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Abstract

A numerical investigation of the combustion process taking place after fuel
and oxidizer are injected separately into a planar channel from an end-wall
porous plug is presented. A fuel stream injected in the middle of the chan-
nel is surrounded on both sides by oxidizer streams and two edge flames are
formed after contact of reactants and ignition. The formulation of the prob-
lem is symmetrical with respect to the middle of the channel. The study is
based on the coupled Navier-Stokes and transport equations with one-step
Arrhenius-type combustion kinetics. The main focus is on the influence of
the fuel Lewis number, the flow rate and the Damköhler number on the flame
structure.

It is shown that symmetrical and non-symmetrical configurations of edge
flames are possible for the same set of parameters, and that these solutions
can be simultaneously stable. At the same time, the areas of existence of
symmetric and non-symmetric flame configurations turn out to be different.
Further, it is demonstrated that there can be at least seven different (but not
all stable) steady-state solutions for the same set of parameters, although the
evidence for the absence of other solutions, in addition to those found, cannot
be achieved within the framework of the methods used in the study. These
results may be critical for flames with low fuel Lewis number (e.g. hydrogen
flames) and highlight the importance of taking into account the possibil-
ity of non-symmetrical flame configurations in the design and operation of
combustion devices based on diffusion flames.
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layer

Novelty and significance statement

In this work, the appearance of non-symmetric structures for diffusion
combustion is investigated for the first time within the framework of the
coupled Navier-Stokes and transport equations. In the considered configura-
tion fuel and oxidizer are injected from a porous plug into a planar channel
forming two edge flames. The simultaneous appearance of symmetrically and
non-symmetrically situated edge flames is demonstrated, and the regions of
existence of such structures are investigated.
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1. Introduction

It is known that one of the most reliable configurations for injecting fuel
and oxidizer into a combustion chamber is to inject them through differ-
ent ducts without premixing. This avoids such dangerous situations as the
flashback effect, when the flame can propagate upstream into the injection
conduct if the fuel and oxidizer are readily mixed before injection.

In a recent study [1] carried out within the constant density model, it
was shown that the separate fuel and oxidizer injection in the form of paral-
lel streams in a perfectly symmetric set-up can lead to a solution featuring
flames located non-symmetrically about the axis, in addition to a symmetri-
cal solution, which can also exist. These two solutions, symmetrical and not
symmetrical, differ significantly from each other in their properties, regions
of existence, etc. Although the thermal-diffusive or constant-density model
has proven to be reliable for studying many phenomena from a qualitative
point of view, some important aspects of the combustion process, such as
the effect of thermal expansion, remain without due attention within that
framework. The present study aims at filling this gap and incorporates the
effects of combustion heat release on the density, the flow and the resulting
flames.

2



Historically, attention to what is now called the edge flame 1 did not
begin until the penultimate decade of the last century. One of the reasons
for this attention was the understanding of the importance of this structure
in turbulent combustion [2]. Investigations on edge flames can be classified
into two large groups. The first group of studies focuses on moving edge
flames and propagation speed itself is to be found as part of the solution, see
[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. Another group of investigations is mainly
concerned with the structure and dynamics of the edge flame located near
the tip of the splitter plate separating fuel and oxidizer streams [14, 15, 16,
17, 18, 19, 20, 21, 22]. Other configurations have also been investigated, for
example in the corner region of two mutually perpendicular streams of fuel
and oxidizer, see [23]. Important references to other earlier works can be
found in [24, 25], and a general overview of experimental results in [26]. A
recent review of issues related to diffusion flames involving edge flames with
a focus on the effect of hydrodynamics is presented in [27].

Many of the aforementioned studies adopted the constant density ap-
proximation, which conveniently separates hydrodynamics from the heat and
mass transport equations. The only exceptions are the studies presented in
[17, 18, 22], in which thermal expansion was taken into account. It is im-
portant to note that in all the above studies, only a single edge flame was
considered. The effect of the interaction of two closely spaced flame edges
leading to the breaking of symmetry for this type of diffusion flames was not
investigated systematically (with the exception of [1], to the best of the au-
thors’ knowledge), although some researchers seem to have encountered this
effect in numerical simulations, see Ph. D thesis by J. Carpio [28]. Interest-
ingly, on page 109 of [28] , there is a picture of a non-axisymmetric diffusion
flame in a round jet, obtained at IRPHE years ago by P. Mart́ınez-Legapzi
and J.M. Truffaut, unpublished to our knowledge.

The phenomenon of symmetry breaking has received due attention re-
cently for premixed combustion. Symmetry breaking occurs, for example,
when a premixed flame propagates freely in a channel. It has been shown
that symmetric and non-symmetric flames (with respect to the channel axis
in circular channels or the mid-plane in planar channels) may appear in this
case, see e.g. [29, 30, 31, 32, 33, 34]. This effect is associated with the strong

1Other names are ”triple flame” and ”tribrachial flame”. However, the name ”edge
flame” seems to have become more stable in modern literature.
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nonlinearity of the governing equations and the fact that the non-symmetric
configuration can be more stable than the symmetric one for the same set of
parameters.

Solving the coupled Navier-Stokes and transport equations with detailed
chemistry including a wide range of variation of the parameters is a formidable
task. The use of simplified chemical kinetics, even if neglecting some details,
reduces the number of parameters involved and enables a more complete
description of the problem with deeper physical understanding. The model
adopted in the present study assumes an overall one-step chemical reaction
scheme and constant gas properties. These simplifications will be relaxed in
future studies. However, as can be seen below, comparing these results with
those presented in [1], where a simpler model was used, one can conclude that
the effects obtained and their parametric trends appear to be qualitatively
(and to some extent quantitatively) similar, indicating structural robustness
of the phenomena under consideration.

