hot combustion

products to the exit at the right side of the channel. This non-uniform flow

field (and the heat losses to the wall, in case they are present) induces a cur-

vature in the flame, whose magnitude and shape depend on the parameters

of the problem. The flame front propagating from the open to the closed end

(right to left in the sketch of Fig. 1) can be symmetric or non-symmetric. The

exact shape and burning rate of this flame can be determined numerically
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by solving the governing equations of the problem.

Figure 1: Sketch of the problem

We neglect body forces and radiation heat losses and assume a one-step

binary irreversible chemical reaction F + O ! P, and a mixture deficient in

fuel, so that the oxidant mass fraction remains approximately constant. The

resulting 2D conservation equations for mass, momentum, energy and fuel

mass fraction are:
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with ui(i = 1, 2) the components of the gas velocity, ⇢ its density, p the

pressure, Y the fuel mass fraction and et the total (non-chemical) energy,

defined as et = 1
2ukuk + p/⇢ (� � 1), with � = cp/cv, the ratio of the gas

constant-pressure and constant-volume heat capacities, assumed constant,

and where the perfect gases equation of state: p = ⇢RT = ⇢(cp � cv)T is

used.

These equations are completed by the definition of the viscous stress

tensor, ⌧ij = µ
�
@ui/@xj + @uj/@xi � 2

3�ij@uk/@xk

�
, with µ the mixture dy-
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namic viscosity, and the heat flux, qi = ��@T/@xi, with � = µcp/Pr the gas

thermal conductivity, defined as a function of µ, cp and a constant Prandtl

number Pr. The viscosity and thermal conductivity of the gas mixture are

assumed to vary with temperature, as µ/µ0 = �/�0 = (T/T0)
0.7. The fuel

mass di↵usivity D is D = DT/Le, with DT = �/(⇢cp) the thermal di↵usivity

and Le a constant Lewis number, so that D and DT depend on temperature

as ⇢D/⇢0D0 = ⇢DT/⇢0DT0 = (T/T0)
0.7. The subscript 0 stands for variables

measured in the fresh gas mixture.

As mentioned above, the mixture is assumed to be deficient in fuel, so

that the oxidizer mass fraction is considered constant and the fuel mass

consumption rate per unit volume and time is modelled via an Arrhenius

model as:

!̇ = B ⇢
2
Y exp(�E/RT ), (5)

with E the activation energy and B a pre-exponential factor, where Y is

the deficient mass fraction. (This corresponds to a very lean mixture, an

identical formulation would be obtained if we assumed a very rich mixture

and constant fuel mass fraction. In that case Y would represent the oxidizer

mass fraction). We introduce the usual Zel’dovich number and thermal ex-

pansion parameters: � = E (Ta � T0) / (R T
2
a ) and q = Ta/T0, the standard

parameters characterizing Arrhenius models, with Ta the adiabatic flame

temperature. The heat produced per unit volume and time, Q !̇, is given

by the factor Q = (Ta � T0)cp/Y0 = (q � 1)T0cp/Y0. The power n = 2 for

the density dependence of the reaction rate in Eq. 5 was chosen here as the

most representative for combustion. Even if there is a certain controversy

on whether it should be n = 1 or n = 2, we showed in [1] that choosing
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n = 1 or n = 2 only leads to quantitative di↵erences in the flame response

to acoustics.

We solve a dimensionless version of Eqs. 1-4, using as characteristic pa-

rameters: �T = DT0/SL, the thermal flame thickness of the planar flame,

with SL the adiabatic planar flame speed, a time scale �T/c0 (with c0 the

speed of sound in the fresh gases, c0 =
p

�p0/⇢0 ), and the fresh gases refer-

ence state given by ⇢0, T0, µ0, YF0 and cp. The only free parameters in the

dimensionless equations are: Le, Pr, q, �, �, the Damköhler number, Da,

related to the pre-exponential factor B as Da = B⇢0 �T/c0, and an acoustic

Reynolds number Reac = �T c0 ⇢0/µ0. It should be noted that the choice of

a characteristic length equal to the thermal thickness, �T = DT0/SL, based

on the value of the thermal di↵usion coe�cient estimated for the cold mix-

ture, results in a larger than unity ”real flame width”, since the value of the

thermal di↵usion coe�cient near the flame is noticeably larger than DT0.

