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Abstract

In this paper, we study the effect of gravity, or buoyancy forces, on the structure of flames propagating in horizontal
channels. It is shown that there are two mechanisms for the appearance of non-symmetric flames. The first, more
obvious, is related to buoyancy, when a hotter gas of lower density tends to be located in the upper half of the
channel. However, there is a second mechanism associated with the intrinsic flame instabilities, which also can
cause the loss of flame symmetry. This mechanism can, at certain values of the parameters, act in the opposite
direction, when hotter gases are enclosed in the lower part of the channel. In this case, two stable non-symmetric
solutions may exist in the presence of gravitational forces and the establishment of one or another configuration
depends on the initial conditions. The stability of these solutions is demonstrated by time-dependent computations.
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1. Introduction

The first pioneering numerical studies on premixed
flames freely propagating in channels can be traced
back more than thirty years [1, 2]. In later years, re-
search on this topic has multiplied, due to its impor-
tance for the design of many combustion devices and
their safe operation [3–9].

It should be noted that in most of the early stud-
ies on freely propagating flames, a condition of flame
symmetry about the middle of the channel (or its axis
for circular channels) was applied to reduce compu-
tational costs, so the non-symmetric flames were not
captured. Perhaps the first investigations where this
limitation was not imposed were those reported in
[5, 9].

When a premixed flame propagates in a channel,
its speed depends on the flame surface area in which
the combustion process takes place. For this reason,
the shape of the flame is of great importance in prop-
agation properties and there is significant amount of
works exploring this issue. There are quite a num-
ber of effects that determine the flame shape. First of
all, such effects as heat losses [3, 10–13], the effect
of the Lewis number [5, 13–19], the influence of the
flow rate [5, 9, 14, 17], thermal expansion [13, 18] and
others should be mentioned. Among the latter are the
buoyancy forces, which were recently considered in
[20] for flames stabilized with respect to the channel
walls.

Under experimental conditions, the study of flame
propagation is often carried out in channels situated
horizontally. In these cases, a natural question arises
of how the buoyancy forces generated by changes in
the gas density affect the structure and dynamics of
the flame. It would be logical to assume at first glance
that the buoyancy forces could break the symmetry of
the flame relative to the middle of the channel, which
could occur in their absence, leading to the hotter
gas to be located preferentially in the upper half of
the channel. On the other hand, as was shown re-
cently in numerical simulations for channels of suf-
ficient width, e.g see [13], the flame may also be-
come nonsymmetric by itself and without the partici-
pation of buoyancy. This effect is a manifestation of
intrinsic flame instabilities: diffusive-thermal insta-
bility and hydrodynamic Darrieus-Landau instability.
When these instabilities break the flame symmetry in
the absence of a gravity field, it is obvious that two
non-symmetric flame configurations, mirrored rela-
tive to the mid-channel, are possible. These two con-
figurations are stable in the absence of gravity, in con-
trast to the symmetric solution, which, although it ex-
ists as a mathematical object, becomes unstable. The
aim of this work is to try to answer the question of
how buoyancy forces will affect this situation.

It should be noted that this work is not aimed at
building a complete map of possible solutions nor at
performing an exhaustive parametric analysis. Con-
trarily, it is rather intended to highlight the most sig-
nificant details affecting the shape of the flame, while

excluding secondary effects, as it seems to the au-
thors. For this purpose, we consider only planar
channels with adiabatic walls, excluding heat losses
from consideration, and we study only lean mixtures
(where the oxidant concentration remains approxi-
mately constant) using one-step Arrhenius kinetics.
The results obtained by relaxing these assumptions
will be reported elsewhere.

The work is structured as follows. Section 2 pro-
poses a mathematical formulation of the problem.
Section 3 describes the solution methods. Section 4
presents the numerical results obtained on the basis
of steady-state solutions, which are then confirmed by
time-dependent calculations. The last section offers a
discussion of the results.

2. General formulation

Consider a lean combustible mixture (fuel and ox-
idizer) at initial temperature T0, density ρ0 and fuel
mass fraction Y0, flowing with mean velocity U0 in a
horizontal channel of height h. For the sake of sim-
plicity, we consider planar adiabatic two-dimensional
channels. In what follows, x′, y′ denote the longitu-
dinal and wall-normal coordinates, respectively. The
influence of the third coordinate z′, transverse to the
motion of the mixture, will be neglected. The results
of modeling three-dimensional flames require signifi-
cantly large numerical costs and will be reported else-
where. Primes here and hereafter mark dimensional
quantities if the same notation is used for dimensional
and non-dimensional variables. The subindex ”0” in-
dicates initial fresh gas stream values.