The article is organized as follows: Section 2 presents the problem state-
ment. Section 3 briefly describes the methods used to obtain numerical solu-
tions. Section 4 presents the results obtained, while the last section suggests
the conclusions drawn by the authors.

2. Formulation

Streams of fuel and oxidizer are injected separately through a porous
plug situated at the end-wall of a planar semi-infinite channel of width 2H,
as shown in Fig. 1 where the situation without combustion is sketched. The
fuel is injected along a section of the plug of length L located in the center of
the channel, and the oxidizer is injected from the rest of the porous surface.
It is assumed that the fuel and oxidizer do not mix inside the porous layer.
The gas streams emerge from the porous surface with the same uniform
normal velocity U . It is important to note that the injection configuration
of reactants considered in the present study is absolutely symmetrical with
respect to the y = 0 axis.

The thermal conductivity of the plug volume is assumed sufficiently high
so as to maintain the gas temperature at the porous plug exit uniform and
equal to T0. The channel walls are impermeable and maintained at the same
temperature, T0. At the exit of the plug the reactants mass fraction fluxes are
specified. Two mixing layers are produced downstream the porous surface in
which the fuel and oxidizer interdiffuse.
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Figure 1: Sketch of the problem, coordinate system, distributions of the normalized mass
fraction of fuel (solid isolines, with an interval of 0.1) and the stream function (dashed
isolines, with an interval of 5) plotted for m = 10 and the frozen case, D = 0.

The chemical reaction between the fuel and oxidizer is modeled by an
overall irreversible one step reaction of the form

Fuel + ν Oxidizer → (1 + ν)Product,

where ν is the mass-weighted stoichiometric coefficient. The fuel consump-
tion rate per unit volume is assumed to be first order with respect to each of
the two reactants and to obey a standard Arrhenius law, Ω = Bρ2YFYO exp(−E/RT ),
with a preexponential factor B and an overall activation energy E . Here YF
and YO are the mass fractions of fuel and oxidizer, respectively, T and ρ
are the temperature and density of the mixture, and R is the universal gas
constant.

The heating effect due to viscous dissipation is neglected due to its in-
significance compared to the heat released by combustion. Assuming a low-
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Mach number approximation, the standard (dimensionless) governing equa-
tions become

∂ρ/∂t+∇ · ρv = 0, (1)

ρ ∂θ/∂t+ ρv · ∇θ = ∇2θ + (1 + φ)ω, (2)

ρ ∂YF/∂t+ ρv · ∇YF = Le−1
F ∇2YF − ω, (3)

ρ ∂YO/∂t+ ρv · ∇YO = Le−1
O ∇2YO − φω, (4)

ρ ∂v/∂t+ (ρv · ∇)v = −∇p+ Pr(∇2v +∇(∇ · v)/3) , (5)

ρ (1 + qθ) = 1 , (6)

where v = uex + vey is the velocity vector with u, v the corresponding
velocity components.

In writing these equations the initial width of the fuel stream, L, was
chosen as a unit of length, the characteristic velocity DT/L as a unit of
speed and L2/DT as a unit of time; here DT is the thermal diffusivity of
the mixture. The mixture density ρ and the mass fractions YF , YO were
normalized with respect to their values in the supply streams, ρ0 and YF0 , YO0 ,
and a non-dimensional temperature θ = (T − T0)/(Ta − T0) was introduced,
where Ta = T0 + QYF0/[cp(1 + φ)] is the adiabatic temperature with Q the
heat release rate (per unit mass of fuel), φ = νYF0/YO0 is the initial mixture
equivalence ratio and cp is the specific heat.

The boundary conditions at the porous plug surface, x = 0, are

ρ = 1, θ = 0, u = m, v = 0 ,

mYF − 1

LeF

∂YF
∂x

=

{
m, |y| < 1/2
0, |y| > 1/2

,

mYO − 1
LeO

∂YO

∂x
=

{
0, |y| < 1/2
m, |y| > 1/2

.

(7)

Here we assume that injection occurs in the direction normal to the porous
surface. Downstream we impose

x→ ∞ : ∂2θ/∂x2 = ∂2YF/∂x
2 = ∂2YO/∂x

2 = ∂u/∂x = v = 0 , (8)

where zero second derivatives in x direction are imposed for the temperature
and mass fractions. These conditions are weaker than the zero tempera-
ture requirement that must be required further downstream due to sidewall
cooling.
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The channel walls are isothermal, impermeable for fuel and oxidizer with
non-slip conditions for the gas velocity

y = ±h : θ = 0, ∂YF/∂y = ∂YO/∂y = 0, u = v = 0 . (9)

Anticipating the results presented below, some calculations will also be
carried out in a half-width domain. In these cases, the standard symmetry
boundary conditions are set,

y = 0 : ∂θ/∂y = ∂YF/∂y = ∂YO/∂y = ∂u/∂y = v = 0. (10)

The dimensionless parameters in Eqs. (1)-(7) are the Prandtl number
Pr = cpμ/λ, where μ and λ are the viscosity and thermal conductivity,
the injection gas velocity m = UL/DT , the channel half-width h = H/L,
the Lewis numbers associated with the fuel and oxidizer LeF = DT/DF

and LeO = DT/DO, where DF and DO are the molecular diffusivities of
the fuel and oxidizer, respectively, and the thermal expansion parameter
q = (Ta − T0)/T0.

Assuming a global one-step chemical reaction, the dimensionless reaction
rate is given by

ω = Dβ3ρ2YFYO exp

[
β(θ − 1)

(1 + qθ)/(1 + q)

]
, (11)

where β = E(Ta − T0)/RT 2
a and D = (L2/DT ) · Bρ0YO0β

−3 exp [−E/RTa]
are the Zel’dovich and Damköhler numbers, respectively. Historically, the
factor β3 is introduced into the definition of the Damköhler number for con-
venience, as done for example in [14, 15, 16]. This is related to the asymptotic
calculation of the planar flame speed along the stoichiometric surface.