Here we fix a set of parameters: Pr = 0.7, q = 8, � = 10, � = 1.4 and

Reac = 476.19 (the same values used in [1]), and vary the Lewis number Le

and the wall thermal properties, as explained later. The Damköhler number

Da was chosen to vary with Le, so that for all the flames in this work the

planar flame speed SL takes the same value SL = 3 · 10�3
c0. These values

of the parameters correspond, for example, to a lean hydrogen-air flame at

standard conditions.

2.1. Boundary conditions

Boundary conditions at the walls represent the solid-gas interaction. In

this work we will not model the temperature distribution inside the wall

along the channel. Instead, we assume a small wall thickness hw, hw/D << 1,
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so that the temperature distribution within the solid wall can be taken as

linear between the gas temperature and the external wall temperature, which

we take equal the fresh gases temperature, T0.

We can then write the temperature boundary conditions for the bottom

and top walls as done in [12] or [16]:

@T

@y

����
y=0

=
�w

�hw
(Ty=0 � T0) ,

@T

@y

����
y=D

=
�w

�hw
(T0 � Ty=D) , (6)

where � and �w are the gas and wall thermal conductivities, respectively.

The boundary condition for the left wall is set as adiabatic assuming, for

example, a large sidewall thickness. These conditions are supplemented by

no-slip, no-flux conditions for the velocity and the fuel mass fraction at the

walls:

ui|y=0 = ui|y=D = 0,
@Y

@y

����
y=0

=
@Y

@y

����
y=D

= 0. (7)

The parameter �w/(�hw) in Eq. 6 controls the heat transfer between the

gas and the solid and depends on the wall thermal conductivity and thickness,

which are constants, and on the gas thermal conductivity, �, which varies

with temperature. We will use, as in [16], a reference non-dimensional heat

transfer parameter given by the value of the heat transfer parameter at the

fresh gases scaled with the flame thickness �T :

b =
�w

�0

�T

hw
, (8)

with �0 the thermal conductivity of the unburned gas mixture. A value

b = 0 corresponds to an adiabatic wall and the limit b ! 1 represents an

isothermal wall.

Setting the boundary conditions for the pressure at the open end of the

channel is controversial and di↵erent options have been used in numerical
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studies. In this study, we set a pressure node with constant pressure equal

to ambient pressure (p = pa) at the open channel end, representing an outlet

open to the atmosphere, as in [1]. Note that this constant pressure boundary

condition implies reflection of sound waves at the open end [26, 27]. As a

consequence, in addition to the acoustic mode between the flame front and

the closed-end wall, the acoustic mode between the flame front and the open

end also a↵ects the flame-acoustics interaction, as was the case in [1]. This

is di↵erent to the flame-acoustics interaction in [21, 22], where non-reflecting

boundary conditions were applied at the channel exit so that the flame-

acoustics interaction happened only due to the acoustic mode between the

flame front and the closed end wall. This constant pressure boundary condi-

tion for an open tube has been used in several numerical studies concerning

acoustic flame instabilities [28–30].

The NSCBC methodology [26] is used to implement the boundary condi-

tions. In particular the constant-pressure outlet condition is implemented as

a subsonic reflecting outflow (see paragraph 9.4.5 in [27]). In some cases with

very strong acoustic oscillations, the flow direction in the burnt gases may be

occassionally inverted, so that the outlet becomes an inlet. In this case, ad-

ditional zero gradient conditions for the fuel mass fraction and temperature

at the outlet are used.