The combustible mixture undergoes a chemical re-
action modeled by a global irreversible step F+O →
P , where F denotes the fuel,O the oxidizer and P the
products. Assuming that the mixture is lean in fuel,
the oxidizer mass fraction remains nearly constant.
The amount of fuel consumed per unit volume and
per unit time is given by Ω = Bρ2Y exp (−E/RgT ),
where B is a pre-exponential factor containing the
molecular weights of fuel and oxidizer molecules, ρ is
the density of the mixture, Y is the fuel mass fraction,
E is the overall activation energy and Rg is the univer-
sal gas constant. We assume also constant transport
properties and heat capacity cp of the mixture.

The burning velocity of the planar flame SL, the
thermal flame thickness defined as δT = DT /SL,
with DT = λg/ρ0cp the thermal diffusivity, and the
adiabatic flame temperature Ta = T0+QY0/cp, with
Q the total heat of combustion per unit mass of fuel,
are used below to specify the non-dimensional pa-
rameters. Using the above scales based on the flame
properties allows to compare numerical results calcu-
lated for different chemical and transport parameters.
To this end, the dimensionless channel height, a =
h/δT , and the dimensionless flow rate, m = U0/SL,
are introduced.
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Dimensionless variables are defined as follows

t = t′SL/δT , x = x′/δT , y = y′/h,
u = u′/SL, v = v′/(aSL),
ρ = ρ′/ρ0, Y = Y ′/Y0,

θ = (T − T0)/(Ta − T0), p = a2p′/ρ0S
2
L,

(1)

where u, v denote the velocity components in the x-
and y-directions, respectively, and p is the pressure.

For the steady-state solutions reported below (ob-
tained by imposing ∂/∂t = 0 in the governing equa-
tions), the reference frame was attached to the flame,
namely to a point (x∗, y∗) with a given temperature
θ = θ∗. The velocity of this point with respect to
the wall, uf = Uf/SL, constitutes an eigenvalue of
the problem and gives the flame propagation velocity.
Indeed, in the case of steady flame propagation the
whole flame surface propagates with a constant ve-
locity equal to uf , which is independent of both the
location of the reference point and of the reference
temperature. Evidently, θ∗ and y∗ must be chosen
judiciously so that this point lies outside the quench-
ing layer near the wall (if it exists in non-adiabatic
scenarios). Calculations of time-dependent flame dy-
namics were also carried out where a reference frame
attached to the wall was used. In this case uf = 0
was imposed in the governing equations presented be-
low. Notice that in both cases u and v represent the
flow velocities with respect to the wall and there are
no non-inertial forces in the momentum conservation
equation.

Under the above and zero-Mach number assump-
tions, the governing equations and the equation of
state are

ρt + (ρ[u+ uf ])x + (ρv)y = 0,

ρ(ut + [u+ uf ]ux + vuy) = −a−2px
+Pr [a−2uyy + 4

3
uxx + 1

3
vxy],

ρ(vt + [u+ uf ]vx + vvy) = −a−4py
+Pr [a−2( 4

3
vyy + 1

3
uxy) + vxx]− ρG,

ρ(θt + [u+ uf ]θx + vθy) =
θxx + a−2θyy + ω,

ρ(Yt + [u+ uf ]Yx + vYy) =
Le−1[Yxx + a−2Yyy]− ω,

ρ(1 + qθ) = 1,

(2)

where subscripts denote partial differentiation. The
reaction rate term takes the form

ω =
β2(1 + q)2

2Leu2
p

ρ2Y exp

{
β(θ − 1)

(1 + qθ)/(1 + q)

}
,

(3)
In addition to the parameters a = h/δT and m =

U0/SL, the following dimensionless groups appear in
Eqs. (2)-(3)

q =
(Ta − T0)

T0
, P r =

µcp
λg

, Le =
λg

ρ0cpD
,

β =
E(Ta − T0)

RgT 2
a

, G =
gδT
S2
L

,
(4)

representing the conventional heat release, Prandtl,
Lewis, Zel’dovich and gravity parameters, respec-
tively, with µ and D the viscosity and mass (fuel)
diffusivity. In what follows, the values Pr = 0.7,
β = 10 and q = 5 were fixed in all cases presented.
The main goal of this work is to study the effect of
the gravity parameter G, the dimensionless width a
and the flow rate m on the flame structure.

