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Abstract

The propagation of premixed flames in long channels is investigated when a combustible mixture is ignited at one end,
which is retained closed thereafter, leaving the other end open to atmospheric pressure. This constraint conditions the
flow produced by gas expansion near the flame. The burned gas trapped between the flame and the closed end comes
eventually to rest, while the flow sets in the fresh mixture escapes freely at the far end of the channel. Seeking for
traveling wave solutions, we find that two possible solutions, corresponding to slow and fast steadily propagating
flames, exist under appropriate conditions. The critical conditions are determined when the two solutions merge,
and depend on the channel width, the heat release and the Lewis number. Beyond criticality, steadily propagating
flames in channels closed at their ignition end are not possible. Numerical simulation of the time-dependent equations
in su�ciently long channels confirm the existence of a steady propagation mode, always corresponding to the slow
flame solution. Beyond criticality, the flame always accelerate as it travels down the channel.
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1. Introduction

There has been a continuous interest in the study
of flame propagation in channels or tubes, because of
its fundamental importance to combustion science, on
one hand, and its application to micro propulsion de-
vices and engineering safety and reliability, on the other.
Early studies [1, 2] have recognized that the boundary
conditions imposed at the end of the channel have a sig-
nificant e↵ect on the flame propagation. Thus, propa-
gation in channels open at both ends, di↵er from prop-
agation from a close to an open end, or from an open
towards a close end.

We have recently examined the dynamics of flame
propagation in long two-dimensional adiabatic chan-
nels, open at both ends. Under such conditions, the gas
is allowed to escape the channel freely and the pressure
at both ends is nearly constant and equal to the ambi-
ent (atmospheric) pressure patm. In narrow channels, of
width h smaller than the laminar flame thickness �T , the
flame accelerates throughout the combustible mixture at
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a nearly constant rate [3]. In wider channels, such that
h is comparable, or is a multiple of the laminar flame
thickness, the flame accelerates at a constant rate dur-
ing an initial period that follows ignition [4]. Once it
reaches a critical distance, the flame acceleration rate in-
creases rapidly, in a near-explosion fashion. The critical
conditions marking the transition for constant to rapid
acceleration were found to depend on the channel width
a = h/�T . This work substantiated Shelkin’s idea [5]
that flame acceleration results from the combined ef-
fects of wall friction and thermal expansion. Indeed,
it was demonstrated that the curved flame that results
due to the resistance exerted on the gas at the walls, is
further stretched by the e↵ect of gas expansion and thus
propagates at an increasing faster rate.

In this paper we examine the dynamics of flame prop-
agation in a channel close at the ignition end. Our focus,
in particular, is on the necessary conditions for the ex-
istence of steadily propagating flame solutions. They
are determined by the fact that, although the gas es-
capes freely at the open far end, it must come to rest
near the closed end of the channel where it has initiated.
Beyond criticality, the flame will necessarily accelerate
after reaching a certain distance down the channel. In-
deed, flame acceleration from a closed end channel has
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Figure 1: Schematic of the channel configuration, illustrating the var-
ious length scales associated with the flame propagation; the channel
is closed at x = 0 and remains open at the far right.

been studied previously using model equations [6], and
time-dependent numerical simulations [7, 8, 9]. These
studies, however, did not recognize the possibility of
steady flame propagation from a close end channel, nor
were they able to identify the exact critical conditions
for flame acceleration.

2. General formulation

A combustible mixture contained in a channel of
length L and width h is ignited at its left end, which is re-
tained closed as the flame propagates towards the other
open end, as shown schematically in Fig. 1. The chan-
nel is considered su�ciently long, such that L � h and
the walls are assumed adiabatic and non-catalytic. The
chemistry is modeled by a global, one step, irreversible
reaction of the form Fuel + Oxidizer ! Products that
proceeds at a rate proportional to the product of the re-
actant concentrations ⇠ ⇢2

YFYO, where ⇢ is the mix-
ture density and YF , YO the mass fractions of the fuel
and oxidizer, and an Arrhenius temperature dependence
with activation energy E and a pre-exponential factorB.
Below, we assume that the mixture is lean in fuel and
denote its mass fraction by Y for simplicity, and treats
the oxidizer mass fraction as constant absorbed in B.