2.2. Numerical method

We use the compressible solver NTMIX3D, a parallel solver designed for

the direct numerical simulation of flames and turbulent reacting flows de-

scribed in [31], using 6th-order finite di↵erences and 3d-order Runge-Kutta

time integration.
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The computational domain is a D⇥L rectangle, discretized on a uniform

Cartesian grid with 100 ⇥ 2000 cells for a channel with D = 40 �T and

L = 800 �T . The same numerical method used in this study was validated

in [1]. Details on resolution tests, comparing results in a grid with twice and

four times the resolution can be found in the Appendix of [1]. The order

of convergence is estimated to be ⇡ 1.15. In the present calculations, for

some particular cases a grid with a finer resolution was adopted; this will be

discussed in the text as these cases are presented.

The question of the adequate resolution needed for flame simulations can

be controversial. It is generally accepted that a su�ciently small grid for

a planar flame is obtained with about ten points inside the flame thickness

�L, defined as: �L = (Ta � T0) /
dT
dx

��
max

[27]. For the present planar flame,

in particular, we have �L ⇡ 6�T , and a grid about 15 times smaller than

�L. Of course these are only order of magnitude estimations. Moreover the

adequacy of the grid size depends also on the adopted numerical method.

Again replicating the calculations in [1], the simulations are initialized

using a planar flame solution near the open end, to avoid the small time

steps related to flame ignition. This is done here by computing a steady

freely propagating planar flame with the same code and models and using

this solution as initial condition for all the calculations. The initial flame is

located so that the peak heat release is at a distance 70 �T from the open

end. Anticipating the possible existence of symmetric and non-symmetric

solutions, two kinds of simulations are implemented:

1. Full-domain simulations, starting from a non-symmetric perturbation
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of the planar flame with the shape of a hot spot centered at xc, yc:

T (x, y) = Tp(x, y)
⇥
1 + 6 exp

�
�
�
(x� xc)

2 + (y � yc)
2
�
/2R2

�⇤
, (9)

where Tp(x, y) is the unperturbed initial planar flame temperature field

and typically R = �T , xc = L� 80 �T , yc = 3D/4;

2. Half-domain simulations, with a computational domain limited to the

range 0 < y < D/2, and with symmetric boundary conditions imposed

along the central channel axis y = D/2.

The simulations in the full domain reproduce (after an initial transient)

the stable flame solution, whether it is symmetric or non-symmetric. The

half-domain simulations are used to obtain the symmetric solution for com-

parison, even in the cases when it is unstable.

Note that when carrying out numerical simulations (or experiments), the

following fact should be taken into account. If symmetric (or very near

symmetric) initial conditions are chosen but the stable configuration is non-

symmetrical, the time for the development of this solution depends on the

degree of asymmetry of the initial conditions and the accuracy of the used

numerical code. When studying the dynamics of a flame in channels of finite

length, this transition time may easily exceed the total travelling time of

the flame from the beginning to the end of the channel. In the case of

an experiment, the establishment of symmetric conditions (for example at

ignition) is even more problematic. For this reason, the transition time from

(almost) symmetric initial conditions to a non-symmetric flame shape cannot

be a well-defined flame property.

When analysing the results, one of the main characteristics of the dy-
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namics is the pressure field, in particular its value at the closed end of the

channel, that we denote in this paper pw. We measure also the flame burning

rate or fuel consumption speed (scaled with SL) defined by the integral:

Sc/SL =
1

⇢0Y0 DSL

Z D

0

Z L

0

!̇ dxdy. (10)

The derivation of this property is not new (see, e.g. [27]) and it is given

in the Appendix for completeness. It should be mentioned that for adiabatic

channels Sc can be associated to a flame propagation speed, when the flame

propagates at a constant speed. It must also be said that the numerical value

of this integral losses its physical meaning when the flame is located near the

right (open) or left (closed) channel ends (see Appendix).