In the present work, both steady-state and time-dependent solutions are
investigated. To simulate the dynamical regimes numerically, cold distribu-
tions of all variables perturbed by the addition of a hot spot of the form

δθ = A exp(−[(x− x∗)2 + (y − y∗)2]/r20] (12)

with r0 = 0.5 were used as initial conditions. Specific values x∗ and y∗ for
the hot spot location will be presented below. In the case of an iterative
procedure for finding steady-state solutions, similar initial conditions were
chosen, which, however, are not relevant.
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When setting dimensionless parameters for the combustion process, the
dimensionless activation energy, N = E/RT0, is often used instead of the
Zel’dovich number. Because β = Nq/(1 + q)2, an increase in the Zel’dovich
number occurs with a decrease in q (at a fixed activation energy E), that is,
for leaner mixtures. Due to the significant number of parameters appearing
in the problem, we fix the values q = 5 and Pr = 0.72, which are typical
values for combustible mixtures. Also, for all the results presented below we
use LeO = 1, φ = 1 and h = 3. Although most of the results are obtained
for β = 10, which corresponds to the value of the dimensionless activation
energy N = 72, the influence of the Zel’dovich number is also considered.

In order to characterize the flame structure quantitatively, a symmetry
index was calculated in the form

S =

∞∫
0

dx

h∫
0

[θ(x, y, t)− θ(x,−y, t)]dy . (13)

For the two-dimensional planar case considered in the paper, this value rep-
resents a convenient magnitude for identifying the symmetry of solutions
with respect to the y = 0 axis2. Clearly, S = 0 (within numerical accu-
racy) for symmetric solutions, but it takes a nonzero value when the solution
becomes non-symmetric. Perhaps one can imagine a distribution that is non-
symmetric with respect to y = 0 and at the same time has a zero value for
S. However, one can be sure that if S �= 0 the distribution is indeed non-
symmetric. It should also be noted that the equations are solved in domains
of finite x length, therefore the values for S ≷ 0 should be compared only in
domains of the same size.

To determine the edge flame position, we will use point (xw, yw) at which
the reaction rate ω reaches a local maximum value, ωmax = ω(xw, yw). In the
considered configuration there are two edge flames located at (xw1, yw1) with
yw1 < 0 (the lower half-plane) and (xw2, yw2) with yw2 > 0 (the upper half-
plane). Obviously, for a symmetrical flame structure we have xw1 = xw2 and
yw1 = −yw2. Anticipating the results presented below, in some cases the two
edge flames merge into one located on the axis of symmetry and xw1 = xw2

together with yw1 ≈ yw2 ≈ 0 was observed. For the results presented below,
we will determine the positions of the edge flames always with xw1 � xw2.

2Of course, one can determine the symmetry index in another way. For example, the
additional factor y for the sub-integral expression was included in its definition in [1].
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Additionally, two points should be noted. Firstly, it is clear that for each
non-symmetric solution reported below there exists a mirror one reflected
with respect to the line of symmetry y = 0. This circumstance will no longer
be noted specifically in the following. Secondly, symmetric solutions can be
obtained using half-domain simulations, which was done in some cases. It
was verified that the symmetric solutions calculated in the half-width domain
match those in the full domain in all the corresponding cases, as it should
be.

3. Numerical treatment

Steady as well as time-dependent solutions of Eqs. (1)-(6) are reported
below. All calculations were carried out for 0 < x < xmax. For the considered
ranges of parameters, the typical values for xmax were between 6 and 10. It
was verified that changing the domain size within these values does not affect
the characteristics of the solutions obtained.

The main goal of the study is to demonstrate that despite the symmet-
rical configuration of the problem (the governing equations and boundary
conditions are symmetric about the axis y = 0), in addition to the expected
symmetric solutions, there are non-symmetric solutions for some parameter
values. For this reason, calculations were made both in the full domain,
−h < y < h, and in a half-width domain, −h < y < 0, using the boundary
conditions Eq. (10).

To confirm and verify the results of the present study, several types of
numerical procedures were applied. It is advantageous for numerical simula-
tions to eliminate the pressure from the momentum equation by introducing
the vorticity field, ζ = vx − uy, where subscripts, here and below, denote
partial differentiation. Taking the curl of Eq. (5) one finds that ζ satisfies

ρζt + ρv · ζ = Pr∇2ζ + J, (14)

where J is the vorticity production term given by

J = (ρyut − ρxvt) + [(ρu)yux − (ρu)xvx] + [(ρv)yuy − (ρv)xvy] .

To obtain the steady-state solutions (perhaps unstable in some cases),
the counterpart of Eqs. (2)-(4) and (14) by setting ∂/∂t ≡ 0 is considered.
The continuity equation is satisfied automatically by introducing a stream
function ψ, defined from ρu = ψy, ρv = −ψx, which satisfies

(ψx/ρ)x + (ψy/ρ)y = −ζ . (15)
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The elliptic system (2)-(4) and (14)-(15) for ζ and ψ and the remaining state
variables was solved using a Gauss-Seidel iteration method with successive
overrelaxation.

All the steady-state solutions reported below were obtained using second-
order, three-points central differences for spatial derivatives on a rectangular
uniform grid with equal steps in both directions. The numerical grid size was
varied as 1/40, 1/60 and 1/80. Anticipating the results of the calculations,
the positions of the edge flame closest to the porous plug were obtained equal
to xw1 = 0.4735, 0.4692, and 0.4678, in grids with sizes 1/40, 1/60 and 1/80,
respectively, in calculations with xmax = 6, m = 10, N = 72, LeF = 0.7 and
D = 1500. When calculating with xmax = 10 on a grid with size 1/40, the
position of the flame was xw1 = 0.4734. It can be concluded that although
there are slight changes (of less than 1.5%) in the position of the edge flame,
this cannot affect the main results of the calculations.