The no-flux and no-slip conditions applied at the
wall take the form

y = 0, 1 : θy = Yy = u = v = 0 . (5)

Since axial diffusion becomes negligible far up-
stream the flame, the state of the gas is constant and
uniform with v = 0. The flow field is unidirectional
and satisfies the equations py = 0 and px = Pr ·uyy .
As a result, a Poiseuille flow determined by the mean
flow rate m is established with

u = 6my(1− y), v = θ = Y − 1 = 0,
as x→ −∞ .

(6)

For far downstream boundary condition we require

θxx = Yxx = ux = v = 0,
as x→ +∞.

(7)

This weak outlet boundary condition for the temper-
ature field replaces a more severe zero-temperature
condition which should be imposed far downstream
when heat losses are not negligible. The conditions
for the gas velocity correspond to a downstream flow
parallel to the wall. These conditions are less restric-
tive than those explicitly specifying particular distri-
butions of variables. The numerical simulations re-
ported below show that the influence of the down-
stream boundary condition becomes negligible, as it
should be, if the size of the computational domain is
reasonably long downstream the flame.

The factor up = SL/S
as
L included in Eq. (3) en-

sures that the non-dimensional speed of a planar adi-
abatic flame equals one for a given finite β, where
Sas
L is the asymptotic value of adiabatic planar flame

speed calculated at β → ∞:

Sas
L =

√
2(λ0/cp)Leβ−2B(T0/Ta)e

−E/2RTa .
(8)

For the parameter values β = 10 and q = 5 used in
this study, the value of this factor is up = 1.0547 for
Le = 1 and up = 1.0746 for Le = 0.8, the cases
explored in the present study.

3. Numerical treatment

Steady-state computations were carried out in a fi-
nite domain, xmin ≤ x ≤ xmax, using xmin = −20
and xmax = 20 as typical values. All the steady-state
numerical results reported below were obtained using
second-order, three-points central differences for spa-
tial derivatives on a rectangular uniform grid. Typical
values for the non-dimensional reference temperature
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Fig. 1: Symmetry index S (left plot, for G = 0, 0.2, 0.5 and 1) and flame velocity relative to the channel walls uf (right plot,
for G = 0, 0.5 and 1) as functions of flow rate m; all curves for a = 6, Le = 1, β = 10 and q = 5. The dash-dot-dot curve
shows the symmetrical solution computed in a half-width domain. The dashed lines in the left plot show the intermediate (not
calculated) branch of the solution, which is generated from the symmetric solution at G > 0. The filled circles in both plots
indicate the final solutions obtained by the time-dependent method. The critical value mc (for G = 0) is shown by an open
circle, the critical values mG are shown by open triangles.

were θ∗ = 0.5÷0.7. The reference point was located
at y∗ ≈ 0.5÷ 0.9 and approximately in the middle of
the domain along the x-axis. The independence of the
results to these values was verified specifically.

The stream function-vorticity formulation was
adopted for the steady-state computations. With the
stream function ψ, defined from

ρ(u+ uf ) = ψy, ρv = −ψx , (9)

and the vorticity ζ = a2vx − uy , the Navier-Stokes
equations reduce to

ρ([u+ uf ]ζx + vζy) =
Pr[ζxx + a−2ζyy]−Ga2ρx + J ,

(10)

a2(ψx/ρ)x + (ψy/ρ)y = −ζ (11)

where J is the vorticity production given by

J = (ρ[u+ uf ])yux − a2(ρ[u+ uf ])xvx
+(ρv)yuy − a2(ρv)xvy .

Equations (9)-(11) along with the boundary condi-
tions (properly rewritten in terms of ψ and ζ) were
solved numerically using a Gauss-Seidel iteration
method with successive over-relaxation to determine
the eigenvalue uf .

