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Abstract

The structure and dynamics of premixed flames in narrow channels in the presence of a

highly conductive wall segment are investigated in this work. It is shown that these systems

present a multiple steady-state regimes. A linear stability analysis applied to these steady

solutions reveals that several steady-state solutions may be simultaneously stable. The sta-

bility analysis results are confirmed by time-dependent simulations, that show that the ac-

tual realization of one or another stable regime depends on the initial conditions. Finally,

we show that nonlinear periodic and chaotic dynamics may appear under certain conditions

in these system.

1 Introduction

One of the main issues in the design of combustion devices is to guarantee flame stabilization

and thereby the stable operation of the system. It is well known that with a decrease in the size

of the device, heat losses increase, and this can result in destabilization of the system operation

and even extinction of the flame. On the other hand, reducing the size of the device, for example,

reducing the width of a channel in which the combustion process takes place, makes it possible to

reach by heat recirculation a temperature that is higher than the adiabatic flame temperature, an

effect widely used in small-scale combustion systems, see various reviews [1–4]. This becomes

extremely important for burning mixtures with low chemical-energy content which cannot be

burnt without additional external heating.

One of the most commonly used configurations to achieve this heat recirculation effect is a

device consisting of parallel channels with heat exchange between them. The reactant mixture

flow in adjacent channels is usually organized in opposite directions, that is, as counter-current

channels. From the earliest works, proposing this kind of arrangement almost fifty years ago

[5–7], this idea was developed extensively later, using analytical and numerical methods [8–12].
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In such designs the material chosen for the separating wall should be carefully chosen to ensure

an adequate heat exchange rate between channels. The required wall thermal properties depend

on operational characteristics, such as the total flow rate of the combustible mixture, its energy

content, the operational combustion temperature and others.

It should be noted that the thermo-physical properties of the channel walls have a funda-

mental influence on the structure and dynamics of the flame burning inside it, particularly for

small channel widths. When modeling small-scale devices, the role of the wall is often lim-

ited to transferring heat from one channel to the next. Heat transfer is often considered only

in the direction transverse to the channel, which implies considering the rate of heat exchange

between channels as proportional to the temperature difference between them [9,10,12]. In gen-

eral, this approximation is valid for sufficiently thin walls, as confirmed within the framework

of asymptotic analysis [11].

However, another situation is also possible, when the thermal conductivity of the wall is

so high that the temperature inside the wall is close to be uniform (and even asymptotically

constant, to a first approximation). When parallel channels are connected by a wall of this kind,

the wall acquires the additional role of heat accumulator and works as a flame holder.

The assumption of temperature homogeneity within a solid material constituting the com-

bustion device due to its high thermal conductivity has been widely used before. Models for

the combustion process in a porous layer can serve as examples [13–17]. This approximation

was recently used the same way in [18]. Another example would be a high thermal conductivity

solid bluff-body used to stabilize a flame in a stream of reactant mixture [19, 20].

The condition of temperature homogeneity in a solid is formally obtained by a rigorous

(regular) mathematical expansion in terms of a small parameter (the ratio of the thermal conduc-

tivities of the gas and the solid), if all other dimensionless quantities are formally taken to be of

the order of unity. Of course, situations are possible when another parameter is just as small, for

example, the ratio of the wall thickness to the width of the channel. Then, due to the presence

of two small parameters in the problem, the final asymptotic formulation depends on the value

of their ratio.

It is interesting to note that in almost all the above examples, the homogeneity of temperature

within a solid body (or part of it) leads to the appearance of the phenomenon of multiplicity

of steady-state solutions for the combustion field. This is due to the strong nonlinearity of

the problem arising from the interaction of a flame with a heated body. However, as shown

in [10,21,22], the condition of temperature homogeneity in the solid part of a combustion device
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is by no means necessary for the phenomenon of heat recirculation and multiplicity of steady-

state solutions.

The effect of the interaction of a wall with a flame has been studied extensively in the

past [23–31], both experimentally and numerically, and more recently in [32, 33]. In the men-

tioned recent studies the conjugated heat transfer between the gas and the solid walls was solved.

On the other hand, the flame was stabilized relative to the channel walls by adjusting the flow

rate: the flame heats the wall, and the wall contributes to stabilization by preheating the fresh

gases, but flame stabilization was obtained for a unique flow rate value. This distinguishes the

situation considered in [32, 33] from that of the present study, in which a steady-state flame can

be obtained within a continuous interval of the flow rate.

In the present work, we assume that the walls are adiabatic except for a segment of finite

length which has high thermal conductivity. Although the study is done mainly focusing in

the case of a single channel, this simplified configuration is directly related to the operation of

a small scale device consisting of a series of channels. The main purpose of this study is to

investigate the flame stabilization effect by a highly conductive wall acting as a flame holder.