Two Gauss-Seidel iteration procedures were applied to calculate steady-
state solutions. In the first case, direct iterative calculations of all distri-
butions were performed with fixed values for all parameters. In the second
case, the temperature value, θ = θ∗, was fixed at one point of the domain
while the value of the Damköhler number D was calculated iteratively also by
the Gauss-Seidel method with relaxation. The choice of the temperature θ∗
and its location had to correspond to some real solution (stable or unstable).
To ensure this, a previously calculated solution was shifted by several grid
points downstream/upstream and used as the initial condition for iterations.
The typical values for θ∗ were between 0.7 and 0.8 fixed in a point along the
y = ±1/2 line.

To calculate time dependent solutions, a compressible Navier-Stokes solver
described in [35] with 6th-order finite differences and 3d order Runge-Kutta
time-integration was used. The typical Mach number for these calculations
was of order 10−3. These calculations using a compressible code were done
for two reasons. On the one hand, the numerical method of [35] is well tested
by many researchers, although it does not allow finding unstable solutions.
On the other hand, the authors wanted to verify the results by two very
different methods. Looking ahead, one can say that this has been achieved.

All time dependent calculations were carried out in the full domain. It
should be noted that the study of the ignition process was not the goal of
the present investigation. For this reason, the minimum value of the ap-
plied energy required for ignition has not been investigated. Time dependent
calculations were carried out only to verify the stability of the steady-state
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solutions obtained using the Gauss-Seidel method.

4. Results

The numerical modeling of symmetric and non-symmetric structures pre-
sented in [1] was done on the basis of time-dependent calculations and within
the framework of the constant density model. Such an approach automati-
cally provides knowledge of the stability of one or another state. However,
it leaves open the question of possible additional steady-state but unstable
solutions, since it is obvious that only stable states can be found in this way.
The method of iterative calculation of steady states is partially devoid of this
shortcoming, since some of the unstable states can also be found.

The problem of finding all of the steady-state solutions for the coupled
Navier-Stokes and transport equations is a formidable task, even within a
two-dimensional model. The results presented below demonstrate the multi-
plicity of steady-state solutions for some parameter values or ranges of val-
ues. However, the authors do not intend to provide a rigorous mathematical
proof that all possible steady-state solutions have been obtained. This task
lies aside from the main goal of this study.

4.1. Steady-state solutions

Fig. 2 illustrates two different steady-state solutions calculated with the
same set of parameters, m = 10, D = 1500, N = 72 and LeF = 0.7. The
colored shadings show the temperature field, the black lines correspond to
reaction rate isolevels and the white lines represent the streamlines. It can
be seen in the left plot that the locations of the two edge flames are non-
symmetrical about the y = 0 axis, namely, the edge flame located in the
lower half-plane is closer to the porous plug than the upper one. In the right
plot, the two edge flames are located at an equal distance from the porous
plug and symmetrically with respect to the y = 0 axis.

A direct linear stability analysis of solutions is not performed in the
present paper. However, anticipating the results of time-dependent calcula-
tions, both solutions, symmetric and non-symmetric, are apparently stable.
The existence of these two kinds of solutions was reported in [1] within the
framework of the constant density model. In [1] it was also shown also by
time dependent calculations that the symmetric and non-symmetric config-
urations were both stable, that is, the actual occurrence of one or the other
structure depends on the initial conditions.

11



0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

y

x

m=10, N=72, LeF=0.7, D=1500, xw1=0.47344

1)

0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

y

x

m=10, N=72, LeF=0.7, D=1500, xw1=0.6613

2)

Figure 2: Example of two flame structures, non-symmetrical (left plot) and symmetrical
(right plot) calculated with the same set of parameters, m = 10, D = 1500, N = 72 and
LeF = 0.7. The solutions correspond to points 1) and 2) in Fig. 6; the color shades show
the temperature field, black and white lines show ω-isolines (ω = 1, 5, 10 and 20) and
ψ-isolines (with an interval of 5), respectively.

The observed differences in the two flame structures affect the interac-
tion between the flames and the porous plug. Figure 3 illustrates this by
comparing the heat fluxes into the porous plug for the symmetrical and
non-symmetrical cases shown in the previous figure. Since the dimensionless
temperature of the porous plug is zero, the heat flux into the porous plug
is determined only by q = ∂θ/∂x|x=0, despite the nonzero value of the gas
velocity on it. It can be seen that for the non-symmetric case, the maximum
value of the heat flux into the porous plug is significantly higher than for the
symmetric configuration.

Shown in Fig. 4 are the dependencies on the Zeldovich number of the
symmetry index S (solid line) and the positions of the leading edge flame
xw1 for the symmetrical (dashed line) and non-symmetrical (dash-dotted line)
solutions, calculated for m = 10, D = 1500 and LeF = 0.7. It can be seen
that the change in the Zel’dovich number has a relatively modest quantitative
effect.

Numerical analysis shows that the dependence of the positions of the
edge flame on the Damköhler number has a complex multi-valued character.
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Figure 3: Dependence of the heat flux q on y along the porous plug for symmetrical and
non-symmetrical configurations, for m = 10, D = 1500, N = 72 and LeF = 0.7.

