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ABSTRACT
Premixed flames in a narrow slot with a prescribed wall temperature subject to a
Poiseuille flow are investigated for various Lewis numbers within a constant den-
sity model and using irreversible Arrhenius kinetics. A global stability analysis of
steady-state solutions is carried out together with time-dependent direct numerical
simulations. The unsteady results are found in good agreement with the stability
results. Additionally, it is demonstrated that for some values of the flow rate a mul-
tiplicity of time-periodic states can take place. The multiple time-periodic solutions
arise from combinations of various unstable modes, symmetric and non-symmetric
with respect to the channel midplane.
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1. Introduction

The study of combustion processes in small-sized devices has recently received con-
siderable attention. Details can be found in various reviews, see [1–6]. The practical
relevance of this type of devices can be understood in at least two examples. The first
example is a portable combustor for energy generation that could be used in remote
conditions, far from standard energy sources, as an alternative to batteries. It is well
known that the (chemical) energy capacity of any fuel is much higher than the ca-
pacity of conventional lithium batteries. And this is so even assuming a relatively low
efficiency in the extraction of useful (electric) power in such devices.

Another type of small-sized device is a combustor suitable for burning low-energy-
containing substances, super adiabatic combustors [7–9]. Direct combustion of such
substances is hardly possible without additional heating. However, as shown in sev-
eral studies, there is the possibility to organize heat fluxes in such a way that the
temperature inside the device reaches a value notably higher than the correspond-
ing adiabatic temperature of the mixture. This kind of devices include those used to
produce hydrogen from hydrogen-containing fuels via reforming techniques [10, 11].

A common characteristic of the above devices is the narrowness of geometric di-
mensions, when combustion occurs in a narrow channel of width close to or slightly
higher than the thermal flame thickness. This leads to a significant enhancement of
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heat exchange with the walls, the exterior of the device, or adjacent channels. A not
very desirable consequence of large heat losses is the complication of conditions for
stable operation of these systems. On the other hand, the narrowness of the channels
is a necessary condition for maintaining super adiabatic temperatures in combustion
zones.

The interest in these technologies has led to the emergence of interest in studying
flames freely propagating in narrow channels. Generally speaking, the dynamics of
flames in narrow channels turns out to be very diverse even under adiabatic condi-
tions [12–15]. For example, the flame becomes asymmetric under certain conditions.
Differential diffusion effects [12] or thermal expansion effects [15], can lead to the
appearance of asymmetric flames differing significantly in characteristics from their
symmetric counterparts. It must be pointed out that both the equations and the
boundary conditions remain completely symmetric in these cases.

Another line of investigation focuses on premixed flames in narrow channels in the
presence of an additional external flux of thermal energy, e.g. partially heated channels
or channels with a prescribed wall temperature profile. This type of device has been
the subject of many studies, numerical and analytical, as well as experimental, see [16–
24], opening up wide opportunities for a detailed study of the chemical combustion
reactions. An unexpectedly wide variety of different types of flame dynamics has been
reported in this configuration.

It is important to remark a fundamental difference between the dynamics of freely
propagating flames in channels [12–15] and that of flames in a channel with a prescribed
temperature at the wall [16–24]. In the first case, the steady state solutions in the form
of traveling waves are always invariant with respect to a shift along the direction of
motion while in the second case this possibility is absent. An important distinctive
feature is also the need to calculate the velocity of the combustion wave, that is, the
eigenvalue of the problem, in the first case.

In the present work, the physical formulation of the problem is similar to that
in [17], where a two-dimensional planar channel with a prescribed wall temperature
was analyzed by means of direct numerical simulations within the constant density
approximation and with the Lewis number equal to unity. Here, we extend that work to
general three-dimensional simulations, including global stability analysis and the study
of the influence of various parameters, such as the Lewis number and the temperature
of the heated wall.

The article is arranged as follows. Sections 2 and 3 present the general formulation
and the details of the linear global stability analysis. The numerical treatment is briefly
described in Section 4. Numerical results are presented in Section 5, beginning with
steady-state solutions. In order to comprehensively emphasize the impact of various
parameters on the flame dynamics, the stability results and time-dependent dynamics
are given and compared at the same time. This allows to validate the results using
different approaches. Finally, a discussion on the results is presented in the last section

2. General formulation

Consider a combustible mixture at initial temperature T0 flowing in a slot of height
h between two parallel walls. A sketch of the geometry of the problem is given in
Figure 1. We assume that the extent in the lateral direction is infinite, −∞ < z′ < ∞.
A step function for the wall temperature is used here in order to avoid introducing
an additional length scale pertaining to the thickness of the ramping function. The
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Figure 1. Sketch of the problem, coordinate system, velocity field and typical temperature contours.

wall temperature is fixed at T0 for x′ < 0 and at Tw for x′ > 0, where Tw > T0.
Primes here and hereafter denote dimensional quantities if the same notation is used
for dimensional and non-dimensional variables.

For the sake of simplicity, this work adopts a diffusive-thermal model, according to
which the density of the mixture ρ, the heat capacity cp, the thermal diffusivity DT ,
and the molecular diffusivity D are all assumed constant. Consequently, the flow field
is not affected by combustion and the flow velocity is given by the Poiseuille flow,
ux = 6U0(1−y′/h)(y′/h), uy = uz = 0, where U0 is the mean flow velocity. The effects
of thermal expansion and variable transport properties will be reported elsewhere.