In order to study the effect of buoyancy forces,
symmetric solutions were also calculated for G = 0
separately by reducing the domain to half its width,
0 ≤ y ≤ 1/2, and imposing symmetric boundary

conditions for the temperature, the mass fraction and
the velocities at the centerline, namely

y = 1/2 : θy = Yy = uy = v = 0. (12)

In order to determine the quantitative degree of
asymmetry of the obtained solution, the following in-
tegral was calculated

S =

∞∫
−∞

dx

1/2∫
0

[θ(x, y, t)− θ(x, 1− y, t)]dy . (13)

Clearly, S = 0 (within numerical accuracy) for a
symmetric solution, and takes non-zero values when
the solution becomes non-symmetric with respect to
the horizontal y = 1/2 axis.

For the unsteady calculations presented below, the
set of dimensionless time-dependent equations (2)
was resolved imposing uf = 0. Two different nu-
merical procedures were used. In the first one, un-
steady simulations were carried out using a com-
pressible Navier-Stokes solver described in [21], with
6th-order finite differences and 3d order Runge-Kutta
time-integration. We adopted a reference frame mov-
ing with the flame, by measuring iteratively the flame

propagation speed, as uf =
∞∫

−∞

1∫
0

ωdxdy −m, and

making the coordinate system move with this veloc-
ity, as done in [16]. In another numerical procedure
the unsteady calculations were performed making use
of the open source code OpenFOAM [22]. For tem-
poral discretization, the first order Euler scheme was
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used with second-order cell center scheme for spa-
tial discretization. Both methods of calculations gave
very similar results.

4. Results

4.1. Steady-state solutions for Le = 1

This study does not examine the flame structure
for a specific fuel/air mixture. However, it is easy
to estimate that the gravitational parameter G =
gδT /S

2
L = gDT /S

3
L, which is formally equal to the

inverse Froude number based on the speed and ther-
mal thickness of the corresponding planar flame, can
take values slightly less than, or even of the order of,
unity for lean mixtures. Indeed, this happens at planar
flame speeds smaller than 10 cm/s, for example.

Fig. 1 shows the steady-state numerical results for
the symmetry index, S (left plot), and the flame ve-
locity relative to the channel walls, uf (right plot),
plotted as a function of the flow rate m for a = 6,
Le = 1 and varying G. As shown in [13] for G = 0,
two non-symmetric flame solutions appear for a fairly
wide channel when the flow rate exceeds a certain
critical value, mc. These solutions have nonzero and
opposite values of the symmetry index S. In addi-
tion to these two solutions mirrored with respect to the
middle of the channel, a symmetric unstable solution
(corresponding to the curve with S = 0) also exists
form > mc. Form < mc, this symmetric solution is
unique and stable. Despite the fact that the symmetric
solution is unstable for m > mc, it is easily obtained
in calculations where only half of the channel width
is considered applying the symmetry conditions given
by Eq. (12). The curves corresponding to the symmet-
ric solutions are drawn by dash-dot-dot lines in Fig. 1.

For the a = 6 case shown in Fig. 1, this crit-
ical value for the flow rate above which two non-
symmetric solutions appear is mc ≈ −0.0756, in the
absence of buoyancy. This point is marked by an open
circle in the figure on the curve with G = 0. For
convenience, we will identify the non-symmetric so-
lutions as ”up” and ”down” solutions when the hot-
ter gas is located in the upper (S > 0) and lower
(S < 0) halves of the channel, respectively. Both
non-symmetric solutions, when they appear, are sta-
ble, and the actual occurrence of one or the other so-
lution depends on the initial conditions.

Obviously, for any G > 0 the symmetric solution
with S = 0, stable for m < mc and unstable for
m > mc, ceases to exist. It can be seen in Fig. 1
that with a gradual increase inG, the symmetric solu-
tion turns into a solution with S > 0 at m < mc,
as it would be expected given the direction of the
buoyancy forces. At the same time, for m > mc,
one of the asymmetric solutions (the ”up” solution)
also evolves into a solution with larger values of S.
Thus, at m < mc the degree of asymmetry given by
the parameter S increases gradually with G and for
m > mc the inherent asymmetry of the flame, which
also occurs in the absence of gravity, also increases.

We can conclude that two mechanisms can be distin-
guished for the appearance of nonsymmetric flames
during their propagation in the channel. The first is
the mechanism caused by buoyancy forces. The sec-
ond mechanism is determined by the action of the in-
trinsic flame instability during its propagation in the
channel, as was pointed out in [13].