Figure 5 illustrates the dependence of the distance from the edge flame to
the porous plug on the Damköhler number calculated for m = 10, N =
72 (or β = 10) and LeF = 0.7. The curves drawn with solid and dashed
lines represent xw1 and xw2 for the positions of the forward and behind edge
flames, respectively, for the non-symmetric solutions. The dashed-dotted
curve represents the position of the flames in the symmetric configuration
where xw1 = xw2 = xw. It can be seen that there is an interval of D within
which symmetric and non-symmetric solutions exist simultaneously, which
has already been illustrated in Fig. 2. The branch of non-symmetric solutions
has a typical C-shape, that is, there are two non-symmetric solutions for a
given Damköhler number. Interestingly, the branch of symmetric solutions
has a double C-shape, that is, there can be up to four different symmetric
steady-state solutions (probably, not all of them stable).
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Figure 4: The symmetry index S (solid line) and the position of the leading edge flame
for the symmetrical (dashed line) and non-symmetrical (dash-dotted line) cases versus the
Zel’dovich number, for m = 10, D = 1500 and LeF = 0.7.

The curves in Fig. 5 show that there are two qualitatively different types
of dependencies of the edge flame positions on the Damköhler number. In
the first case, as D increases, the value of xw1 decreases. However, there are
segments that are qualitatively different from this behavior, for which xw1

increases with D. Although the linear analysis of stability is left out of this
work, it is natural to assume that only for the first type of dependencies (xw1

decreases with increasing D), the flame configuration can be stable while for
other ”anomalous” segments the steady-states are not stable.

Obviously, the lower branch of the dashed-dotted curve (symmetric so-
lutions) can be extended to arbitrarily large Damköhler numbers. The edge
flame position xw gradually approaches the porous plug when D → ∞. How-
ever, numerical analysis showed that at D → ∞ there is another branch of
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Figure 5: Dependence of the edge flame position on the Damköhler number for m = 10,
N = 72 and LeF = 0.7. The solid and dashed lines show xw1 and xw2, respectively, for
non-symmetrical flames, the dash-dotted line represents xw for symmetrical flames; open
circles mark the turning points; open squares indicate the bifurcation points.

solutions for which xw increases with D. It should be noted that as we move
along this branch, the calculations become more and more stiff. The contin-
uation of this branch would resemble the unstable branch appearing in the
problem of a premixed flame in a channel with heat losses, see[36]. Indeed,
the position of the flame away from the porous wall leads to an almost pre-
mixed state of the reactants in front of the flame, since they have time to
partially mix during the convection from the porous plug to the flame.

Fig. 5 shows that the solid curve (position xw1) and the dashed curve
(position xw2) for the branch of non-symmetric solutions have bifurcation
points connecting this curve with the branch of symmetric solutions (dash-
dotted line). These points are marked with open squares and the letters e)
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and g). These solid and dashed curves also have turning points marked with
open circles and the letters d), f) on the solid line and d′), f ′) on the dashed
line.

Perhaps Fig. 5 requires more detailed explanations. The segment of the
solid curve (for xw1) between points g) and f) corresponds to the part of the
dashed curve (for xw2) between points g) and f ′), the segment of the solid
curve between points f) and d) corresponds to the part of the dashed curve
between f ′) and d′), and, finally, the segment of the solid curve between d)
and e) corresponds to the part of the dashed curve between d′) and e). The
interval of Damköhler numbers between points d) and f) corresponds to the
region of existence of non-symmetrical flame configurations. We also note
that the parts of the solid response curve corresponding to xw1, namely the
part going to the right to the turning point f) with increasing D and the part
returning to the left from the turning point, merge practically into one curve
in the vicinity of the point f) and are separated from each other only near
the bifurcation point g).

It is interesting to find that the dashed-dotted curve corresponding to
symmetric solutions has three turning points, namely a), b) and c). Since for
the segment between points a) and c) the value of xw decreases with increas-
ing D, it can be assumed that the (symmetrical) flame states corresponding
to at least a part of this segment are also stable, in addition to the segment
of the dashed-dotted curve going from point b) to the right. Anticipating
the results presented in Section 4.2, this assumption will be confirmed by
time-dependent calculations.

Fig. 5 shows that the dependence of the edge flame position on the
Damköhler number is complex and multiple-valued. In order to represent
more clearly the multiplicity of modes, the response curves for xw1 and xw
are drawn in Fig. 6 in more detail. For the parameter values marked with
filled triangles in this figure, the distributions of temperature, reaction rate,
and stream function are presented in Figs. 2 (solutions 1 and 2) and 7 (so-
lutions 3, 4, 5, 6 and 7). One can see in Fig. 7 for solutions 5) and 6) that
when the flame moves away from the porous plug, the two initially separated
flame edges merge into one located on the channel axis.

Although the distributions shown in Fig. 7 were not obtained for the same
Damköhler number (this was done to separate the points given by triangles
in Fig. 6), it is obvious that for some values of D (for example, D ≈ 1600)
there are at least seven different steady flame configurations. Anticipating
the time-dependent results presented in section 4.2, one can conclude that at
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Figure 6: Enlarged fragment of Fig. 5 illustrating the multiplicity of modes. Filled triangles
with numbers indicate the points corresponding to the distributions presented in Figs. 2
and 7.

least the solutions corresponding to points 1), 2) and 5) represent stable so-
lutions: they were found to be attractors. For other solutions, it is dangerous
to draw exhaustive conclusions from time dependent calculations. Strictly
mathematically, it is possible that there are initial states from which the
flame structure evolves to other solutions (the authors did not find them).
However, the following observation can be made from Fig.5. It can be seen
in this figure that only solutions 1), 2) and 5) lie on the branches, along
which with increasing Damköhler number both positions of the flame edge
approach the porous plug (for solutions 2) and 5) xw1 = xw2 are equal in
magnitude). Of course, this is not a proven criterion.