We introduce dimensionless variable (for clarity, di-
mensional values are denoted here with a “prime”) as
follows:

x = x
0

�T
, y =

y
0

h
=

y
0

a �T
, t = t

0

t
0
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= S Lt
0
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⇢uS
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L
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0�Tu

Ta�Tu

, Y = Y
0

Yu

,

(1)

where x, y are the axial and transverse coordinates and
u, v the corresponding velocity components, p is the
pressure and t represents time. The density and tem-
perature of the mixture are scaled with respect to their
values in the fresh, unburned gas, denoted by the sub-
script “u”, and normalized variables have been intro-
duced for the fuel mass fraction Y and the temperature;

the latter, denoted by ✓, varies from zero in the unburned
gas to one when the temperature reaches the adiabatic
flame temperature Ta = Tu + QYu/cp, where Q here is
the total heat release and cp the specific heat at constant
pressure. Axial distances are measured in terms of the
di↵usion length �T = DT /S L, with DT the thermal dif-
fusivity of the mixture and S L the laminar flame speed,
while transverse distances are measured with respect to
the width of the channel h. We recall that the parameter
a = h/�T = O(1).

The dimensionless governing equations are

⇢(ut + uux + vuy) = �a
�2

px + Pr [a�2
uyy

+ 4
3 uxx +

1
3 vxy],

⇢(vt + uvx + vvy) = a
�4

py + Pr [a�2( 4
3 vyy

+ 1
3 uxy) + vxx],
⇢(✓t + u✓x + v✓y) = ✓xx + a

�2✓yy + !,
⇢(Yt + uYx + vYy) = Le

�1[Yxx + a
�2

Yyy] � !,
⇢ = 1/(1 + �✓).

(2)

where subscripts denote partial di↵erentiation. The pa-
rameter � = (Ta�Tu)/Tu is the heat release parameter,
Le = DT /DF is the Lewis number, withDF the molec-
ular di↵usivity of the fuel, and Pr = ⌫/DT is the Prandtl
number, with ⌫ the kinematic viscosity of the mixture.
The reaction rate ! is given by

! =
�2(1 + �)2

2Le s
2
L

⇢2
Yexp

(
�(✓ � 1)

(1 + �✓)/(� + 1)

)
, (3)

where �=E(Ta�T0)/RT
2
a

is the Zel’dovich number. In
writing (3), the approximate expression for the laminar
flame speed,

S Lasp =

q
2⇢uLeDth B/�2 (Tu/Ta) e�E/2RTa (4)

valid for � ! 1, was used, and an adjustment factor
sL = S L/(S L)asp was introduced to ensure that for a finite
�, the flame speed S L takes on the correct (numerical)
value. The numerical value of sL, for a given � and Le,
is determined as the eigenvalue of the one-dimensional
planar adiabatic flame problem, as discussed in [3].
These equations must be solved subject to the follow-
ing boundary conditions

u = v = ✓y = Yy = 0 along y = 0, 1;
u = v = ✓ � 1 = Y = 0 at x = 0;
p = v = ✓ = Y � 1 = 0 at x = `,

(5)

where ` = L/�T is the dimensionless channel length.

3. Steadily propagating flames - the eigenvalue
problem

Seeking traveling wave solutions in su�ciently long
channels, ` � 1, we introduce the flame-attached coor-
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dinate ⇠ = x � ẋ f t, where ẋ f is the (constant) propaga-
tion speed that remains to be determined. The governing
equations (2) reduce to

[⇢(u � ẋ f )]⇠ + (⇢v)y = 0
⇢(u � ẋ f )u⇠ + ⇢vuy = �a

�2
p⇠ + Pr[a�2

uyy

+ 4
3 u⇠⇠ +

1
3 v⇠y]

⇢(u � ẋ f )v⇠ + ⇢vvy = �a
�4

py + Pr[a�2( 4
3 vyy

+ 1
3 u⇠y) + v⇠⇠]

⇢(u � ẋ f )✓⇠ + ⇢v✓y = ✓⇠⇠ + a
�2✓yy + !

⇢(u � ẋ f )Y⇠ + ⇢vYy = Le
�1[Y⇠⇠ + Yyy] � !