An interesting question arises. What happens to
the other mirror ”down” solution having S < 0 with
a gradual increase in the parameter G ? Numeri-
cal calculations reveal that this solution solution does
not disappear, and ”down” non-symmetric flames ex-
ist for G ≥ 0. These solutions can be obtained by
the method described above, but only up to a certain
point,m = mG, indicated by open triangles in Fig. 1.

It should be noted that the solution emerging from
the purely symmetric (S = 0) solution for G = 0
could not be obtained for m > mc by applying grad-
ually increasing values of G, at least by the method
used in the present study. Indeed, for G = 0 and
m > mc, the symmetric solution is obtained only by
calculating in half of the channel, 0 < y < 1/2, im-
posing the symmetry conditions at its center. When
using these distributions for computations in a full
channel, 0 < y < 1, it switches to one of the nonsym-
metric solutions. However, when G > 0, the calcu-
lations should be carried out only in the full channel,
which explains the difficulties in calculating this so-
lution which is intermediate between the ”down” and
”up” ones. However, it is obvious that this solution
exists for m > mG, at least as a mathematical ob-
ject. The corresponding curves are supplemented (as
a conjection) using dashed lines in Fig. 1 (left) for the
curves with G > 0.

Figure 2 illustrates the dependence of the symme-
try index S on the gravitational parameter G at the
values of the flow rate fixed at m = 1 and 2 plotted
for Le = 1. Remember, that for ”up” and ”down” so-
lutions we have S > 0 and S < 0, respectively. The
branches corresponding to the intermediate solution
are shown by the dashed lines.

Therefore, according to the present calculations,
in addition to the ”up” solutions, stable ”down” so-
lutions (see below) exist in the presence of gravity
for certain values of the parameters. In particular, for
each G value, there is a critical value of the flow rate,
m = mG, above which two non-symmetric solutions
can be obtained. Numerical results also showed that
mG > mc in the considered cases. Thus, the pres-
ence of buoyancy forces does not inhibit the existence
of two non-symmetric solutions. It is also important
to pay attention to the noticeable differences in the
flash back points (the points with uf = 0) for ”up”
and ”down” solutions, which is important for safety
problems.

An example of the temperature distributions and
stream function isolines for the two solutions, ”up”
and ”down”, is illustrated in Fig. 3 for m = 1 and
G = 0.5. It can be seen in this figure that for the
”down” solution, the hotter gas continues to be lo-
cated near the bottom of the channel, in contrast to
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intuitive notions of buoyancy.
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4.2. Time-dependent simulations

The fact that the ”down” solutions obtained above
are stable over time was verified using time dependent
calculations. As mentioned in Section 3, these calcu-
lations were carried out using two completely inde-
pendent codes which provided very similar results.

Initial conditions for these time-dependent simula-
tions were established from the stable ”down” non-
symmetric solutions obtained for G = 0. Figure 4
shows an example of the time history calculated with
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Fig. 4: An example of the time history for a ”down” solution
confirming the stability of this type of solutions, for a = 6
m = 1 and G = 0.5. The value of m is greater than the
critical value mG.

G = 0.5 for the flow rate m = 1, which is greater
than mG. The upper plot gives uf as a function of
time and the lower one shows the dynamics of the
symmetry index S. It is seen that after the transition
period, a steady-state is established corresponding to
the solution branch ”down” (S < 0).
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Fig. 5: An example of a time history for a flame with a = 6,
G = 0.5 and m = 0.2, when the ”down” solution evolves
into the ”up” solution from the G = 0 solution ”down” ini-
tially.

Figure 5 illustrates the dynamics in which initial
conditions correspond to a ”down” flame with G = 0
and m = 0.2 (less than mG), as the value of G is
changed to G = 0.5. It can be seen that after some
time interval the symmetry index S changes sign, that
is, the structure of the flame switches from the ”down”
to the ”up” state. The points corresponding to the final
states obtained from time-dependent simulations for
the above cases are shown in Fig. 1 by filled circles.
From the results of Fig. 4 and Fig. 5 it is obvious that
for G = 0.5 and m = 1 the ”down” flame is stable
while for G = 0.5 and m = 0.2 it is unstable. The
”up” solutions corresponding to G = 0.5 and m =
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The distributions correspond to the points marked with open
circles in Fig. 7.