The symmetry index S defined by Eq. (13) is plotted in Fig. 8 as a function
of the Damköhler number with a solid curve for m = 10, LeF = 0.7 and
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Figure 7: Steady-state solutions corresponding to filled triangles 3), 4), 5), 6) and 7) in
Fig. 6. The color shades show the temperature field, black and white lines show ω-isolines
(ω = 1, 5, 10 and 20) and ψ-isolines (with an interval of 5), respectively.
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N = 72. Open squares mark the bifurcation points. The filled triangles 1),
4) and 7) indicate the values corresponding to the non-symmetrical solutions
presented in Figs. 2 and 7.

Calculations were also carried out for other values of the flow rate. Fig 9
shows the dependence of the edge flame position calculated for m = 8 (left
plot) and m = 6.5 (right plot) on the Damköhler number for LeF = 0.7 and
N = 72. Observe that for m = 8 the behavior of the dash-dotted curve
(symmetric solutions) is qualitatively similar to that for m = 10 in Fig. 5.
However, for m = 6.5, the turning points b) and c) disappear and the double
C-shape of the symmetrical branch disappears also. This is the result of
a fold-type singularity for decreasing flow rate in the variables D, m, and
xw for the symmetric solution branch. This means in all likelihood that for
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Figure 9: Dependencies of xw1, xw2 and xw on D for N = 72 and LeF = 0.7; the left
plot - m = 8, the right plot - m = 6.5. The solid and dashed lines show xw1 and xw2

for non-symmetrical flames, the dash-dotted line shows xw for symmetrical flames. Open
squares indicate bifurcation points; open circles mark the turning points.

low flow rates there are no stable symmetrical solutions located far from the
porous plug, similar to the solution 5) shown in Fig. 7 for m = 10. It can
be seen also that the range of existence of non-symmetric solutions decreases
with a decreasing flow rate. This is in agreement with the results reported
in [1] obtained within the constant density model.

Fig. 10 shows the behavior of the position of the edge flame near the bi-
furcation point, where the non-symmetric solution bifurcates from the sym-
metric one. This zone is marked by a rectangle in Fig. 9. It is interesting
that the behavior of xw2 has a complex character when the position of the
second flame edge (dashed curve) makes a loop.

All the results presented so far have been obtained for LeF = 0.7. It was
interesting, however, to find that for LeF = 1 there is a range of parameters
where non-symmetric steady-state edge flames configurations exist3, even if
in the present case it is a rather small range. Figure 11 shows the depen-

3The possibility of the existence of non-symmetrical configurations for LeF = 1 may
have been missed in [1]. However, the difference in the formulations in [1] and in the
present study may be the reason why no symmetric solutions were found in [1].
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Figure 10: The behavior of the edge flame position inside the square shown in Fig. 9 (right
plot) in the vicinity of the bifurcation point (open square). The curve for xw2 makes a
loop near the bifurcation point. Small triangles show calculated points.

dencies of the edge-flame position on the Damköhler number for symmetric
(dashed-dotted line) and non-symmetric (solid and dashed lines) configura-
tions calculated for LeF = 1, m = 10 and N = 80. The dependence of the
symmetry index S on the Damköhler number is shown in Fig. 8 for LeF = 1
with a dashed line. We also note that the dimensionless activation energy
is chosen a little higher to obtain non-symmetric solutions with LeF = 1
than it was for LeF = 0.7. An example of the non-symmetrical configuration
calculated for LeF = 1 and D = 1800 is illustrated in Fig. 12. It can be seen
that although the degree of asymmetry is small, the flame configuration is
clearly not symmetrical.

The number of solutions is determined by turning and bifurcation points.
Figure 13 shows a map of the solution number in the m−D plane for LeF =
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Figure 11: The dependence of the positions of the edge flames on the Damköhler number
for m = 10, N = 80 and LeF = 1. Non-symmetrical flame: xw1 - solid line, xw2 - dashed
line; symmetrical flame: xw - dash-dotted line. An open circle indicates the turning point
for the branch of symmetric solutions and open square symbols mark the bifurcation points
for the non-symmetric branch.

0.7. The letters identifying the lines correspond to the points marked with
the same letters in Figs. 5 and 9. The numbers inside each zone indicate
the number of steady-state solutions. It can be seen that with a gradual
increase in the Damköhler number (for fixed m), symmetric solutions appear
at m � 7.24, and non-symmetric solutions appear at m � 7.24. This value
is determined by the intersection point of the lower dashed-dotted curve and
the lower dashed curve. Curves d) and e) merge at m ≈ 6.43, that is, for
smaller values of m, there are only two non-symmetric solutions for values of
D between the dashed and dash-dotted lines for m � 6.43.
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4.2. Time-dependent calculations

Time-dependent simulations are more expensive in computational time
than iterative calculations of steady-state solutions. As mentioned above,
the authors assume that those solutions which belong to the segments of the
response curves for which xw1 and xw2 decrease as D increases are stable.
However, this has been verified only for selected parameter values and is not
a substitute for the rigorous linear stability analysis remaining outside the
scope of the present work.

As was observed in [1] within the constant density model, the setting of
one or another steady-state regime depends on the initial conditions. The
results obtained in the current work within the variable density model are
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Figure 13: Map of the multiplicity of steady-state modes in the m−D parameters plane,
calculated for LeF = 0.7 and N = 72. Letters correspond to turning points and bifurcation
points in Figs. 5 and 9. The numbers indicate the number of non-trivial solutions in each
area. The given number of solutions does not take into account the non-symmetric partner
solutions mirrored with respect to the axis of symmetry. There are no non-trivial solutions
for the values of D under the dash-dotted and lower dashed curves.

presented in Figs. 14, 15 and 16. These figures show selected snapshots of
temperature distributions (colored shades) and isolines of the reaction rate
(black lines). All calculations were carried out for m = 10, D = 1685,
LeF = 0.7, N = 72 and Pr = 0.72. Note that the time-dependent cases were
calculated for a small but non-zero value of the Mach number.