Despite the relevance of complex combustion chemistry, the chemical model of the
present study is reduced to an irreversible single-step reaction of the form F + O →
P+Q, where F denotes the fuel, considered to be the deficient reactant, O the oxidizer,
P the products, and Q the heat released per unit mass of fuel. The combustion rate, Ω,
is assumed to follow the Arrhenius law, Ω = ρ2BY exp(−E/RT ), where ρ, B, Y , E, R
and T are the density, the pre-exponential factor, the fuel mass fraction, the activation
energy, the universal gas constant and the temperature of the mixture, respectively.
The mass fraction of the excess oxidizer is assumed to remain constant, and is therefore
included in the value of pre-exponential factor B.

The nondimensional temperature is defined as θ = (T − T0)/(Te − T0), where Te =
T0 +QY0/cp is the adiabatic temperature of the corresponding planar flame based on
the upstream fuel mass fraction Y0. Similarly, θw = (Tw − T0)/(Te − T0) is the non-
dimensional temperature of the hot section of the wall. Choosing the channel height
h as the reference length scale, x = x′/h, y = y′/h, z = z′/h, and using h2/DT and Y0
to normalize the time and the mass fraction, respectively, the system is modeled as

∂θ

∂t
+ 6m

√
d y(1− y)

∂θ

∂x
= ∆θ + d · ω, (1)

∂Y

∂t
+ 6m

√
d y(1− y)

∂Y

∂x
=

1

Le
∆Y − d · ω, (2)
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where ∆ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplace operator and

ω =
β2

2Leu2p
Y exp

{
β(θ − 1)

1 + γ(θ − 1)

}
(3)

is the non-dimensional reaction rate.
The planar burning velocity, SL, and the thermal flame thickness, defined as δT =

DT /SL, are used in order to specify the non-dimensional parameters appearing in the
formulation: the reduced Damköhler number, d = h2/δ2T = h2S2

L/D2
T , and the non-

dimensional flow velocity, m = U0/SL. The remaining dimensionless parameters are
the Zel’dovich number, β = E(Te−T0)/RT 2

e , the Lewis number, Le = DT /D, and the
heat release parameter, γ = (Te − T0)/Te.

The factor up = SL/UL appearing in Eq. (3) has been introduced to account for the
difference between the asymptotic value of the laminar flame speed,

UL =
√

2ρBDTLeβ−2 exp (−E/2RTe),

obtained for large activation energy (β ≫ 1) and the numerical value SL calculated
for a finite β. The factor up ensures that for a given β the non-dimensional speed of
a planar adiabatic flame equals one. Clearly, the factor up tends to one when β → ∞.
The numerical values of up were reported in [12] as a function of the Lewis number
for β = 10 and γ = 0.7. These values are kept as representative values in the present
study.

The boundary conditions for the temperature and mass fraction are imposed as
follows:

y = 0 and y = 1 : ∂Y/∂y = 0, θ =

{
θw, x > 0,
0, x < 0;

(4)

x → −∞ : θ → 0, Y → 1; x → ∞ : ∂2Y/∂x2 = ∂2θ/∂x2 = 0. (5)

It is assumed that the slot is infinite in the z-direction and standard periodic conditions
are applied at the lateral boundaries when it is required.

Weak boundary conditions for the temperature and mass fraction including zero
values of the second derivatives were used downstream. This allowed for a shorter
computational domain. Nevertheless, the numerical simulations reported below showed
that the influence of the downstream boundary conditions becomes negligible if the
size of the computational domain is sufficiently large. The same boundary conditions
were applied in [13, 25].

It is important to note that Eqs. (1)-(2) together with Eqs. (4)-(5) are symmetric
with respect to the channel midplane y = 1/2, say, to the transformation y → 1 − y.
Consequently, calculations of symmetric solutions can always be forced by reducing
the domain to half of its height, 0 ≤ y ≤ 1/2, and imposing symmetric boundary
conditions in the form

y = 1/2 : ∂θ/∂y = ∂Y/∂y = 0. (6)

In order to identify the symmetry of solutions computed in the entire domain,
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0 ≤ y ≤ 1, the symmetry indicator

S(z, t) =

∞∫
−∞

dx

1/2∫
0

[θ(x, y, z, t)− θ(x, 1− y, z, t)]dy (7)

is used. Clearly, S ≡ 0 (within numerical accuracy) for a symmetric solution and
S ̸= 0 when it is non-symmetric. Evidently, for every non-symmetric solution there is
a mirror one obtained by a y → 1−y transformation for which the symmetry indicator
S changes only its sign.

The flame position, xw(z, t), is defined as the point along the line y = 1/2 and
z = const where the reaction rate reaches its maximum value, ω|x=xw

= ωmax. Even
though this characteristic does not fully reflect the position of the flame, because the
flame may have perceptible curvature, xw will be used below to characterize the flame.
Determining the flame position in this way makes sense in not very wide channels. The
quantities S and xw become independent of z in the case of planar solutions (i.e. when
all distributions are independent on z).

3. Mathematical background of stability analysis

Steady as well as time-dependent computations were carried out in the present
study. For the two-dimensional (independent of z) steady-state solutions, a numerical
global stability analysis was carried out. Knowing the stability properties of steady-
state solutions, even in cases where they are unstable and cannot be implemented in
practice, allows a better understanding of the unsteady flame dynamics. The corre-
sponding procedure is quite standard and is given below for the sake of completeness.
The numerical method for the stability analysis used here follows that proposed in
[12]. This method allows to calculate the eigenvalue with the largest real part.