2 Formulation

Consider a planar channel of width H through which a combustible mixture flows with an initial

temperature T0. The channel walls are assumed to be thermally adiabatic, with the exception of a

segment of length L made from a material of high (asymptotically infinite) thermal conductivity.

A sketch of the problem is given in Fig. 1 (A). The high thermal conductivity of this segment

acting as a flame holder results in its constant temperature, Tw, which must be found as a part

of the solution. Anticipating the asymptotic formulation of the problem, it will be assumed that

the wall thickness is of the same order as the channel width.

The assumption of high conductivity allows us to consider the configuration of Fig. 1 (A) as

a part of a more general combustion device consisting of a series of parallel channels interacting

thermally with each other through the highly conductive wall segments, as shown in Fig. 1 (B).

It is obvious that the direction of the flow in each channel does not play a significant role, since

the thermal interaction takes place only through the wall segments of constant temperature.

Assuming that the channels are identical, with the same mixture flow rate in each of them, the

problem can be reduced to one channel (in a certain sense).

A simple estimate indicates that the condition of (infinitely) high thermal conductivity of
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Figure 1: Sketch of the problem: (A) a single channel and the coordinate system; (B) the cor-

responding system of parallel channels in which only a single channel is considered (the region

indicated by a dotted line).

the channel walls can be easily achieved in practice. For example, the thermal conductivity of

metal-like materials or silicon carbide is of order 102W/mK while the thermal conductivity of

gases is only a fraction of 1W/mK. The temperature dependence of these quantities does not

change the essence of the matter.

It is assumed that the mixture has a deficient component (fuel or oxidizer) and changes in

the non-deficient mass fraction by chemical reaction remain small. The chemical reaction in the

gas phase is modeled by a global irreversible step of the form Fuel + Oxidizer→ Products + Q,

where Q is the total heat of combustion per unit mass of deficient component. Then, assuming

that the reaction is first order with respect to each of the reactants concentrations, the reaction

Carmen
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rate takes the form Ω = Bρ2Y e−E/RT , where Y is the deficient reactant mass fraction, E is the

overall activation energy, T is the temperature, R is the gas constant, and B is the appropriately

defined pre-exponential factor. For example, Ω stands for the oxidizer consumption rate in rich

mixtures.

For the sake of simplicity, this work adopts a diffusive-thermal model, according to which

the density of the mixture, ρ, the heat capacity, cp, the thermal conductivity, λ, and the molecular

diffusivity, D, are all assumed constant. Consequently, the flow field is not affected by combus-

tion and the flow velocity is given by the Poiseuille flow, Ux = 6U0(1 − ỹ/H)(ỹ/H), Uy = 0,

where U0 is the mean flow velocity. This study is limited to thin channels and assumes that

purely hydrodynamic effects associated with, for example thermal expansion, are of secondary

importance. Thus, the effects of thermal expansion and variable transport properties will be

reported elsewhere.

Dimensionless parameters are based on the planar flame speed SL and the thermal flame

thickness defined as δT = DT/SL (representing the thickness of a planar adiabatic and isobaric

flame), where DT = λ/ρcp is the thermal diffusivity. Below we use Y0 for the initial mass

fraction and Ta = T0 + QY0/cp for the adiabatic flame temperature. The non-dimensional

temperature is defined as θ = (T − T0)/(Ta − T0). Similarly, θw = (Tw − T0)/(Ta − T0)

is the non-dimensional wall temperature. In the following, we use the channel height H and

the thermal flame thickness δT as the reference scales in longitudinal and transverse directions,

x = x̃/δT , y = ỹ/H , and choose δ2T/DT and Y0 to normalize the time and the mass fraction,

respectively. The parameters a = H/δT and ℓ = L/δT stand for the dimensionless channel

width and the dimensionless length of the heat exchange segment.

Under the above conditions, the energy conservation equation and the equation for the defi-

cient reactant mass fraction take the following dimensionless form

∂θ

∂t
+mv(y)

∂θ

∂x
=

∂2θ

∂x2
+

1

a2
∂2θ

∂y2
+ ω , (1)

∂Y

∂t
+mv(y)

∂Y

∂x
=

1

Le

(
∂2Y

∂x2
+

1

a2
∂2Y

∂y2

)
− ω , (2)

Here v(y) = 6y(1− y) and

ω =
β2

2Leu2
p

Y exp

{
β(θ − 1)

1 + γ(θ − 1)

}
(3)

is the dimensionless reaction rate.
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When writing below the equation for the temperature of the channel wall, we take into ac-

count possible heat losses to the external environment, Rext = hext(Tw − T0), only for the case

where one channel instead of a system of parallel channels is considered. Taking into account

the infinite conductivity of the heat exchange segment, the wall temperature is determined by

the balance equation

C
dθw
dt

= q − bextθw , (4)

where q denotes the total heat flux to the wall from the gas phase,

q = −
ℓ∫

0

∂θ

∂y

∣∣∣∣
y=1

dx . (5)

The parameters appearing in Eq. (4) are

C = ξ · ρwcw
ρ cp

LHwH

δ3T
and bext =

hextH

λδT
, (6)

where ρw, λw and Hw are the density and thermal conductivity of the wall material and the wall

thickness. Here ξ = 1/2 if the system of identical channels is considered (because half the width

of the wall must be taken into account for the thermal balance) while ξ = 1 for a single channel.