For the example shown in Fig. 14, the initial temperature distribution was
chosen as a single hot spot located below the symmetry line and relatively
close to the porous plug, x∗ = 1 and y∗ = −0.5. The sequence of snapshots
demonstrates that after a transition period, a non-symmetrical flame state
is established, similar to that of Fig. 2 (right plot). Figure 15 demonstrates
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Figure 14: An example of snapshots of the flame dynamics initiated after a single hot spot
situated at x∗ = 1 and y∗ = −0.5 corresponding to t = 0, t = 0.03, t = 0.06, t = 3. The
flame structure at long times is similar to solution 1) in Fig. 2.

that if the hot spot is located closer to the symmetry line than in the previous
case, namely with x∗ = 1 and y∗ = −0.2, then the final structure after long
times is a symmetrical state with two symmetrically located edge flames. A
similar trend was also described in [1] where the constant density model was
applied. It was found that there was a critical value for the vertical position
of the hot spot, which determined whether symmetric or non-symmetric so-
lutions were obtained, while other parameters were fixed. And finally, Fig. 16
demonstrates that when the initial temperature distribution is chosen as a
single hot spot located on the axis of symmetry and sufficiently distant from
the porous plug, x∗ = 4 and y∗ = 0, then after a transitional period of time
a flame state similar to state e) shown in Fig. 7 is approached.

Table 1 compares the values of the edge flame position closest to the
porous plug, xw1 obtained using iterative and time-dependent calculation
methods. It can be seen that these quantities coincide with satisfactory
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Figure 15: An example of snapshots of the flame structures initiated after a hot spots
situated at x∗ = 1 and y∗ = −0.2 corresponding to t = 0, t = 0.03, t = 0.06, t = 3. The
flame structure at long times is similar to solution 2) in Fig. 2.

accuracy for the asymmetric solution 1) and the symmetric nearest to the
porous plug solution 2). For a remote symmetric solution 5), the match is
worse, which can be attributed to the following reason. It should be noted
that when using the time-dependent code, relatively small flame oscillations
caused by the flame-acoustic interaction were observed. As is well known,
this effect depends on the geometry (channel length) and the boundary con-
ditions used at its outlet. Nevertheless, the numerical differences for xw1 for
the remote solution obtained from different codes are not significant being
purely quantitative in nature and the distributions are almost identical in
their structure. Time dependent calculations have shown that solutions of
this type are stable (this solution is an attractor for some type of initial con-
ditions) if the effect of possible flame-acoustic interactions is omitted. The
role of acoustic instabilities will be explored elsewhere.

The types of flame dynamics in all the cases shown are similar to each

26



0 1 2 3 4 5 6 7 8 9
-3

-2

-1

0

1

2

3
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

x

y t=0

0 1 2 3 4 5 6 7 8 9
-3

-2

-1

0

1

2

3
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

x

y t=0.03

0 1 2 3 4 5 6 7 8 9
-3

-2

-1

0

1

2

3
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

x

y t=0.06

0 1 2 3 4 5 6 7 8 9
-3

-2

-1

0

1

2

3
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

x

y t=3

Figure 16: An example of snapshots of the flame structures initiated after a single hot
spot situated at x∗ = 4, y∗ = 0 corresponding to t = 0, t = 0.03, t = 0.06, t = 3. The
flame structure at long times is similar to solution 5) in Fig. 7.

other in some sense. As the hot spots are applied to the cold distribution of
the fuel and oxidizer, where the mixing zones have already been formed, two
combustion waves propagate from the heated region upstream and down-
stream. After a certain period of time, the downstream moving wave leaves
the numerical domain and the steady-state distributions of the variables are
established. These are only examples and do not intend to determine the
area of attraction of one regime or another. With all probability, one can
expect that the three stable states described above can be obtained from
other initial conditions.

5. Conclusions

The phenomenon of multiplicity of combustion regimes is often encoun-
tered in combustion problems. An example is freely propagating premixed
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solution 1) solution 2) solution 5)
steady code 0.429 0.491 2.55
time-dependent code 0.428 0.493 2.65

Table 1: Comparison of the flame edge positions for the edge closest to the porous plug
obtained using iterative and time-dependent methods, for D = 1683, m = 10, LeF = 0.7
and N = 72.

flames in narrow channels with heat losses. In this case two solutions exist
usually, one is stable and the other is unstable. The multiplicity is observed
for the phenomenon of symmetry breaking for premixed flames propagating
in adiabatic channels, when two states of the flame, symmetric and non-
symmetric, exist simultaneously for some values of the parameters. In this
case, the non-symmetric state (when it exists) is usually stable, and the
symmetric state is not. However the situations with multiple regimes, when
there are several stable steady states, have received little attention. For dif-
fusion flames, according to the best knowledge of the authors, the problem
of symmetry breaking was addressed only in [1], within the framework of
the constant density model. The present study is trying to fill this gap, and
revisit this problem on the basis of the Navier-Stokes equations combined
with the equations of transport of species and energy.

The problem of the two edge flames formed when a planar stream of fuel
is surrounded on both sides by streams of oxidizer is formulated here in such
a way that the governing equations and boundary conditions are symmet-
rical with respect to the axis of symmetry of the problem. The analysis
shows that at least seven different steady-state solutions can exist simul-
taneously for some values of the parameters, and at least three of them are
non-symmetrical. However, if we take into account that every non-symmetric
solution has a mirror partner, then the total number of solutions can be at
least up to ten. We should remark that this research is not exhaustive and
does not cover all the parametric range of possible solutions. We want to
emphasize that other, different solutions, might exist in another parametric
region.

The results presented seem to be important from several points of view.
Firstly, if numerical simulations are performed in half the domain to reduce
computational costs, then there is a possibility that the parametrical range
of flame existence will be determined incorrectly. Indeed, the possibility of
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symmetry breaking effect in this case is eliminated a priori. Secondly, the
simultaneous existence of symmetric and non-symmetric solutions and the
different interaction of the flames with the device in the two cases can lead
to difficulties in the device operation.