Two-dimensional steady-state distributions of the temperature and mass fraction,
all now denoted by the subindex 0, are perturbed as usual with small perturbations

θ = θ0(x, y) + ϵΦ(x, y) exp (λt+ ikz)
Y = Y0(x, y) + ϵΨ(x, y) exp (λt+ ikz)

(8)

where λ is a complex number, the real part of which, λR, represents the growth rate,
k is the wavenumber in the transversal direction z, and ϵ is a small amplitude. The
linearized eigenvalue problem obtained when substituting Eq. (8) into Eqs. (1)-(2)
reduces to finding non-trivial solutions of the two-dimensional system

λΦ+ 6m
√
dy(1− y)

∂Φ

∂x
=

∂2Φ

∂x2
+

∂2Φ

∂y2
− k2Φ+ d(AΦ+BΨ) , (9)

λΨ+ 6m
√
dy(1− y)

∂Ψ

∂x
=

1

Le

(
∂2Ψ

∂x2
+

∂2Ψ

∂y2
− k2Ψ

)
− d(AΦ+BΨ) , (10)
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where

A =
β3Y0

2Leu2p[1 + γ(θ0 − 1)]2
exp

{
β(θ0 − 1)

1 + γ(θ0 − 1)

}
, B =

β2

2Leu2p
exp

{
β(θ0 − 1)

1 + γ(θ0 − 1)

}
(11)

are both functions of x and y.
The corresponding boundary conditions for the perturbations at the wall are

y = 0 and y = 1 : Φ = ∂Ψ/∂y = 0. (12)

In order to study the stability of the symmetric steady states, Eqs. (9)-(10) should be
considered in the half-height domain, 0 ≤ y ≤ 1/2, along with two kinds of boundary
conditions at the channel midplane selecting either symmetric or non-symmetric modes

symmetric mode: ∂Φ/∂y = ∂Ψ/∂y = 0 at y = 1/2; (13)

non-symmetric mode: Φ = Ψ = 0 at y = 1/2. (14)

4. Numerical treatment

Steady as well as time-dependent computations were carried out in a finite domain,
xmin < x < xmax. The size of the domain was significantly varied in order to verify the
independence of the results. In the case of three-dimensional computations, the domain
size was also finite in the z-direction, 0 < z < zmax, with periodic boundary conditions.
The spatial derivatives were discretized on a uniform grid using second order, three-
point central differences. The typical number of grid points was 1001 × 101 in the
(x, y) directions for two dimensional calculations and 801×81×401 along the (x, y, z)
axes for three dimensional ones. The number of grid points was doubled in some cases
without significant differences in the results.

For unsteady calculations an explicit marching procedure was used with first order
discretization in time. The typical time step was τ = O(10−5). No significant differ-
ences were found in the results when τ was halved. In order to determine steady (but
not necessary stable) solutions, the steady counterpart (∂/∂t = 0) of Eqs. (1) and (2)
was solved using a Gauss-Seidel method with over-relaxation.

It should be noted that in calculating steady-state solutions (∂/∂t = 0 imposed), the
grid size affected the solutions only moderately, after a certain minimum grid size was
chosen. However, when calculating time-dependent solutions, the influence of spatial
resolution turned out to be very significant on the flame dynamics. In some cases, the
flame dynamics obtained on coarse grids turned out to be completely different from
the real dynamics (obtained on a finer grid), while the corresponding steady-state
distributions calculated on fine and coarse grids turned out to be very close to each
other. This remark relates mainly to the calculation of three-dimensional cases. The
fact is that in three-dimensional calculations, an increase in spatial resolution (a finer
grid step) is accompanied by a significant increase in computational costs. The effect
of grid coarseness was also detected in the results of linear stability analysis, which
were obtained using a quasi time-dependent method [12]. However, in this case this
was not so critical, since an increase in accuracy was achieved with little increase in
computational cost.
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Figure 2. Left plot: the steady-state flame position xw versus the non-dimensional flow rate m: solid, dashed
and dash-dot lines are d = 15, 20 and 30, respectively, all for θw = 0.6; triangles - d = 15 and θw = 0.7. Right
plot: the steady-state flame position as a function of the flow rate for various Le; calculated for d = 15 and

θw = 0.6.

5. Numerical results

The flame behavior in channels depends primarily on the channel width and the tem-
perature conditions on the wall. In adiabatic channels (no heat-losses), the flame
propagation is possible at any channel width both upstream (flame flashback) and
downstream (flame blow off), depending on the mixture flow rate. In the presence of
heat losses, there is a critical value of the channel width below which the flame is
extinguished.

This study examines the flame behavior in channels with a fixed temperature dis-
tribution on the wall, given by a step function. The upstream wall temperature is kept
cold so that upstream flame propagation is only possible in a sufficiently wide channel.
On the other hand, the downstream wall temperature is chosen high enough and the
downstream flame motion (blowing the flame off) becomes just as difficult. These two
conditions result in the flame being situated/located in the zone near the temperature
jump.

5.1. Symmetric two-dimensional steady-state solutions

It should be noted that a steady-state, two-dimensional (independent of z) and sym-
metric with respect to the y = 1/2 midplane solution of Eqs. (1)-(5) always exists, at
least as a mathematical object. Despite the fact that these solutions are often unsta-
ble, information about them and their structure is always useful to understand, for
example, the dynamics of unsteady solutions, which oscillate around these solutions.
This facilitates the interpretation of the results of time dependent simulations in a
parametric space.