In the first case we also have bext ≡ 0.

The procedure for obtaining Eq. (4) from the general equation for the temperature inside

the wall is exactly the same as that presented in [20]. It consists in a regular expansion of all

variables in terms of a small parameter of the ratio of thermal conductivities in the gas and the

solid wall, ϵ = λ/λw ≪ 1, implying formally other parameters of order of unity. We will also

consider cases with a = H/δT = O(1), since if a is small, the consideration is complicated

by the presence of two small parameters in the problem and the resulting asymptotic equations

depend on their ratio, ϵ/a.

Anticipating the results reported below, the problem given by Eqs. (1)-(2) is considered only

for flames with unity Lewis number. As shown in [34], non-symmetric flames do not arise for

Le = 1 within the framework of the constant density model. Thus, the computing domain is

reduced to 1/2 < y < 1. Results for non-unit Lewis numbers, when the appearance of non-

symmetrical flames is possible, will be reported elsewhere.

The appropriate boundary conditions for the gas temperature and the deficient mass fraction

become

y = 1/2, ∀x : ∂θ/∂y = ∂Y/∂y = 0 ; (7)
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y = 1,

{
0 < x < ℓ : θ = θw, ∂Y/∂y = 0 ,

x < 0 and x > ℓ : ∂θ/∂y = ∂Y/∂y = 0 .
(8)

For the upstream and downstream boundary conditions, it should be required

x → −∞ : θ = Y − 1 = 0 ,

x → ∞ : ∂θ/∂x = ∂Y/∂x = 0 .
(9)

In addition to the parameters specified in Eq. (6), the following non-dimensional parameters

appear in the above equations: the Zeldovich number, β = E(Ta−T0)/RgT
2
a , the Lewis number,

Le = λ/ρcpD, the heat release parameter, γ = (Ta−T0)/Ta and the non-dimensional flow rate,

m = U0/SL, normalized with the planar burning velocity, SL.

The factor up = SL/UL appearing in Eq. (3) has been introduced to account for the difference

between the asymptotic value of the laminar flame speed,

UL =
√
2ρBDTLeβ−2 exp (−E/2RTe),

obtained for large activation energy (β ≫ 1) and the numerical value SL calculated for a finite

β. The factor up ensures that for a given β the non-dimensional speed of a planar adiabatic flame

equals one. Clearly, the factor up tends to one when β → ∞. The numerical values of up were

reported in [34] as a function of the Lewis number for β = 10 and γ = 0.7. These values are

kept as representative values in the present study, unless otherwise stated.

3 Numerical treatment

Steady as well as time-dependent computations were carried out in a finite domain, xmin < x <

xmax, where xmin 6 −10 and xmax > ℓ + 10 were used. The size of the domain was varied

in order to check the independence of the results. The spatial derivatives were discretized on a

uniform grid using second order, three-point central differences. For unsteady calculations an

explicit marching procedure was used with first order discretization in time. The typical time

step was τ = 10−4 ÷ 10−5. In order to determine steady (but not necessary stable) solutions, the

steady counterpart (∂/∂t ≡ 0) of Eqs. (1) and (2) was solved using a Gauss-Seidel method with

over-relaxation.

The main criterion to check that the required accuracy of the results had been achieved

was the value of the wall temperature. The number of grid points was varied from 601 × 51

to 1201 × 101. Figure 2 shows the changes in θw over time when these two grids are used,
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Figure 2: Comparison of numerical results for the wall temperature, θw, carried out on two grids,

601× 51 (solid lines) and 1201× 101 (triangles), for m = 5.2, a = 3, ℓ = 10 and C = 200. The

open circles show the initial values of the wall temperature.

represented by solid lines and symbols. Initial distributions in the gas phase were θ = 0 and

Y = 1, while the values of the wall temperature at t = 0 were θw = 0.8 and 0.9 (indicated with

open circles). It can be seen that there is no appreciable difference between the results obtained

in the two grids. This comparison shows that the selected number of grid points and time step

result in good accuracy of the results.

To find steady-state solutions (∂/∂t ≡ 0), the wall temperature θw was fixed. After that,

the heat flux q was calculated as a function of θw. It is obvious that the values of θw for which

q(θw) = bextθw is satisfied correspond to steady-state solutions. When heat losses to the exterior

are neglected, bext = 0, the steady state solutions are the roots of q(θw) = 0. Note that the value

of parameter C does not affect the steady-state solutions.