3. Symmetric and non-symmetric Le = 1 flames in a channel with

wall heat losses

In [1] we showed that for Le = 1 flames in adiabatic channels the critical

channel width from and above which symmetric flames become unstable and

non-symmetric flames appear was D ⇡ 17�T (for the studied flame parameter

values). Moreover, we showed in [1] that there was a critical channel width

and length for which self-sustained flame oscillations appear as a result of

flame-sound interaction; these critical channel dimensions were estimated to

be about D = 40�T and L = 800�T .

In this section we present results of simulations for Le = 1 flames prop-

agating in a non-adiabatic channel of width and length D = 40�T and

L = 2400�T . These channel dimensions were chosen so that both symmetric

and non-symmetric flames would present self-sustained acoustically-induced
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oscillations in the adiabatic channel according to [1]. We compare results of

full-domain and imposed-symmetry calculations to demonstrate that when

the two kind of solutions may mathematically exist, the non-symmetric flame

is the stable solution, as shown before in [1, 19] in cases where the acoustics

or the heat losses were neglected.

The simulations were done on Cartesian grids with 100 ⇥ 6000 cells (or

50⇥6000 cells for the half-domain cases), except for the full-domain, b = 0.01

case, for which the flames were more corrugated and stretched and a finer

mesh with 150⇥ 9000 cells was needed.

Full domain simulations results show that for adiabatic walls or small

heat losses the flame becomes non-symmetric, while for large heat losses the

flame adopts a symmetric shape. This can be seen in Fig. 2 left, where

the flame is non-symmetric for the adiabatic (b = 0) and moderate heat

transfer (b = 0.01) cases, becomes almost planar for b = 0.02, and then

symmetric with a mushroom shape for larger heat losses. This confirms that

the existence of stable symmetric flames is favored by heat losses as reported

before in [16, 19].

The flame consumption speed, Sc, and the pressure measured at the

closed-end wall, pw, for the same full-domain calculations are presented in

Fig. 3 left. These variables show the coupled flame and pressure oscillations.

Starting from the initially planar flame, for which the consumption speed

is Sc = SL, the flames acquire curved shapes as they propagate along the

channel and accelerate, then they start oscillating. These oscillations can be

measured as oscillations in the consumption speed Sc or in the pressure pw in

Fig. 3. The non-symmetric flames in the full domain with small heat losses
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 flame propagation

Figure 2: Reaction rate isolines corresponding to !�T /(⇢0c0) = 1, at time steps �t =

0.0125L/SL, illustrating the propagation of a Le = 1 flame in channels with D = 40�T ,

L = 2400�T and varying b, in full-domain (left) and half-domain (right) computations.

The initial planar flame is located near the right end of the channel and propagates to the

left.

(cases b = 0, 0.01 in Fig. 3 left) present larger mean flame speeds and larger

amplitude oscillations. Because they are faster, they reach the end wall in

shorter times. For larger heat losses (b > 0.02) the flames extinguish before

reaching the end wall.

In the adiabatic case the flame curvature results in an average flame

consumption speed larger than the laminar flame speed (about 2.2SL), with

oscillations of amplitude of the order of SL. For increasing values of the
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Figure 3: The time evolution of the dimensionless flame consumption speed Sc/SL and

the dimensionless pressure at the end wall pw/pa in channels with D = 40�T , L = 2400�T

and varying b, in full-domain (left) and half-domain (right) computations.

heat losses Sc decreases, reaching a value below SL for the nearly planar

flame (b = 0.02). As heat losses are further increased the flame acquires

again a curvature and the flame consumption speed increases moderately, to

values close to the laminar flame speed SL. For the non-symmetric flame of

the b = 0.01 case, pressure oscillations can be relatively important, with a

maximum pressure amplitude of up to 10%pa. It is interesting to remark that

even if this flame is slowlier than the adiabatic flame, the pressure oscillations,

which depend on the flame shape, can be stronger than those found in the

adiabatic case.