The dependence of xw on m calculated for Le = 1 in a two-dimensional domain is
shown in Fig. 2 (left plot). The cases with d = 15, 20 and 30 calculated for θw = 0.6
are shown with solid, dashed and dash-dot lines, respectively, and triangles correspond
to the case with d = 15 and θw = 0.7. It can be seen that with variations of d, the
flame position xw varies only slightly if m is fixed. Perhaps the difference will be more
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Figure 3. Flame structures for symmetric planar flames for various Le and various m; all cases were calculated
with d = 15 and θw = 0.6; solid lines show isotherms plotted at interval 0.1; a dashed line shows an isoline of
the reaction rate with ω = 10.

noticeable for larger d.
The dependence of xw on m for various values of Le calculated for d = 15 and

θw = 0.6 is shown in Fig. 2 (right plot). A moderate effect of the Lewis number is
detected for large values of m, while for m near unity the curves coincide noticeably.
This can be clarified by considering flame structures at different Lewis numbers and
mixture flow rates.
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Figure 5. Examples of supercritical bifurcations of planar solutions illustrated by the symmetry indicator,
S, versus the flow rate, m, calculated for Le = 0.7 and θw = 0.6.

Examples of the flame structure for two values of m and several values of Le are
illustrated in Fig. 3 where the temperature distributions were calculated for d = 15,
θw = 0.6. One can see that when the flow rate of the mixture is not large (e. g.
m = 1), the temperature distributions are very similar for all Lewis numbers. The
temperature reaches its maximum value in the midplane of the channel. However, at
relatively high flow velocities (e. g. m = 4) a qualitative change in the flame structure
occurs. The temperature maximum shifts toward the channel wall for Le = 0.7, while
for Le > 1 the temperature maximum continues to be in the midplane of the channel.
These features of the flame structure affect the stability properties.
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5.2. Nonsymmetric two-dimensional steady-state solutions

All cases of steady-state solutions presented so far have been obtained by calculations
in a half-domain, 0 < y < 1/2, with symmetry conditions at the midplane using
the Gauss-Seidel method (∂/∂t = 0 imposed). It was verified that for Le > 1 the
steady-state calculations in the entire domain gave exactly the same solutions. No
non-symmetric steady-state solutions were found for Le > 1. Interestingly, if these
calculations are performed for Le < 1 in the entire domain, 0 < y < 1, steady-state
nonsymmetric solutions appear at sufficiently high flow rates. An example of this type
of solution is shown in Fig. 4 for m = 4, d = 15 calculated for Le = 0.7.

These steady-state nonsymmetric solutions emerge as a result of the supercritical
bifurcation of a symmetric solution (at least in the considered range of parameters)
when the flow intensity exceeds a critical value. Obviously, for each nonsymmetric
solution there exists a mirror-symmetric counterpart by means of the y → 1 − y
transformation. The bifurcation point depends on the channel width. Figure 5 shows
the symmetry index S as a function of the flow rate for two channel widths. As
expected, in narrower channels the nonsymmetric solutions appear at higher flow rates.
Anticipating the results of global stability analysis, it must be mentioned that these
solutions are also unstable with respect to disturbances in the z-direction, forming a
cellular structure in this direction.

5.3. Stability and dynamics of flames with Le = 1

It should be noted that the appearance of cellular or oscillatory instabilities for planar
and freely propagating flames occurs when the Lewis number is below or above a
threshold value which depends on β and γ. For the values β = 10 and γ = 0.7 used in
the present study the instabilities of freely propagating planar flames occur if Le . 0.84
(cellular) and Le & 3.59 (oscillatory), see [25].

Consider now the flames with Le = 1. The above steady-state symmetric solutions
were investigated for stability. The growth rate, λR, and the corresponding frequency,
λI , were calculated separately for symmetric and non-symmetric perturbations con-
trolled by the boundary conditions at the midplane given by Eq. (13)-(14).

Figure 6 shows λR as a function of the transverse wave number k for d = 15,
θw = 0.6 and several m. The growth rates of symmetric and nonsymmetric modes are
plotted with solid and dashed lines, respectively. One can see that for all cases the
maximum value of λR is achieved at k = 0. This means that the most unstable mode
corresponds to planar perturbations (independent of z).

The growth rate λR calculated for k = 0 is given in Fig. 7 as a function of m for
d = 15 and two values of the wall temperature. The solid lines correspond to the
symmetric mode and the dashed lines to the nonsymmetric mode.

Consider first the case with θw = 0.6. Figure 7 shows that the symmetric mode,
being stable at low m, becomes unstable within the interval 0.367 . m . 1.89. How-
ever, with increasing m, re-stabilization occurs. With a further increase in the flow
rate both the symmetric and nonsymmetric modes lose stability when m exceeds the
critical (different) values of mc ≈ 3.17 and mc ≈ 3.06, respectively.

The growth rates reach their maximum values for some m, after which their mag-
nitudes decrease. The flame stabilizes when the flow intensity exceeds mc ≈ 8.02. It
should be noted that the values of λR calculated for the symmetric and nonsymmet-
ric modes become close to each other for large m. The critical values of m above
which the flame becomes stable are also very close for symmetric and nonsymmetric
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Figure 8. Time history of the flame position xw, the symmetry indicator S and the maximum temperature
calculated over the entire channel, θmax, computed for planar solutions for m = 4 (left column of plots) and
m = 6.3 (right column of plots); all cases for d = 15 and θw = 0.6.

perturbations.
It was this flame behavior that was reported in [17], where the unsteady flame

dynamics was explored using two-dimensional direct time-dependent simulations. Ev-
idently, the exact determination of the critical values at which the flame dynamics
changes by means of time-dependent simulations can face difficulties, while a reason-
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able accuracy is achieved here by the stability analysis.
Time-dependent calculations were performed to validate the results of the stability

analysis. It is remarkable that when the symmetric and nonsymmetric modes are both
unstable, two different types of oscillatory dynamics are observed for the same set
of parameters. Figure 8 shows the values of the flame position, xw, the symmetry
indicator, S, and the maximum temperature calculated over the entire channel, θmax,
as functions of time for m = 4 (left column of plots) and m = 6.3 (right column of
plots).