(6)

and their solution must match the flow in the far field,
as ⇠ ! ±1. The latter are described by

py = 0, p⇠ = Pr uyy ,

as discussed in [4], and constitute Poiseuille flows given
by u = 6U

±
y(1 � y) where U

± denote the mean gas
velocity ahead/behind the flame that remain to be de-
termined. The pressure is obtained a-posteriori from
p⇠ = �12Pr U

±. The matching conditions are, there-
fore,

u ⇠ 6U
±
y(1 � y), v ⇠ 0 as ⇠ ! ±1

✓ ⇠ 0, ⇢ ⇠ 1, Y ⇠ 1 as ⇠ ! +1
✓ ⇠ 1, ⇢ ⇠ (1 + �)�1, Y ⇠ 0 as ⇠ ! �1 .

(7)

For steady propagation, a relation between U
+ and

U
� can be obtained by integrating the mass conserva-

tion equation with respect to ⇠, from �1 to +1. One
finds

(1 + �) [U+ � ẋ f ] = [U� � ẋ f ] (8)

Thus, for a given value of U
+, the set of equations

(6), the boundary conditions along the walls (5) and the
matching conditions (7) constitute an eigenvalue prob-
lem for the determination of the propagation speed ẋ f .
The position of the flame front x f is defined as the lo-
cation where the reaction rate ! reaches its maximum
value along the mid-plane (due to the imposed sym-
metry) and the propagation speed ẋ f is subsequently
determined by direct di↵erentiation. The solution of
this eigenvalue problem, may be expressed in the form
U
+ = F (ẋ f ) , where the functional dependence on the

eigenvalue ẋ f appearing on the right hand side is be de-
termined numerically. Substituting into (8) yields

U
� = (1 + �)F (ẋ f ) � � ẋ f . (9)

In a narrow channels, a ⌧ 1, all variables except
for the flow velocity u are, to leading order, indepen-
dent of y. Integrating the mass conservation equation
across the channel yields ⇢(U� ẋ f ) = C, where U is the
mean flow velocity, and the constant C = �1 by direct

comparison to the classical one-dimensional eigenvalue
problem of a planar adiabatic flame; see also [3]. Then,
U
+ = ẋ f � 1 implying that F (ẋ f ) is a linear function of

ẋ f , or F (ẋ f ) = ẋ f � 1. Consequently U
�= ẋ f � (1 + �)

is also a linear function of ẋ f .
In general, i.e., for a = O(1), the functional depen-

dence F (ẋ f ) must be determined numerically. The nu-
merical methodology for solving the eigenvalue prob-
lem has been discussed in [4] and will not be repeated
here. In all the calculations reported below, we have
fixed � = 10 and Pr = 0.72 and examined the depen-
dence of the propagation speed on the channel width a,
the heat release parameter �, and Lewis number Le.

The dependence of U
+ and of U

� on ẋ f are shown in
Fig. 2 for Le = 1, � = 5 and selected values of a. The
analytical linear dependence for a ⌧ 1 is shown by the
dashed lines. It is remarkable that the linear dependence
remains valid for a as large as a = 5, provided U

+ is
not too large. It is particularly important to note the
multi-valuedness of U

�, the consequence of which will
be discussed below.

Consider first the general case of a flame propagating
in a channel with a prescribed flow, of mean velocity
U
+, with the flow of the burned gas U

� given by (9).
The flame propagates in the direction of the flow, when
U
+ > 0 and against the flow when U

+ < 0, the latter
corresponds to flame flashback. The case of the flame
propagation to close end is obtained when U

+ = 0. The
results are similar to those reported in [10, 11] for con-
stant density flows. One can see that for any U

+ there is
a unique propagation speed ẋ f .

4. Steady propagation from a closed to an open end

For self propagating flames in a channel retained
closed at the ignition end, the boundary conditions at
x = 0 yields U

� = 0, implying that the expanding gas
that moves initially away from the flame, in an oppo-
site direction to its propagation, comes eventually to
rest. Then Eq. (9), or equivalently the intersection of
the curves in Fig. 2(b) with the abscissa, determines the
propagation speed uniquely. The mean flow U

+ and,
consequently,the flow field in the unburned gas is deter-
mined from Eq. (8). The analytical solution for a ⌧ 1
implies that in narrow channels ẋ f = 1 + �, in analogy
with spherically expanding flames of su�ciently large
radii [12].

Figure 2(b) shows that for su�ciently small values of
a there are two possible solutions for ẋ f , marked with
the symbols � and • in the figure. The lowest value of
the two, which tends to the analytical solution as a! 0,
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is presumably the one that will be observed experimen-
tally, as further substantiated below. The two solutions
approach each other as a increases, and merge when
a = ac; the critical value ac = 5.36 for Le = 1 and
� = 5. For a > ac, the curve U

� no longer intersect
the abscissa, implying that in su�ciently wide channels
steady propagation solutions are not possible.