Oscillations become almost negligeable for the quasi-planar flame with

b = 0.02, with only appreciable oscillations near the end of the channel,

where the flame has acquired a little curvature. This confirms again that the

flame-acoustics coupling is dependent on the flame shape and that some flame

curvature is necessary for this coupling to occur. Indeed, as shown in [32, 33],
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for planar flames the only e↵ect of pressure oscillations on the flame happens

via the reaction rate response, which is much less intense that the flame

response studied here. Finally, for large values of the heat losses coe�cient

(b � 0.05), the flame adopts a symmetric mushroom shape and oscillations

appear early in the channel propagation, but flames are extinguished by heat

losses before these oscillations become more important.

The e↵ects of heat losses observed here are qualitatively similar to those

reported in the experiments in [9] for moderately weak flames (15�20 cm/s)

propagating in a narrow cylindrical tube (? = 8 mm). In particular, the

experiments show that for flames with SL = 20 cm/s heat loss e↵ects are

moderate and a rapidly fluctuating flame can propagate to the end of the tube

showing large pressure fluctuations, which in [9] are related to the secondary

acoustic instability (this corresponds to Figs. 4 c and Fig. 6 in [9]). The

pressure trace for this regime is very similar to that found here for small heat

losses (case b = 0.01 in Fig. 3 left): large oscillations in pressure growing in

amplitude along the propagation, that reach peaks of 4kPa in the experiments

and 10kPa here. For weaker flames, the experiments show that heat losses

are more important. In the case of SL = 15 cm/s, corresponding to Fig.

4 b in [9], the curved flame becomes first nearly planar, with moderately

large pressure amplitude oscillations. At some point in the oscillations the

flame reaches a maximum flame area and then extinction happens after a

strong acoustic oscillation. This is explained in [9] as a possible e↵ect of

the large stretch induced in the flame as the oscillations become large and

the flame area increases; this stretch would then contribute to extinction.

A similar behaviour is observed in the present numerical simulations for the
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cases with large heat losses (b � 0.05 in Fig. 3 left): an increase in the flame

consumption speed (and in the flame area) driven by oscillations is detected

preceding flame extinction for these cases. As explained in [9], it is a priori

possible that steady flames could propagate in the tube in these cases, while

vibrating flames with a large area and stretch would be more a↵ected by

heat loss and would extinguish. This is an interesting e↵ect that could be

confirmed in future work by comparing the present flame simulation results

to low-Mach number simulations where acoustic oscillations are neglected.

The right column plots in Figs. 2 and 3 correspond to half-domain simu-

lation results for the same parameters (Le = 1, D = 40�T and L = 2400�T ).

Figure 2 right shows that the forced symmetry condition results in a symmet-

ric tulip shape for small heat losses (b = 0, 0.01), that become mushroom-

shaped for large values of b. The simulations with b � 0.02 show flames

identical to those obtained in the full domain. For these cases the symmetric

solution is stable, while for b = 0 and b = 0.01 it is clearly unstable: if the

forced symmetry condition is removed the flame becomes non-symmetric.

For imposed-symmetry calculations, oscillations in the consumption speed

and the pressure at the end wall (Fig. 3 right) are small in all cases. Note

that in [1] it was shown that the flame response to acoustic pressure oscil-

lations, the flame transfer function, depends on the flame shape, displaying

a di↵erent frequency dependence for symmetric and non-symmetric flames.

Apparently, for the present flame and channel size parameters, the response

of non-symmetric flames to the eigen acoustic modes of the channel is more

intense at frequencies corresponding to flame positions near the middle of

the channel, while symmetric flames present a more intense response at the
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higher frequencies near the end wall.

4. E↵ect of the Lewis number

It is well known that when the Lewis number is less than one, the flame

propagating in an unbounded space can acquire a cellular structure. The

cellular structure is also possible when the flame propagates in a channel

from an open to a closed end, when the gas ahead of the flame is at rest.