Consider the case with m = 4 shown in the left column of plots of Fig. 8. Two
different oscillatory states are sustained in time. The first state, marked with (a), is
characterized by a small amplitude of oscillations of the flame position xw and a signif-
icant amplitude of the symmetry index S. Fluctuations in the maximum temperature
are also small after a certain transition time during which the periodic dynamics is
establishing. This state is clearly linked to the unstable nonsymmetric mode.

The second state found for m = 4, marked with (b) in Fig. 8 (left column), is
characterized by significant oscillatng amplitudes of both the flame position and the
maximum temperature, while the symmetry index is maintained equal to zero (after
a transitional time). Obviously, this oscillatory state occurs upon excitation of the
unstable symmetric mode. It is a surprising fact that these two unstable modes do
not seem to interact with each other, at least for the present values of the parameters
(m = 4). It must be emphasized that the calculations were carried out for a time
significantly longer than that shown in Fig. 8. This gives confidence to conclude that
these oscillatory states are sustained over time.

With increasing m, see the right column of plots in Fig. 8 where the case m = 6.3
is shown, the flame dynamics becomes even more interesting. It can be seen that one
of the oscillating states (marked with (a)) corresponds to the pure nonsymmetric per-
turbation mode: significant fluctuations in the symmetry index and small fluctuations
in the flame position confirm this. The oscillations of the symmetry index S occur in
a symmetrical manner: the absolute maximum and minimum values of the symmetry
indicator achieved during the oscillation period are equal, |Smax| ≈ |Smin|, within
numerical accuracy.

The other oscillatory state (indicated with (b)) is markedly different. Indeed, it can
be seen that the oscillations of the symmetry index occur asymmetrically: the absolute
maximum value differs from the absolute minimum value, |Smax| ̸= |Smin|. The thin
horizontal lines in the figure mark the quantities Smax and −Smax. One can assume
that in this case two unstable modes interact with each other. This leads to the flame
oscillations occurring asymmetrically relative to the channel midplane. An example of
such oscillations is also included in the supplementary material. Numerical calculations
showed that this mode disappears for large values of m and only the mode with purely
symmetric oscillations (|Smax| = |Smin|) survives.

Figure 9 shows the magnitude of the frequency of oscillations, λI , calculated for
d = 15 and θw = 0.6. The solid and dashed lines correspond to the symmetric and
nonsymmetric mode, respectively, obtained from the stability analysis. The circles
show the frequencies evaluated from the unsteady calculations. Vertical lines indicate
the boundaries of the stable/unstable intervals.

It can be seen that the frequencies obtained from time-dependent calculations coin-
cide with great accuracy with λI obtained from the stability analysis when m is lying
in the stable regions. In this case, the frequency is extracted from the oscillatory atten-
uation of the initial perturbations, see [26]. In unstable regions the real frequencies of
oscillations differ from those of the stability analysis due to effects of nonlinearity. At
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Figure 9. The frequency of oscillations λI calculated for d = 15 and θw = 0.6; solid line - symmetric mode,
dashed line - nonsymmetric mode; circles - unsteady simulations.

the same time, it can be seen that when two types of oscillations exist simultaneously,
their respective frequencies differ noticeably from each other.

The appearance of oscillatory solutions substantially depends on the intensity of
wall heating. The stability results shown in Fig. 7 indicate that with an increase in
the wall temperature the steady-state solution is stabilized. The instability interval is
greatly reduced at θw = 0.7 and completely disappears at slightly larger values of the
wall temperature. Here it must be remembered that the dimensionless temperature
was introduced on the basis of the adiabatic temperature of a planar freely propagating
flame.

Fig. 10
In Fig. 10, the values of λR computed for d = 30, k = 0 and two values of θw

are plotted for the symmetric (solid line) and nonsymmetric (dashed line) modes.
With increasing channel width, or, equivalently, for larger values of d = h2/δ2T , the
degree of instability increases, as the case with θw = 0.6 shows. The growth rate for
symmetric and nonsymmetric modes becomes almost the same for large m. This figure
also illustrates once again the influence of the wall temperature on flame oscillations:
the region of instability practically disappears for θw = 0.7. Although the study of the
influence of θw has not been carried out in an exhaustive way, it can be concluded that
an increase in θw leads to the stabilization of the flame.

Up to this point, all time-dependent calculations were carried out in the two-
dimensional framework, namely by imposing ∂/∂z = 0 in Eqs. (1)-(2). Three-
dimensional time-dependent numerical calculations were performed in a finite domain,
0 < z < zmax, with zmax = 5÷ 10. Standard periodic boundary conditions were used
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Figure 10. The growth rate λR for planar perturbations (k = 0): solid lines - symmetric modes, dashed lines
- nonsymmetric modes; all curves for Le = 1, d = 30.

in the z-direction. The initial temperature distribution was chosen as follows

t = 0 : θ(x, y, z) = θ2D(x, y)[1 + a cos(2πnz/zmax) exp(−|x− x∗| − |y − y∗|)],

where θ2D(x, y) is the temperature distribution (steady-state or instantaneous) ob-
tained from two-dimensional calculations, with typical values a = 0.3 and n = 1 or
2. The value of 2πn/zmax corresponds to the transverse wave number k. The location
for disturbances was chosen near the flame front, x∗ ≈ xw, and y∗ ̸= 1/2 were used to
get nonsymmetric initial conditions. The initial mass fraction distributions were taken
directly from 2D calculations without perturbations.