Summing up Eqs. (1) and (2) written for the steady-state case and then integrating over the

domain, one can obtain

q =
1

2
ma2

(
1− 2

1∫
1/2

v(y)
[
θ + Y

]∣∣
x→∞dy

)
, (10)

where the upstream conditions given by Eq. (9) were used. If we assume that the fuel burns out

completely and the temperature is uniform across the channel outlet, Eq. (10) can be simplified

to

q =
1

2
ma2(1− θout) ,

where θout = θ|x→∞ is the outlet temperature. Thus for bext = 0, the constraint q = 0 results in
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Figure 3: The response curves q versus θw computed for a = 1, ℓ = 10, and various m. The

m = 10 curve shows hysteretic behavior. The points shown by open triangles for the curve with

m = 20 correspond to the flame structures shown in Figs. 4 and 5.

the outlet temperature being equal to the adiabatic temperature due to the lack of heat losses to

the environment.

4 Steady-state solutions

Let us assume ∂/∂t = 0 in Eqs. (1)-(2) and (4). Since the channel walls are adiabatic outside the

heat exchange segment, there is a critical value of the flow rate, mc1, below which the flame can

propagate upstream. This critical value is determined by the flash-back condition, namely the

condition when the flame does not move relative to the wall. This issue was discussed in [34],

for example. It can be easily obtained that mc1 → 1 in the limit a → 0 because there is no

extinction width in the adiabatic channel and the flame shape becomes planar as a → 0. Finally,

to prevent flame propagation upstream the heat exchange zone, m > mc1 should be used.

Figure 3 shows the heat flux, q, as a function of the wall temperature, θw. All curves are

calculated for a = 1 and ℓ = 10. It can be seen that there are two non-trivial solutions of

the equation q = 0 for sufficiently large values of m, e.g. m = 20. In addition to non-trivial

solutions, there always exists a trivial (cold) solution corresponding to θ ≡ 0. Thus, the total
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Figure 4: Flame structures corresponding to the open triangles of Fig. 3 for a = 1, m = 20 and

ℓ = 10, for the temperature (color plot) and the reaction rate (isolines at ω = 1, 5, 10, 15 and

20).

number of steady-state solutions is three. It can be seen that there is a second critical value of

the flow rate, mc2 ≈ 25 for a = 1 and ℓ = 10. At this value of the flow rate, the two non-trivial

solutions merge into one, and disappear at m > mc2. As the flow rate decreases, a hysteresis

behavior appears, see the curve with m = 10. Unfortunately, the solution corresponding to the

equation q = 0 cannot be obtained in these cases by the present method, since for one value

of θw there are three solutions with different q. For this reason, the dashed line connecting two

segments drawn with solid lines was not obtained numerically.

The two non-trivial solutions are illustrated in Fig. 4 for a = 1, ℓ = 10 and m = 20.

The temperature distributions (color plot) and isolines of the reaction rate (ω = 1, 5, 10 and

20) correspond to the states indicated by triangles in Fig. 3. The temperature profiles are also

represented in Figure 5, where the solid lines give the temperatures along the channel midplane,

y = 1/2, and the dashed lines show the temperatures along the wall, at y = 1. It can be seen

that in the center of the channel the temperature reaches values higher than the adiabatic flame

temperature. This effect associated with the recirculation of heat through the conductive segment

explains the large values for the operational flow rates.

The curves q versus θw are shown in Fig. 6 for a wider channel with a = 3 and several values

of m for ℓ = 10 (left plot) and ℓ = 15 (right plot). It can be seen that the second critical value for

the flow rate, mc2, decreases with increasing channel width a but at the same time it increases

with ℓ, for other parameters fixed. It is equal to mc2 ≈ 7.5 for ℓ = 10 and mc2 ≈ 11 for ℓ = 15.

This result is consistent with the intuitive idea that an increase in the length of the recirculation
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y = 1 (dashed lines) for the states shown by open triangles in Fig. 3 for a = 1, m = 20 and

ℓ = 10.
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Figure 6: The response curves q versus θw computed for a = 3, ℓ = 10 (left plot) and a = 3,

ℓ = 15 (right plot) and various m.

segment should enhance flame stabilization in the channel. Indeed, for ℓ → 0 it is difficult to

expect this effect to be significant.

Interestingly, we observe in Fig. 6 that additional roots of the q = 0 equation appear at
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Figure 7: Flame structure corresponding to the states marked with open triangles in Fig. 6 (left

plot), for a = 3, m = 5.2 and ℓ = 10, for the temperature (color plot) and the reaction rate

(isolines at ω = 1, 2, 3 and 5).

intermediate values of m. This can be seen on the curves with m = 5.2 for ℓ = 10 and m = 7

for ℓ = 15. Thus, in these cases the number of non-trivial solutions increases to four. These

solutions will be referred to as ”a”, ”b”, ”c”, and ”d” in the following, as indicated in Fig. 6 (left

plot) with open triangles.