In this section we compare results for flames with di↵erent Le numbers

and varying b propagating in a D = 40�T , L = 800�T channel. This is the

minimum channel size for which self-sustained acoustic oscillations appear for

Le = 1 flames in adiabatic channels in the present configuration, according

to [1].

All the results below correspond to full-domain unsteady simulations and

were done on Cartesian grids with 100⇥ 2000 cells, except for certain cases

where a finer mesh was needed. This was the case of Le = 0.3 flames with

b = 0.01 and 0.02 (for these cases a 150⇥3000 grid was needed), and Le = 0.7

flames with b = 0.05 and Le = 0.3 flames with b = 0 (cases for which

a 200 ⇥ 4000 grid was needed). In these cases very convoluted symmetric

flames with large surfaces appear, requiring a finer resolution.

Figure 4 displays the flame consumption speed and pressure at the end

wall together with reaction rate isolines representing the flame propagation

for Le = 1 and di↵erent values of the heat transfer coe�cient b. Results are

similar to those of the previous section: the flames are non-symmetric for low

heat losses, become almost planar as heat losses increase, and then symmetric

with a mushroom shape for larger heat losses. However, contrary to what
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was observed in the longer channel of Fig. 2, for this case with L = 800�T ,

oscillations are negligeable for non-symmetric flames while they can become

relatively important (up to 5% of pa) for the symmetric mushroom-shaped

flames (cases with b � 0.05). This agrees with the results in [1] for adiabatic

channels: for Le = 1 flames inD = 40�T , L = 800�T channels only symmetric

solutions present acoustic-driven oscillations.
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Figure 4: The flame consumption speed, the pressure at the end wall (left) and reaction

rate isolines !�T /(⇢0c0) = 1 (right) for Le = 1 and several values of b. Isolines are

separated by time intervals �t = 0.01875L/SL.

When the Lewis number is reduced, the flame shape is modified and,

accordingly, the response to acoustic oscillations changes as well. It is im-

portant to remark that when the Le number is changed the rest of parameters

are kept constant, except for Da, which is changed so that the planar flame

speed value, SL, is also maintained constant.
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For the Le = 0.7 cases, presented in Fig. 5, the flame in the adiabatic

channel is non-symmetric, but with a di↵erent shape, more corrugated than

in the Le = 1 case and displaying two cells. Because of this change in

shape, the flame burning rate and the pressure oscillations are appreciably

larger than in the Le = 1 case of Fig. 4. As the heat losses coe�cient is

increased, the flame shape becomes closer to planar, and oscillations dis-

appear. For even larger heat lossses (b = 0.05) we find symmetric flames

oscillating between tulip and mushroom shapes, with large oscillations in the

flame consumption speed and in the measured pressure, which can become

as large as 14SL and 50%pa, respectively. In this case, the flame adopts a

very convoluted symmetric shape at the end of the propagation, similar to

the violent folding reported in [22]. Note that in [1], where only adiabatic

channels were considered, this kind of flame was only obtained in unphysical

half-channel simulations, where symmetry was forced.

For larger values of the heat transfer coe�cient b � 0.1, the flame recovers

a behaviour close to that of the Le = 1 flame, extinguishing before reaching

the mid-channel. Apparently, these flames extinguish before reaching the

position in the channel corresponding to the more resonant frequencies which,

according to the results for b = 0.05, should be located at the second half of

the channel in this case.