0.2 and 1 are both stable.

4.3. Influence of the Lewis number

The results presented above were obtained for a
Lewis number equal to one. As shown in [13] for
G = 0, the diffusive-thermal effect has a noticeable
impact on the formation of nonsymmetric flames dur-
ing their propagation in channels. For Le < 1 flames
the critical flow rate and the critical channel width
above which non-symmetric flames appear decrease
in comparison with Le = 1 flames. This is linked
to the high temperature regions appearing immedi-
ately after the combustion front at low Lewis num-
bers. An example of the temperature distributions for
the ”down” and ”up” solutions is shown in Fig. 6 for
a = 4 and Le = 0.8, where contours with tempera-
tures above the adiabatic temperature are drawn with
solid lines.

Figure 7 shows the dependence of the symmetry in-
dex S (left figure) and flame velocity uf (right figure)
on the flow ratem calculated for a = 4 andLe = 0.8.
It can be seen that even such a small change in the
Lewis number affects significantly these dependen-
cies. It should also be noted that for G = 0, the
curve representing the branch of nonsymmetric solu-
tions does not touch the curve calculated for purely
symmetric solutions. This behavior was also noted
in [13]. This means that the mG values indicated in
Fig. 7 with open triangles are smaller than the corre-
sponding bifurcation pointsmc (marked with an open
circle in Fig. 5). The similar behavior takes place for
all curves with G ≥ 0. In other words, subcritical
bifurcation of solutions is observed, although it is im-
possible to calculate the exact value of the bifurcation
point.

5. Conclusions

If gravitational, or buoyancy, forces acting across
the channel are taken into account, a flame propagat-
ing in a horizontal channel cannot be absolutely sym-

metrical relative to its middle horizontal axis. An in-
tuitive analysis could bring the reader to the conclu-
sion that the flame should adopt a shape in which hot
gases are concentrated in the upper part of the chan-
nel, due to the action of buoyancy forces. The results
obtained in the present work show that this is not al-
ways the case.

The reason for this phenomenon lies in the fact
that the flame experiences internal instabilities when
it propagates in the channel. These instabilities can
be of a diffusive-thermal nature or a purely hydrody-
namic, Darrieus-Landau, character. In the first case,
they can manifest even within the framework of the
constant density model and appear as Le < 1. The
second type of instability is possible in flames even
with unity Lewis number. In both cases, the action of
these instabilities can lead to the loss of symmetry of
the flame, which also implies a change in propagation
speed. In a horizontal two-dimensional channel, two
non-symmetric flame types appear, with hot gases in
the upper and lower halves of the channel.

In an analysis with no gravity effects, these two
flames would mirror each other along the channel
mid axis. If we imagine the gradual inclusion of
the gravity field into consideration, the situation does
not change abruptly: at least some part of the branch
with a hotter region located near the channel bottom
should continue to exist. The numerical simulations
presented in this study confirm this.

In a recent work by the authors [13] carried out
without taking into account the gravity effect, it was
shown that a decrease in the Lewis number below
unity leads to the appearance of non-symmetrical
flames in narrower channels (for the same mass flow
rate). In addition, the present numerical simulations
prove that a decrease in the Lewis number also favors
the existence of ”up” and ”down” flames, namely, this
phenomenon can be observed in narrower channels
than when Le = 1. On the other hand, taking into ac-
count thermal losses to the channel walls (not consid-
ered in the current study) will undoubtedly enhance
the stability of symmetrical flames, as it was shown
when modeling flames in the absence of gravitational
forces [13].

Another, perhaps more important, conclusion from
the presented analysis is that for slow flames, the
buoyancy forces pushing hot gases upward is the lead-
ing mechanism in the formation of nonsymmetric
flame shapes. This follows from the fact that the grav-
itational parameter, which is inversely proportional to
the cube of the planar flame propagation speed for a
given mixture, G ∼ S−3

L , is still large enough. How-
ever, for fast flames, characterized by a high planar
flame speed, this parameter becomes rapidly small
with increasing values of SL. In these cases, the ef-
fect responsible for the appearance of nonsymmetric
flame shapes is rather the intrinsic flame instabilities.
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