The curves in Fig. 6 resemble the response curves behavior appearing for the steady-state

flames stabilized in a flow around a circular cylinder of high thermal conductivity, as reported

in [20]. In that study it was demonstrated that additional intermediate steady-state solutions also

appeared at certain flow rates.

The flame structures corresponding to the roots of the q = 0 equation are shown in Fig. 7 for

ℓ = 10 and m = 5.2 using the temperature distribution (color plots) and reaction rate isolines

(ω = 1, 2, 3 and 5). These solutions are marked with open triangles in Fig. 6 (left plot) on the
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Figure 8: Temperature distributions in the center of the channel (solid lines) and along the wall

(dashed lines) for solutions marked with open triangles in Fig 6 (left plot) for m = 5.2 and

ℓ = 10.

curve with m = 5.2. Figure 8 shows also the temperature distributions along the centerline of

the channel (solid curves) and along the wall (dashed curves) for these four states.

The flame structures illustrated in Figs. 4 and 7 indicate that for all modes except for the

mode with the hottest wall temperature (close to the adiabatic temperature), the combustion

zone shown by the isoline of the reaction rate is located near the middle of the channel, while

near the wall ω is small. This is due to the usually large Zel’dovich number, which leads to a

sharp decrease in the reaction rate at temperatures below adiabatic temperature.

Interestingly, the flame position in the middle of the channel, defined as the maximum value

of the reaction rate along this line, does not depend monotonically on the wall temperature. This

dependence is shown in Fig. 9, where open circles show solutions marked as ”a”, ”b”, ”c” and
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β = 10, a = 5, ℓ = 20 (right plot), and various values of m.
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”d” corresponding to zero heat flux, q = 0, to the wall.

Numerical analysis reveals that the existence of additional solutions at intermediate values

of the flow rate m is related to the Zel’dovich number. Figure 10 (left plot) shows the response

curves obtained for β = 8, a = 3 and ℓ = 10. It can be seen that no additional roots of the

q = 0 equation appear. Thus, we can conclude that additional solutions will most likely appear

for leaner mixtures corresponding to higher Zel’dovich numbers.

On the other hand, it should be noted that the emergence of additional steady-state solutions

of the q = 0 equation at intermediate values of the wall temperature is a persistent trend. This

takes place both as the channel is made wider and with an increase in the length of the heat-

conducting wall segment. This is illustrated in Figure 10 (right plot) showing the response

curves obtained for a = 5 and ℓ = 20 (note that β = 10 was chosen for this plot).

5 Linear stability analysis

The linear stability analysis of the steady-state solutions presented in the previous section is now

reported. Steady-state two-dimensional distributions of the temperatures and the mass fraction,

all now denoted by subindex ”0”, are perturbed as usual with small perturbations

θ = θ0(x, y) + ϵΦ(x, y) exp (λt),

Y = Y0(x, y) + ϵΨ(x, y) exp (λt),

θw = θw0 + ϵΦw exp (λt),

(11)

where λ is a complex number, the real part of which represents the growth rate, and ϵ is a

small amplitude. The linearized eigenvalue problem obtained when substituting Eq. (11) into

Eqs. (1)-(4) reduces to finding non-trivial solutions of the two-dimensional system

λΦ = −mv(y)
∂Φ

∂x
+∆Φ+ AΦ +BΨ, (12)

λΨ = −mv(y)
∂Ψ

∂x
+ Le−1∆Ψ− AΦ−BΨ, (13)

λCΦw =

ℓ∫
0

∂Φ

∂y

∣∣∣∣
y=1

dx (14)

where

A =
β3Y0

2Leu2
p[1 + γ(θ0 − 1)]2

exp

{
β(θ0 − 1)

1 + γ(θ0 − 1)

}
, B =

β2

2Leu2
p

exp

{
β(θ0 − 1)

1 + γ(θ0 − 1)

}
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are both functions of x and y.

It is known that for a symmetric steady state investigated for stability, the existence of both

symmetric and nonsymmetric perturbations is possible. This issue was studied in several publi-

cations, see e.g. [29, 34]. Within the framework of the diffusive-thermal model, non-symmetric

perturbations are relevant for Lewis numbers different from unity and in channels of sufficient

width. Since the present study is limited to narrow channels and the case with Le = 1, only

symmetrical perturbations are assumed.