With a further decrease in the Lewis number, the cellular nature of the

flame manifests itself in greater force. Figure 6 presents the results of sim-

ulations for flames with Le = 0.3. For Le = 0.3 the flame shape changes

drastically, and so do the propagation and oscillation characteristics. In the

adiabatic and lower heat losses cases (b = 0, 0.01 and 0.02), we observe sym-
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Figure 5: The flame consumption speed, the pressure at the end wall (left) and reaction

rate isolines !�T /(⇢0c0) = 1 (right) for Le = 0.7 and several values of b. Isolines are

separated by time intervals �t = 0.01875L/SL.

metric flames which become non-symmetric along the propagation. Both the

symmetric and the non-symmetric flames are very convoluted for this low

value of Le, and as such, present a large surface and large burning rates,

of the order of 10 times SL. This large flame length and burning speed re-

quire a finer mesh in order to adequately solve the flame. Oscillations in

the flame speed and pressure are also very large, of the order of 30 SL and

50% pa, respectively. These large surface and speed require a finer mesh for

adequate resolution. These fast flames reach very quickly the end wall: as

can be seen in Fig.6 left, the flames with b  0.02 reach the end wall at

times t < 0.1L/SL, that is, they propagate on average ten times faster than

the planar flame. This can be compared to the case Le = 1 in Fig. 4, for
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which the total propagation times were on average of the order of 0.5L/SL

and could be as long as 1.2L/SL for the almost planar flame with Sc < SL.

Finally, it is remarkable that for large values of the heat losses (large b),

the flames adopt very large curvatures, even breaking into smaller round-

shaped cells. This shape confers robustness to the flames, so that even for

very large heat losses coe�cients these flames can survive and propagate to

the end of the channel. This kind of flames resemble those described in [34]

in simulations of ultra-lean H2 flames with radiation heat losses and in [35] in

simulations of low Lewis number flames in a Hele-Shaw chamber with large

heat losses. Here we report that these flames, in addition to a large burning

rate with large resistance to extinction by heat losses, may be linked to large

pressure oscillations, as seen for b = 0.1 and b = 1 in Fig. 6. This is an issue

that should be taken into account in the design of lean hydrogen combustion

systems, for example, as it a↵ects both the safety under fuel leakages and

the stability of the flames in enclosed devices.

5. Conclusions

The main goal of this work is to demonstrate the importance of taking into

account the possibility of losing the symmetry of the flame and the influence

of this phenomenon not only on the speed of propagation of the flame along

the channel, but also on its impact on the interaction of the flame with the

acoustic field.

We studied numerically flames propagating from the open to the closed

end of a planar channel where reactants are initially at rest. In this channel

configuration, the manifestation of the interaction between the flame and
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Figure 6: The flame consumption speed, the pressure at the end wall (left) and reaction

rate isolines !�T /(⇢0c0) = 1 (right) for Le = 0.3 and several values of b. Isolines are

separated by time intervals �t = 0.0075L/SL.

the acoustic field is most pronounced. The study focuses on the e↵ect of

the channel wall thermal properties and the Lewis number on the flame

shape and, as a consequence, on the flame-acoustics interaction. This is an

extension of a previous study in which only adabiatic channels and flames

with Le = 1 were considered [1].

For Le = 1 and Le = 0.7, we found that flames are non-symmetric for

low values of the gas-solid heat transfer coe�cient b in the considered fairly

wide channels and become mushroom-shaped symmetric as b is increased,

extinguishing for large values of b. This confirms that heat losses contribute

to the stabilization of symmetric flames, at least for these values of Le close

to unity. The acoustic oscillations are more important for non-symmetric

24



flames in long channels (here for L = 2400�T ) and for symmetric flames in

the case of shorter channels (L = 800�T ).

For Le = 0.3, flames appear to be non-symmetric for all the studied values

of b, breaking into small round-shaped cells as the heat transfer coe�cient

b becomes large. These cellular flames present large burning rates and are

therefore robust to heat losses. As a consequence, they do not extinguish as

b is increased within the considered range, and can propagate to the channel

end. Moreover, all the studied Le = 0.3 flames present large pressure oscilla-

tions. This Le = 0.3 case is relevant for lean hydrogen flames, and the present

results show two important features to be taken into account in the design of

lean hydrogen burners: the robustness of lean hydrogen flames to heat losses,

that can be related to the formation of cellular round-shaped fast-burning

flames and the onset of large amplitude flame-acoustic oscillations that can

a↵ect the stability and even the integrity of the system.