Fig. 11
In order to analyze the flame dynamics in the three-dimensional case, we will use

the flame position and the symmetry indicator in a plane z = z1, together with the
difference of these values in two planes z1 and z2: δxw = xw(z1, t) − xw(z2, t) and
δS = S(z1, t)−S(z2, t). Here z1 and z2 are some values from the interval 0 < z < zmax.
It is obvious that if δxw and δS both tend to zero for any z1 and z2, the flame profile
becomes independent of z. If, at the same time, S shows periodic oscillations, then the
flame dynamics corresponds to a nonsymmetric unstable mode.

The results of 3D calculations showed that when the initial conditions depend on
z, the flame dynamics for Le = 1 becomes independent of z after a transition time
interval. Figure 11 shows the transition dynamics for the flame position and the sym-
metry indicator. The left and right columns correspond to cases of symmetric and
non-symmetric oscillations, respectively. All curves were calculated for m = 4, d = 15
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Figure 11. Transient 3D flame dynamics for symmetric (left plots) and non-symmetric (right plots) flame

oscillations. Plots (a): time histories of the flame position, xw, and the symmetry indicator, S, in a plane z = z1;
plots (b): time history of the differences δxw = xw(z1, t)− xw(z2, t) and δS = S(z1, t) − S(z2, t) evaluated in
two planes; all curves computed for m = 4, d = 15 and θw = 0.6.

and θw = 0.6, the same parameters used in Fig. 8 (left). It can be seen that while xw
and S are approaching their final periodic states, the differences between these values
evaluated in two different planes, δxw and δS, tend to zero. This means that the entire
distributions become independent of z, that is, the flame becomes two-dimensional.
This result confirms the conclusion that was drawn from the linear global stability
analysis, namely, that the most unstable perturbation mode is the planar mode, k = 0.

5.4. Stability and dynamics of flames with Le > 1

Numerical calculations of the stability curves for flames with Le > 1 showed that the
dependence on the wave number k is similar to that shown in Fig. 6 for Le = 1. The
maximum value of the growth rate, λR, is achieved at k = 0, which corresponds to
planar (independent of z) perturbations. This was observed for both symmetric and
non-symmetric modes.

Figure 12 shows the growth rate λR (left plot) and the frequency of oscillations λI

(right plot, only for Le = 1.2) as functions of the flow rate m calculated for k = 0,
d = 15, θw = 0.6 and various Le > 1. For comparison, the curves for Le = 1 are also
shown. For all the cases given in the figure, the eigenvalue has a nonzero imaginary
part λI .

One can see in the left plot of Fig. 12 the great sensitivity of the stability properties
to variations of the Lewis number. For the symmetric mode (solid curves), the positive
value of the second maximum of λR reached at m ≈ 5.3 for Le = 1 becomes negative
already for Le = 1.2. For non-symmetric perturbations (dashed curves), the maximum
value of λR also decreases rapidly and also becomes negative with increasing values
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Figure 13. Time history of the symmetry indicator and the flame position for Le = 1.2, d = 15 and two values
of m corresponding to circles in Fig. 12: the left plot - symmetric oscillations, the right plot - nonsymmetric
oscillations.

of the Lewis number. On the other hand, the magnitude of the first maximum of λR

occurring at low m increases with increasing Le. From these stability curves, it can
be concluded that flame stabilization occurs at high flow rates m if the Lewis number
even slightly exceeds unity. At the same time, one can observe an increase in the degree
of instability at moderate flow rates, m ∼ 1, when the Lewis number increases.

Figure 13 shows time histories of the symmetry index and flame position for Le = 1.2
and two values of m. A symmetric oscillatory behavior develops for m = 1 and non-
symmetric oscillations occur for m = 5, in accordance with the stability curves. The
frequencies of oscillations evaluated from these simulations are marked with circles in
Fig. 12 (right). One can see that unsteady results are in good agreement with those
of stability analysis.
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Figure 14. The growth rate λR as a function of the wave number k for several values of m and Le = 0.9,
d = 15 and θw = 0.6; solid and dashed lines - symmetric and nonsymmetric perturbations with λI ̸= 0

(oscillatory modes); dash-dot and dash-dot-dot lines - symmetric and nonsymmetric perturbations with λI = 0
(cellular modes). For m = 9 the nonsymmetric mode is show with open triangles; an open circle in the plot for
m = 9 shows the perturbation mode found in the three-dimensional calculations illustrated in Fig. 16.

5.5. Stability and dynamics of flames with Le < 1

It is well known that cellular thermodiffusion-induced instabilities can occur for freely
propagating flames with Lewis numbers less than one. The eigenvalue of perturbations,
λ, becomes purely real for Le < 1, reaching its maximum value, λ = λmax, at a certain
nonzero value of the wave number, k = kc. If λmax > 0 the magnitude of ℓ = 2π/kc
determines the characteristic size of disturbance cells. Given that λI = 0, there are no
oscillations at the same time.

In the case of a narrow slot with heated walls, thermodiffusion-induced oscillatory
instabilities occur even for Le = 1. One can expect that when the Lewis number de-
creases below unity, the cellular instability will also be present. The stability analysis
of steady-state solutions showed their extreme sensitivity to the Lewis number in the
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Figure 15. Time history of the flame position xw (left plots) and the symmetry indicator S (right plots)
computed for m = 4 and Le = 0.9 illustrating nonsymmetric (a) and symmetric (b) oscillations; all cases for

d = 15 and θw = 0.6.

present configuration when Le decreases below unity.
Figure 14 shows λR as a function of the wave number k for a case when the Lewis

number is only slightly less than unity, for Le = 0.9, and several values of m. All calcu-
lations were carried out for d = 15 and θw = 0.6. The solid and dashed lines correspond
to symmetric and nonsymmetric perturbations, respectively, when the imaginary part
of the eigenvalue, λI , is not zero (oscillatory instability). The dash-dot and dash-dot-
dot lines correspond to symmetric and non-symmetric perturbations when λI = 0
(cellular instability).