Equations (12)-(14) are to be solved subject to the following conditions

∀x, y = 1/2 : ∂Φ/∂y = ∂Ψ/∂y = 0 ; (15)

y = 1,

{
x < 0, x > ℓ : ∂Φ/∂y = ∂Ψ/∂y = 0 ,

0 < x < ℓ : Φ = Φw, ∂Ψ/∂y = 0 .
(16)

Since the eigenvalue problem is linear, we can normalize the eigenfunctions by setting Φw = 1.

In the same manner as reported in [34] for flames in channels with adiabatic walls, the

eigenvalue with a largest real part, or the main eigenvalue, was calculated. The method proposed

in [34] was used to calculate this main eigenvalue. If the real part of this eigenvalue is positive,

λR = Re(λ) > 0, then the steady-state is unstable, and conversely, if its real part is non-positive,

λR ≤ 0, the steady state is linearly stable. The imaginary part of this eigenvalue, λI = Im(λ),

represents the frequency of oscillations.

The parameter C appearing in Eq. (4) expresses the effective heat capacity of the bulk of the

wall conductive material. When finding steady-state solutions in the previous section, this pa-

rameter could not affect the results. However, it is obvious that the properties of time dependent

solutions, including the stability properties, depend on this parameter.

Figure 11 shows the real part of the main eigenvalues as functions of C computed for so-

lutions ”a”, ”b”, ”c” and ”d” indicated by the open triangles in Fig. 6. It should be noted that

since the eigenvalue decreases with increasing C, it is convenient to plot λRC along the vertical

axis. The solid lines in the figure correspond to purely real eigenvalues, and only for the segment

drawn by a dotted line (solution ”b”) the imaginary part is non-zero. The transition points from

the complex eigenvalue to the purely real one for solution ”b” are indicated by open circles. By

chance, one of these points lies very close (almost above) to the eigenvalue curve of the solution

”a” which is purely real.

When studying linear stability, a qualitative method based on the slope of the response curves

is often used. For example, for the curve shown in Fig. 6 for m = 5.2, solutions ”a” and ”c”
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Figure 11: The real part of the main eigenvalue as a function of parameter C (the values of λRC

are drawn along the vertical axis) for ”a”, ”b”, ”c” and ”d” solutions calculated for m = 5.2,

a = 3 and ℓ = 10. The solid curves represent the purely real eigenvalues (λI ≡ 0) and a dashed

line segment shown for the ”b” solution shows the eigenvalues with λI ̸= 0. The transition

points from complex to purely real values are marked with open circles. (Comment: one of the

circles corresponding to the ”b” curve overlaps with the λ-curve for the ”a” solution which is

entirely real).

would be declared unstable. Indeed, with a random increase in the wall temperature θw the heat

flux to the heat exchange segment decreases, according to the response curve, and, thus, θw
should decrease. Conversely, when the wall is randomly cooled then, according to the response

curve, the heat flux q increases and the wall heats up.

The results presented in Fig. 11 show that the steady-state solutions ”a” and ”c” are always

unstable (λR > 0), while the solution ”d” is always stable (λR < 0). This is in agreement

with the qualitative consideration described above. However, for the steady-state solution ”b”,

the above method does not work: the negative slope of the response curve at ”b” would lead

to the conclusion that ”b” is stable. However, the numerical calculations show that for suffi-
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ciently small values of C this solution is unstable, while for sufficiently large C the ”b” solution

becomes stable.

Figure 11 also shows that at C ≫ 1, the values of λC tend to constants. This can also be

seen also from Eqs. (12)-(14). Indeed, at C → ∞ it is convenient to re-normalize the eigenvalue

as λ̃ = λC. Then, the left hand sides of Eqs. (12)-(13) become small, of order ∼ 1/C and

given that C ≫ 1, these terms can be neglected in the first approximation. This means that the

functions Φ and Ψ become independent of λ. After this, Eq. (14) gives

λ̃ =

ℓ∫
0

∂Φ/∂y
∣∣
y=1

dx ,

which is independent of C.

6 Time-dependent calculations

Time-dependent calculations of Eqs. (1)-(4) were carried out for several initial conditions. First,

the following initial state was chosen,

t = 0 : θ = Y − 1 = 0, θw = θw0 , (17)

which corresponds to the flow of a cold fresh mixture in the channel and instantaneous heating

of the conductive wall segment up the temperature θw = θw0. Figure 12 illustrates snapshots of

the flame dynamics obtained with θw0 = 0.9.

The time histories of θw for θw0 = 0.8 and θw0 = 0.9 are shown in Fig. 13 for m = 5.2. Solid

lines correspond here to C = 500, dashed lines to C = 200 and the dash-dotted line to C = 100

(only for θw0 = 0.9). It can be seen that with a higher initial temperature of the wall, the final

state of the system is the state ”d”, and for a colder initial temperature, the system reaches the

state ”b”. This happens for both C = 500 and C = 200. However, for C = 100 (dash-dotted

line), extinction occurs. This result confirms that the existence of two stable steady-states for

the same values of the parameters is not a numerical artifact. These two states can be obtained

under fairly simple initial conditions.