The flame structure and the flow field corresponding
to the two distinct steady propagating solutions, for a
channel width a = 5, are shown in Fig. 3. The color
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Figure 2: The mean velocity U
+ ahead, and U

� behind the flame as
a function of the propagation speed ẋ f , resulting from the solution of
the eigenvalue problem (6). The dashed lines are the analytical results
for a ⌧ 1. The symbols � and •, at the intersection of U

� with the
abscissa in figure (b), mark the two possible steady propagating flame
solutions.
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Figure 3: Illustration of the flame structure and flow field of the two
distinct steadily propagating solutions, in a channel of width a = 5
closed at the ignition (left) end.

shades in the upper part of the channel correspond to
variations in the reaction rate !, which is clearly neg-
ligible on either side of the flame. The color shades in
the lower part of the channel correspond to variations
in temperature and, indeed, in the temperature in the
burned gas region (on the left) is the adiabatic flame
temperature and in the fresh mixture (on the right) is the
temperature of the fresh mixture. The flame shape, and
the extent of the reaction zone, are clearly identified by
the reaction rate contours in the upper part of the chan-
nel, while the extent of the preheat zone is visualized
by the temperature spread away from the flame in the
lower part of the channel. The flow field is illustrated
by streamlines drawn relative to walls in the upper part
of the channel, and relative to an observer moving with
the flame in the bottom part of the channel. It is evident
that at a su�ciently large (compared to the flame thick-
ness) distances from the flame, the induced flow in the
unburned gas is parallel to the walls while the flow of
the burned gas is at rest.

The dependence of U
� on ẋ f is plotted in Fig. 4 for

� = 5 and two di↵erent values of Lewis number, similar
to Fig. 2(b) corresponding to Le = 1. Although when
a ⌧ 1 the solution is independent of the Lewis num-
ber, in wider channels the critical ac increases with in-
creasing Le implying that larger Lewis number mixtures
can more easily propagate steady flames. The channel
width, below which steady propagation is not possible,
is reduced from ac = 8.64 when Le = 1.2, to ac = 5.36
when Le = 1, and ac = 3.75 when Le = 0.7. The prop-
agation speed at criticality reduces only slightly, from
ẋ f = 11.3 when Le = 1.2 to ẋ f = 7.5 when Le = 0.7.
The dependence of the critical ac on the Lewis num-
ber, for � = 5, is shown in Fig. 4(a), where steady
propagation is not possible for parameter values above
the curve (i.e., low Le flames). Note, in particular, the
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Figure 4: The mean velocity U
� behind the flame as a function of the

propagation speed ẋ f , for two values of the Lewis number.

sharp increase in ac for Le > 1 implying, for exam-
ple, that in rich hydrogen-air flames, for which Le ⇡ 2
for an equivalence ratio � = 2 [13], steady propagation
will be possible in channels twenty times wider than the
flame thickness. In Fig. 4(b) we show the dependence of
the critical ac on the heat release parameter, for a fixed
Le = 1, implying that steady propagation is not possible
for su�ciently large values of �.

5. Steady propagation vs flame acceleration

To substantiate the aforementioned results, the time-
dependent problem (2) was addressed for the two dif-
ferent values, a = 5 and a = 6 lying below and above
the critical value ac, in a su�ciently long channel of
length ` = 100, with � = 5 and Le = 1. We anticipate

0.5 1 1.5 20

5

10

15

20

Le

ac

γ=5

(a)

2 3 4 5 64

5

6

7 Le=1

γ

ac

(b)

Figure 5: Dependence of (a) the Lewis number Le and (b) the heat
release parameter �, on the critical value ac. Steady propagation is
only possible below the curves.

that independent of the initial conditions the flame, af-
ter an initial transient, will propagate steadily in a chan-
nel of width a = 5, but not in the channel with a = 6.
For the latter, the solution of the time-dependent prob-
lem will illustrate the nature of the propagation. The
numerical simulations were carried out using the time-
marching procedure proposed in [14], with the veloc-
ity vector decomposed into irrotational and solenoidal
components and solved respectively by introducing po-
tential and stream-like functions. The initial conditions
adopted correspond to a hot spot near the close (left) end
of the channel, in a mixture that is otherwise at rest.
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Figure 6: The flame position (in units of L) and the propagation speed
(in units of S L) plotted as a function of time in a finite length channel
` = 100, for � = 5 and Le = 1. The symbols � identify the selected
times used in Figs. 7 to illustrate the flame structure and position.