It is possible to generalize the formulation. Let us assume that the degree
of symmetry in the problem formulation depends on one (for the sake of
simplicity) parameter, for example, say α. It could be a position of the
centerline of the fuel stream relative to the axis of the channel, for example.
Thus, for α = 0, the equations and boundary conditions are symmetric and,
as shown, and there are up to seven (ten) non-trivial different solutions, of
which at least three are apparently stable.

When α deviates from zero, the symmetry of the problem is broken.
However, it is clear that for not very large deviations of α from zero, the total
number of solutions must be preserved, due to the continuous dependence
of solutions on the parameter. Of course, the classification of solutions into
symmetric and non-symmetric loses its meaning.
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Table caption

Table 1. Comparison of the flame edge positions for the edge closest to
the porous plug obtained using iterative and time-dependent methods, for
D = 1683, m = 10, LeF = 0.7 and N = 72.

Figure captions

Figure 1. Sketch of the problem, coordinate system, distributions of the
normalized mass fraction of fuel (solid isolines, with an interval of 0.1) and
the stream function (dashed isolines, with an interval of 5) plotted form = 10
and the frozen case, D = 0
Figure 2. Example of two flame structures, non-symmetrical (left plot) and
symmetrical (right plot) calculated with the same set of parameters, m = 10,
D = 1500, N = 72 and LeF = 0.7. The solutions correspond to points 1)
and 2) in Fig. 6; the color shades show the temperature field, black and white
lines show ω-isolines (ω = 1, 5, 10 and 20) and ψ-isolines (with an interval
of 5), respectively.
Figure 3. Dependence of the heat flux q on y along the porous plug for
symmetrical and non-symmetrical configurations, for m = 10, D = 1500,
N = 72 and LeF = 0.7.
Figure 4. The symmetry index S (solid line) and the position of the leading
edge flame for the symmetrical (dashed line) and non-symmetrical (dash-
dotted line) cases versus the Zel’dovich number, for m = 10, D = 1500 and
LeF = 0.7.
Figure 5. Dependence of the edge flame position on the Damköhler number
for m = 10, N = 72 and LeF = 0.7. The solid and dashed lines show
xw1 and xw2, respectively, for non-symmetrical flames, the dash-dotted line
represents xw for symmetrical flames; open circles mark the turning points;
open squares indicate the bifurcation points.
Figure 6. Enlarged fragment of Fig. 5 illustrating the multiplicity of modes.
Filled triangles with numbers indicate the points corresponding to the dis-
tributions presented in Figs. 2 and 7.
Figure 7. Steady-state solutions corresponding to filled triangles 3), 4), 5),
6) and 7) in Fig. 6. The color shades show the temperature field, black and
white lines show ω-isolines (ω = 1, 5, 10 and 20) and ψ-isolines (with an
interval of 5), respectively.
Figure 8. Dependence of the symmetry index S on D calculated form = 10;
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a solid curve - LF = 0.7 and N = 72, a dashed line - LeF = 1 and N = 80.
The open triangles indicate the points corresponding to plots in Figs. 2 and
7.
Figure 9. Dependencies of xw1, xw2 and xw on D for N = 72 and LeF = 0.7;
the left plot - m = 8, the right plot - m = 6.5. The solid and dashed lines
show xw1 and xw2 for non-symmetrical flames, the dash-dotted line shows
xw for symmetrical flames. Open squares indicate bifurcation points; open
circles mark the turning points.
Figure 10. The behavior of the edge flame position inside the square shown
in Fig. 9 (right plot) in the vicinity of the bifurcation point (open square).
The curve for xw2 makes a loop near the bifurcation point. Small triangles
show calculated points.
Figure 11. The dependence of the positions of the edge flames on the
Damköhler number for m = 10, N = 80 and LeF = 1. Non-symmetrical
flame: xw1 - solid line, xw2 - dashed line; symmetrical flame: xw - dash-
dotted line. An open circle indicates the turning point for the branch of
symmetric solutions and open square symbols mark the bifurcation points
for the non-symmetric branch.
Figure 12. An example of a steady-state non-symmetrical configuration
calculated for m = 10, D = 1800, N = 80 and LeF = 1. The color shades
show the temperature field, black and white lines show ω-isolines (ω = 1, 5,
10 and 20) and ψ-isolines (with an interval of 5), respectively.
Figure 13. Map of the multiplicity of steady-state modes in the m − D
parameters plane, calculated for LeF = 0.7 and N = 72. Letters correspond
to turning points and bifurcation points in Figs. 5 and 9. The numbers
indicate the number of non-trivial solutions in each area. The given number
of solutions does not take into account the non-symmetric partner solutions
mirrored with respect to the axis of symmetry. There are no non-trivial
solutions for the values of D under the dash-dotted and lower dashed curves.
Figure 14. An example of snapshots of the flame dynamics initiated after
a single hot spot situated at x∗ = 1 and y∗ = −0.5 corresponding to t = 0,
t = 0.03, t = 0.06, t = 3. The flame structure at long times is similar to
solution 1) in Fig. 2.
Figure 15. An example of snapshots of the flame structures initiated after a
hot spots situated at x∗ = 1 and y∗ = −0.2 corresponding to t = 0, t = 0.03,
t = 0.06, t = 3. The flame structure at long times is similar to solution 2) in
Fig. 2.
Figure 16. An example of snapshots of the flame structures initiated after
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a single hot spot situated at x∗ = 4, y∗ = 0 corresponding to t = 0, t = 0.03,
t = 0.06, t = 3. The flame structure at long times is similar to solution 5) in
Fig. 7.
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