In order to investigate the dependence of the dynamical properties of the ”b” state on the

parameter C, the following calculations were carried out. We chose as initial conditions the

distributions of the temperature and mass fraction for the ”b” state obtained by the steady-state

method (assuming ∂/∂t ≡ 0) or the time-dependent method with large C. Thereafter, a small
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Figure 12: Snapshots for the ignition process from a intracutaneously heated wall up to θw0 =

0.9 in an initially cold channel, for m = 5.2, a = 3, ℓ = 10 and C = 200.

perturbation was added to the wall temperature only. The initial conditions obtained in this

way were used to carry out calculations for different values of the parameter C. Recall that the

stable-unstable boundary for the ”b” solution was found near C∗ ≈ 63 for m = 5.2, a = 3 and

ℓ = 10.

The time history for the wall temperature is shown in Fig. 14 for different values of the

parameter C and for two initial wall temperatures θw0. The latter are indicated in Fig. 14 by

open circles. The value for the unperturbed wall temperature corresponding to the steady state

”b” is shown with a horizontal dash-dotted line. One can see that for an initial wall temperature

θw0 = 0.75 (the wall temperature perturbation is about %2), the system returns to state ”b” for

C = 100 and 80, while for C = 75 there is no return to state ”b”. However, for θw0 = 0.74 (the

wall temperature perturbation . %1), the system approaches the steady-state ”b” for C = 70.

For the same initial wall temperature and for C = 60 (below the threshold value C∗ ≈ 63 of the

”b” state), periodic small-amplitude oscillations of the wall temperature take place. When the

parameter C decreases, e.g. to C = 55, the amplitude of these oscillations increases.

It is interesting to note that by initiating calculations from the same initial conditions (θw0 =

0.74) but with smaller values for parameter C, the Feigenbaum’s cascade of period doubling
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Figure 14: Time history of the wall temperature after the perturbation of the steady-state solution

”b” (indicated with a dash-dotted line) for different values of the parameter C and θw0 (indicated

with open circles), all curves for a = 3, m = 5.2 and ℓ = 10.

bifurcations takes place, leading ultimately to a chaotic regime. Figure 15 illustrates the dynam-

ics of the wall temperature for C = 48, 47.3 and 45.5. With a decrease to C = 45.5, the wall

temperature dynamics apparently becomes chaotic, as the bottom plot of Fig. 15 illustrates.

We do not present here the time histories of the wall temperature related to the intermediate

period doubling events that occur during the transition to chaotic dynamics, since it is difficult

to follow these events from such plots. Instead, the flame dynamics is illustrated with the first

return map technique. Using the dependence of the wall temperature on time, the series of local

maxima of θw are identified, {θ(n)w , n = 1, 2, . . . } , where n is the maximum number. The

dependence θ
(n+1)
w versus θ(n)w is plotted in Fig. 16. These plots were created using n & 10 after

the starting of simulations, in order to allow the flame dynamics to approach the corresponding

attractor.
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Figure 15: Time histories of the wall temperature after the perturbation of θw calculated for

a = 3, m = 5.2 and ℓ = 10 and various decreasing values of C. The horizontal dash-dotted

lines indicate the steady states ”b” and ”c”, the vertical dashed lines on the top and middle plots

show the oscillation period.

Figure 16 (upper left) indicates that for C = 47.3 there are four local maxima for θw within

one period. For C = 47.2 the first return map consists of four continuous segments. It is

interesting to note that with a further decrease in the C parameter, a second branch appears on

the return map. This is especially evident in Fig. 16 (lower right), where the two branches are

marked with dashed lines.

Intermittency is well known as the irregular alternation of phases of apparently periodic and

chaotic dynamics, see [35]. Intermittent behavior has been reported recently in the description

of a combustion wave propagating in a narrow sample of energetic material [36]. The intermit-

tency effect was also observed for the time dependent behavior of the wall temperature. Fig. 17

shows the different intervals of the time-history of θw calculated for C = 45.5. The phases of

apparently periodic behavior are indicated with dashed-line circles. It can be seen in the up-
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Figure 16: First return maps for the wall temperature θw calculated for a = 3, m = 5.2, ℓ = 10

and various values of C.

per figure that simple oscillations alternate with chaotic behavior, while in the lower figure the

oscillations are more complex in the interval of periodic behavior.

Numerical simulations show, however, that at even smaller values of C, the amplitude of

oscillations increases and the system moves toward the stable state ”e”. This can be seen in

Fig. 18 where the top plot presents the wall temperature and the bottom plot shows the total heat

flux into the wall. The top plot indicates that as soon as the instantaneous wall temperature value

exceeds that of the (unstable) ”c” mode, a transition to the steady state ”d” occurs. An interesting

detail is also that the chaotic oscillations around the ”b” state can continue for a considerable
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periodic dynamics are indicated with dash-lines circles, for C = 45.5.

time before the transition to a (stable) steady state occurs.