Figure 6 shows the dependence of the flame position
x f , scaled with respect to `, and propagation speed ẋ f

on time. The e↵ect of the energy deposited as an initial
condition is seen to fade away after a short time inter-
val. Indeed, when a = 5, the flame speed approaches
the constant value predicted in the previous section and
shown by a dash-dotted line in the figure. When a = 6,
the flame speed increases continuously as the flame ac-
celerates towards the open end of the channel.

Figure 7 shows the propagating flames (in the lower
half of the channel) at di↵erent times for the two cases
under consideration. Note that the x-axis has been
shifted to adjust the flame position within the frame
of the graph. The snapshots correspond to the points
marked by the symbol � in Fig. 6. We note that un-
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Figure 7: Illustration of the flame structure and position based on the
numerical simulations of flame propagation in a channel of length ` =
100. Shown are selected reaction rate contours in the lower half of the
channel at di↵erent times, corresponding to the positions marked by �
in Fig.6.

like the steadily propagating flame, the flame structure
of the accelerating flame changes continuously in time.
Stretching out for additional fuel, the flame under the
combined e↵ects of friction and thermal expansion be-
comes further elongated during its acceleration, similar
to our results on flame propagation in channels open at
both ends [4].

Figures 8 and 9 shows the axial pressure and velocity
profiles for the two cases under consideration at selected
times (the first four, correspond to the times selected in
the illustration of Fig. 7). When the flame propagates
steadily (as for a = 5), the burned gas trapped between
the flame and the end of the channel remains at rest
while the pressure level decreases in time. The constant
pressure gradient ahead of the flame drives a flow of
constant velocity towards the open end of the channel.
The pressure and velocity change dramatically when the
flame accelerates (as for a = 6) down the channel. Al-
though the burned gas behind the flame remains at rest,
the pressure builds up in time. As a consequence, the
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Figure 8: Pressure (along the wall) variations at selected times during
the propagation in a channel of length ` = 100, with � = 5 and Le = 1.

constant pressure gradient developing in the unburned
gas region becomes sharper and drives a flow of con-
tinuously increasing velocity near the open end of the
channel. The slightly lower pressure in the last time in-
terval may be a result of boundary e↵ects. Measuring
the velocity at the outflow may provide means to exper-
imentally quantify the dynamics of flame propagation in
channels.

6. Concluding remarks

The boundary conditions imposed at the end of a
channel, within which a premixed flame is propagat-
ing, have a significant e↵ect on the mode of propaga-
tion. Our earlier work on channels open at both ends,
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Figure 9: Velocity (along the centerline) variations at selected times
during the propagation in a channel of length ` = 100, with � = 5 and
Le = 1.

has shown that the flame always accelerates when trav-
eling down the channel. The flame acceleration is asso-
ciated with the ability of the gas to escape freely from
the channel. The expanding gas near the flame sets the
gas in motion and creates, as a result of frictional forces,
pressure gradients that drive the unburned and burned
gases towards the opposite ends of the channel. Stretch-
ing out for the escaping fuel the flame moves faster. The
resulting elongated flame is continuously stretched by
the combined e↵ects of friction and thermal expansion,
leading to a continuous increase in propagation speed.
In contrast, when the flame propagates in a channel
close at the ignition end, the burned gas trapped between
the flame and the end of the channel comes to rest and
only the unburned gas is allowed to escape the channel
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freely. As a result two modes of propagation are possi-
ble: (i) The flame, after an initial transient, propagates
steadily at a speed determined by the mixture proper-
ties (heat release parameter and Lewis number) and the
channel’s width, and (ii) the flame after an initial tran-
sient accelerates down the channel at an ever-increasing
speed. Steady propagation results in su�ciently narrow
channels, when the heat release is not too large and in
mixtures of su�ciently large Lewis numbers.

To the best of our knowledge, the existence of a
steady mode of propagation in channels closed at their
ignition end together with the existence of double veloc-
ity solutions, has not been discovered before, and this
work marks the first investigation that identifies explicit
conditions for the flame acceleration.
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