This paper is also a reminder that attention should be given to the pos-

sible symmetry breaking in computations of flames propagating in ducts. If,

as it is frequently done, symmetry of the flame is assumed in simulations,

the flame burning and propagation rate, and the possibility of occurrence of

acoustic flame instabilities can be mispredicted.
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AppendixA. Fuel consumption rate property

For the sake of completeness, the expression for the fuel consumption rate

is derived below. Let us consider an adiabatic channel. Using a reference

frame attached to the flame front (for example, to a point with a given tem-

perature) and writing the equation for the fuel mas fraction in a conservative

form, we have:

@⇢Y

@t
+

@

@xi

⇢
⇢Y [ui + �ixuf (t)]� ⇢D @Y

@xi

�
= �!̇ , (A.1)

where uf (t) is the instantaneous reference frame speed.

Integrating Eq. A.1 over a su�ciently large volume of the channel enclos-

ing the flame, one can obtain:

x2Z

x1

DZ

0

@⇢Y

@t
dx dy � ⇢0Y0uf (t)D = �

x2Z

x1

DZ

0

!̇ dx dy . (A.2)

where points x1 and x2 are chosen far ahead and far behind the flame. In

writing Eq. A.2, it was also used that

x = x1 : ui ! 0, Y ! Y0; and x = x2 : Y ! 0. (A.3)

When the flame is moving steadily (@/@t ⌘ 0), the first term in Eq. A.2 is

exactly zero and Sc ⌘ uf . When the flame is far from the ends of the channel,

it is convenient to replace the integration limits with x1 = 0 and x2 = L,

since !̇ is vanishingly small far from the flame.
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In the general case, we can still use

Sc =
1

⇢0Y0D

LZ

0

DZ

0

!̇ dx dy (A.4)

to characterize the flame dynamics. This coincides with the flame speed

relative to the walls when the flame moves at a constant velocity and is close

to the value of the front propagation velocity in the time dependent case.

However, it is obvious from its derivation that Sc can significantly di↵er

from the actual flame speed, uf , in very short channels (say, L ⇠ O(�T )) or

when the flame is situated close to the left (closed) or right (open) ends of

the channel. For this reason, the use of Sc in these cases is not appropriate

and, possibly, may lead to erroneous conclusions.
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[12] V. Kurdyumov, C. Jiménez, Propagation of symmetric and non-

symmetric premixed flames in narrow channels: influence of conductive

heat-losses, Combust. Flame 161 (2014) 927–936.

[13] M. Sánchez-Sanz, D. Fernández-Galisteo, V. Kurdyumov, E↵ect of the
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[19] A. Dejoan, C. Jiménez, V. Kurdyumov, Critical conditions for non-

symmetric flame propagation in narrow channels: influence of the flow

rate, the thermal expansion, the Lewis number and heat-losses, Com-

bust. Flame 209 (2019) 430–440.

[20] K. Bhairapurada, B. Denet, P. Boivin, A lattice-boltzmann study of pre-

mixed flames thermo-acoustic instabilities, Combust. Flame 240 (2022)

112049.

[21] A. Petchenko, V. Bychkov, V. Akkerman, L. Eriksson, Violent folding of

a flame front in a flame-acoustic resonance, Phys. Rev. Lett. 97 (2006)

164501.

[22] A. Petchenko, V. Bychkov, V. Akkerman, L. Eriksson, Flame-sound

interaction in tubes with nonslip walls, Combust. Flame 149 (2007)

418–434.

[23] G. Searby, D. Rochwerger, A parametric-acoustic instability in premixed

flames, J. Fluid Mech. 231 (1991) 529–543.
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