7 Discussion and conclusions

When studying the structure and dynamics of flames in channels, the modeling of the flame-wall

interaction is often simplified. Two of the most common approximations are the adiabatic limit,

when the heat flux to the wall is assumed to be zero, and the isothermal wall approximation,

when the wall temperature is assumed to be constant and equal to the ambient temperature. An

intermediate approximation between these two limits is to assume that the heat exchange be-

tween the wall and the flame follows a linear law, so that the heat flux to the wall is proportional

to the difference between the internal and external wall temperatures. This is the so-called thin-

wall approximation, when the temperature distribution inside the wall is assumed to be linear

with respect to the normal-to-wall direction. The limiting cases for this approximation result in

the adiabatic or isothermal temperature wall boundary conditions.

However, one can easily imagine a situation where at least a part of the wall surrounding the

combustion zone is made from a highly conductive material, for example a metal-like material,

leading to a uniform wall temperature. Typically, the thermal conductivity of of such substances

is several hundred times higher than that of the gas phase, and because they are convenient
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Figure 18: Time histories of the wall temperature (upper plot) the heat flux to the wall (lower

plot) calculated for a = 3, m = 5.2, ℓ = 10 and C = 44 after the perturbations of θw (marked

with open circles in the upper plot). The horizontal dash-dotted lines indicate the steady states

”b”, ”c”, and ”d” in the upper plot.

materials for the design of combustion devices, this possibility cannot be ignored, especially

when analyzing small-scale devices. The use of highly conductive materials also makes possible

to enhance the effect of heat recirculation in the system under consideration.

This work presents an attempt to study numerically this kind of situation. We investigate a

narrow channel in which a wall segment is composed of a highly conductive material, which

results in temperature uniformity within this segment. The description of this geometry contains

many parameters, so a complete detailed study of the influence of all of them is not possible in

a theoretical work. The presentation is limited to selected cases, which, in our opinion, may be

of a more general nature.

The asymptotic limit of a large ratio of the thermal conductivities of the wall and the gas

makes it possible to simplify significantly the procedure of finding steady-state solutions, since

by setting the wall temperature the heat flux into the wall, q, is calculated directly. If the heat-

conducting wall segment separates adjacent channels (or it is isolated from the environment),

then the condition for the steady-state mode becomes q = 0. It is also easy to take into account

possible heat losses from this segment, if any.

Although the physical situation does not change for a finite (but large) ratio of thermal con-
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ductivities, the procedure for finding steady-state regimes becomes more complicated due to

the need to calculate the inhomogeneous temperature field inside the wall and the temperature

distribution in the adjacent channel (in the case of a periodic system of micro-burner channels).

Indeed, the symmetry condition in the middle of the heat-conducting wall cannot be set, and

the calculation of the variable distributions in the adjacent channel is unavoidable. Thus, the

study of the limiting case with an infinite ratio of thermal conductivities is extremely useful for

a qualitative and quantitative understanding of the combustion process.

To analyze the problem, a simple diffusive-thermal model is chosen. Since the effects under

study are related to the process of heat exchange between the flame and the wall, and in the case

of narrow channels, it is expected that this approximation does not take the results very far from

reality. The use of this simplified model has the advantage of permitting the linear stability study

of the obtained stationary solutions, as well as the computation of time-dependent solutions at

low cost.

The simulation results show that the highly conductive wall segment acts as a flame holder.

Additionally, the system presents multiple solutions for a wide range of mixture flow rates, there

are at least two non-trivial solutions for steady-state regimes. This number can increase to four

as the channel width and the length of the highly conductive segment increase.

Numerical analysis of the linear stability of the found steady-state modes reveals that some

of them are always stable, but the stability of some others depends on the parameters charac-

terizing the system as a whole, but not affecting the steady state solutions. Such a parameter

is the effective heat capacity of the conductive wall segment represented by the C parameter in

Eq. 4). It is also shown that the Feigenbaum’s cascade of period doubling bifurcations can ap-

pear leading to a chaotic dynamics. Although the initial conditions used to obtain such solutions

were of a special type (it was assumed that the parameter C instantly changes its value at the

initial moment), the Feigenbaum cascade preceding the appearance of chaotic dynamics might

possibly also appear using other initial conditions.

As mentioned above, the system under study can be considered as part of a small-scale device

with heat recirculation, when the channels are separated by walls made of a highly conductive

material. All the results obtained in this work can be transferred to this case. However, it should

be noted that the relaxation of some of the assumptions made in this study, for example, the

symmetry of the flame in the channel relative to its middle, can lead to additional effects that

would require further investigation.
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