Figure 14 shows that at moderate values of the flow rate (the case m = 4), the
stability properties resemble those of the case Le = 1: the most unstable mode is the
planar one corresponding to k = 0. The modes of cellular instability appearing at
large k remain stable (λ < 0). As the flow rate increases (the case m = 5), the cellular
modes become also unstable within a certain interval of k. With a further increase
in the flow rate, the growth rate of cellular instability increases while the oscillatory
growth rate maxima decrease. For m = 7, for example, the growth rate of the cellular
mode is approximately equal to the growth rate of the oscillatory mode. Finally, for
m = 9, only the cellular modes remain unstable. One can see that with increasing
values of m the growth rates for symmetric and nonsymmetric modes approach each
other. Figure 14 shows also that for Le < 1 the highest growth rate for the oscillatory
modes (λI ̸= 0) always corresponds to a planar perturbation, k = 0.

Numerical modeling carried out in the framework of the two-dimensional model
(all distributions are independent of z) showed that the flame dynamics for Le = 0.9
is similar to that for the case Le = 1 for moderately small values of m. Figure 15
shows the time histories for the flame position and the symmetry indicator calculated
for the case m = 4. Two types of periodic dynamics were found. The first dynamics
(a) is characterized by a weak amplitude for xw and significant oscillations of S.
It corresponds to a nonsymmetric mode. The second dynamics (b) corresponds to
symmetric oscillations: S becomes equal to zero after a transient while the amplitude
of xw oscillates appreciably. It corresponds to a symmetric mode. The initial conditions
for these numerical solutions were taken from the corresponding distributions obtained
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Figure 17. The growth rate of small perturbations, λR, as a function of the wave number k calculated for
symmetric and nonsymmetric perturbations of symmetric steady-state solutions and for small perturbations of
non-symmetric steady-state solutions; left plot - m = 4, right plot - m = 9, all the curves collapse into one; all

curves calculated for Le = 0.7, d = 15 and θw = 0.6.

for Le = 1. It can be seen that in both cases the periodic dynamics is sustained in time.
It is assumed that these dynamics will be preserved in the framework of the three-
dimensional model as for the case Le = 1, even if no calculations were performed. This
can be concluded from Fig. 14 for m = 4 where possible cellular disturbances cannot
arise because the corresponding (real) growth rate λ is less than zero.

With increasing intensity of the flow rate,m, the cellular structure of flames appears.
Figure 16 shows the temperature isolines in a slice situated at x = 5.825 calculated for
m = 9 and Le = 0.9 in three-dimensional simulations. The cells are clearly visible, but
their intensity is quite small. The distance between cells is approximately ℓ ≈ 1.65,
which corresponds to k ≈ 3.82. This value is marked with an open circle in Fig. 14
for m = 9. It should be noted that the three-dimensional numerical simulation carried
out for m = 9 shows, in addition to this cellular instability, weak oscillations with an
amplitude xw about 0.01. This can be attributed to nonlinear excitations of various
unstable modes.

The stability analysis of steady-state solutions symmetrical with respect the channel
midplane, y = 1/2, showed that these states are unstable in some cases. However, when
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Figure 19. The instantaneous snapshot of the constant temperature surface, θ = 0.9, calculated for m = 4
and Le = 0.7.

the Lewis number is sufficiently lower than unity, there exist also nonsymmetric steady-
state solutions. The solutions of this type exist at least for Le = 0.7. An example is
shown in Fig. 4. Stability of these solutions should also be considered.

In Fig. 17, we plot the growth rate λR for symmetric and nonsymmetric pertur-
bations applied to the symmetric steady-state solutions as well as the growth rate of
perturbations imposed to the nonsymmetric steady-state solutions. It can be seen that
at moderately high flow rates (m = 4, the left plot), the curves differ from each other,
although they have similar trends. However at higher flow rates the curves practically
merge into one. For the case m = 9 in the right plot, the growth rate of nonsymmetric
perturbations applied to the symmetric solution and the growth rate of perturbations
applied to the nonsymmetric solution are shown by triangles and diamond symbols,
respectively. It can be seen that despite some differences appearing at moderate m,
the stability properties of the two steady-state solutions are very similar.

Because of the simultaneous existence of various unstable modes, it is almost impos-
sible to be sure that in a specific implementation of a time-dependent calculation all
possible non-steady solutions have been detected. There is always the possibility that,
using different initial conditions, different time-dependent solutions can be found.

The following trend, observed in three-dimensional simulations, should be remarked.
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Figure 20. The instantaneous snapshots of the constant temperature surface, θ = 0.9, calculated for m = 7
and Le = 0.7.
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Figure 21. Time history of flame position, for m = 7 and Le = 0.7.

When large amplitude oscillations of xw developed, the spatial distributions of vari-
ables became independent of the z-coordinate. This observation is supported by the
stability analysis: the growth rate of the oscillatory instabilities has always a maxi-
mum at k = 0. In other words, during large amplitude oscillations of xw, the cellular
structure of the flame is suppressed.

Another unexpected observation can be made by comparing the results of stability
analysis and the flame dynamics. It was detected that the magnitude of the growth rate
of linear instabilities does not imperatively determine the flame dynamics observed in
three-dimensional simulations. Figure 17 (left) shows that for m = 4 the growth rate
of cellular instability exceeds the growth rate of oscillatory instability. Nevertheless,
a numerical simulation of this case showed oscillations with a large amplitude in xw
and no cellular structure. The time history of xw obtained in this simulation is shown
in Figure 18. A snapshot of the flame shape is shown in Fig. 19 where a constant
temperature surface is presented.

As the flow rate increases, an oscillating cellular flame structure appears. Figure 20
shows an instantaneous snapshot of the surface of constant temperature for the case
m = 7 and Le = 0.7. Transition to this dynamics, occurred after an unexpectedly long
time interval, as seen on Fig. 21. Up to t ≈ 18, the flame presented large amplitude
oscillations in xw and a planar (independent of z) structure. After this time, the flame
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Figure 22. Snapshots of the temperature field for the first solution made at sequential times in the x = 3.3

plane for m = 9 and Le = 0.7. Both rows of cells move to the left.

dynamics was changed dramatically and a cell structure with significantly smaller
amplitude oscillations in xw appeared. The symmetry indicator S remains zero for the
entire time shown in Fig. 21.

Interesting results were obtained in the three-dimensional simulations of the case
with m = 9 and Le = 0.7. It was found that at least two different cellular flame
dynamics can exist for the same set of parameters. Both solutions present two rows of
cells. For the first solution, shown in Fig. 22, the upper and lower rows of cells move
in the same transverse direction, say, synchronously. In the second solution, shown in
Fig. 23, the upper and lower row of cells move in opposite directions. The direction of
this motion is shown by arrows in the upper plots. It can also be seen that the hottest
region in each cell points toward the direction of this movement. The three dimensional
structure of the two solutions is shown by means of the θ = 0.9 iso-surface in Figs. 24
and 25. Animations of these dynamics are included in supplementary material.

The differences in the dynamics of these two regimes can be seen in Fig. 26 where the
flame position and the symmetry indicator are drawn as functions of time. The authors
must admit that this result for m = 9 was obtained unintentionally by slight variations
in the initial conditions. It remains completely unclear how the initial conditions, which
are only slightly different from each other, result in so different periodic time-dependent
solutions.

6. Discussions

Combustion in small-scale devices is a complex process that results from the combina-
tion of various physical phenomena and for which a small change in a single parameter
may lead to a number of effects. One of the methods for understanding this process
is the construction of simplified theoretical models. Often the simplifications adopted
in these models look quite strong. However, these simplifications allow us to conduct
analytical studies or to significantly accelerate the numerical simulations of the sys-
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Figure 23. Snapshots of the temperature field for the second solution made at sequential times in the x = 3.3

plane for m = 9 and Le = 0.7. The upper row of cells moves to the right, the lower row to the left.

Figure 24. Snapshot of the temperature iso-surface, θ = 0.9, for the first solution of the case m = 9 and
Le = 0.7; the upper and lower row of cells move in the negative z-direction.

tem. We should be aware that the results obtained within these models indicate trends
rather than predicting accurately quantitative measurements.

In the present work, premixed combustion in a narrow slot is studied in the frame-
work of the constant-density model. The wall temperature is kept fixed and heated
downstream. All these simplifications allowed not only to obtain steady and time-
dependent solutions, but also to conduct the linear global stability analysis.

One of the unexpected results of this work is the multiplicity of time-periodic states.
This effect was observed even for flames with a Lewis number equal to unity. It was
shown that this is due to the simultaneous existence of two unstable modes of different
types. One mode is symmetrical with respect to the channel midplane, while the other
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Figure 25. Snapshot of the temperature iso-surface, θ = 0.9, for the second solution of the case m = 9 and

Le = 0.7; the upper row of cells moves in the positive z-direction and the lower row moves in the negative
z-direction.
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Figure 26. Time history of the flame position and the symmetry indicator for two regimes of cellular dy-
namics, calculated for m = 9 and Le = 0.7.

is nonsymmetric. The results showed that at certain values of the flow intensity, these
modes do not interact with each other. However, at other values, mode mixing appears,
leading to the emergence of complex oscillations.

These results can be of great importance in the analysis of experimental measure-
ments and in their interpretation. It is obvious that the described phenomena can
have a significant effect on the repeatability of experiments. Indeed, for the same val-
ues of the control parameters, different flame dynamics can be obtained in the same
experiment.

Of course, important questions remain open. One of them is related to the exper-
imental implementation of a particular regime of flame dynamics. As shown in this
study, the emergence of a specific mode depends on the initial conditions. However,
in a real experiment the initial conditions (usually an ignition event) are difficult to
control. Another issue is the influence of effects not taken into account in the present
model, such as, for example, the thermal expansion effect that would lead to variable
density. One might expect that in rather narrow channels (the degree of narrowness
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can be determined only by numerical experiments) the most important parameter will
be the total mass flow rate, while density changes will not play a decisive role.

Finally, it should be added that even if the model adopted in this work introduces
significant simplifications over more realistic models, it is hoped that at least some of
the phenomena described here will be preserved under more general assumptions.
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an idealized counter-current microchannel-based reactor to produce hydrogen-rich syngas
from methanol, Int. J. Hydr. Eng. 44 (2019) 23807-23820.

[12] V.N. Kurdyumov, Lewis number effect on the propagation of premixed flames in nar-
row adiabatic channels: Symmetric and non-symmetric flames and their linear stability
analysis, Combust. Flame 158 (2011) 1307-1317.
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