
May 24, 2021 1

Analytical study of superadiabatic small-scale
combustors with a two-step chain-branching chemistry

model: lean burning below the flammability limit

Javier Bosch, Daniel Fernández-Galisteo,
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Abstract

A study of combustion in small-scale superadiabatic burners with a counter-flow heat

exchange segment is presented for a simple two-step chain-branching chemistry model. The

work is focused on the possibility of burning below the flammability limit. The investigation

is carried out in the high activation energy limit on the basis of analytical solutions. The

existence of multiple steady-state regimes is demonstrated and their stability properties are

investigated. These analytical results are finally compared with the results of numerical

simulations carried out for finite activation energies.

1 Introduction

The design of near-limit chemical processes has wide technological applications, but very often

their practical implementation turns out to be impossible without preheating or without adding

other combustible substances. Among these applications, one can point out the chemical de-

struction of substances harmful to the environment, or fuel reforming processes, in which prod-

ucts needed for further use (for example, hydrogen) are obtained as a result of the partial ox-

idation of initial high molecular weight substances in an oxygen-lean process. However, the

practical implementation of these and other similar processes becomes possible without addi-

tional energy costs in small-scale burners of the superadiabatic type, in which the temperature

in the operational zone results to be significantly higher than the temperature obtained from a

simple energy balance of the corresponding chemical transformations.

The study of superadiabatic burners has received considerable attention from experimental,

theoretical and numerical points of view. Comprehensive reviews regarding these small-scale

combustion devices can be found in [1–6] and in a very recent survey [7]. The underlying idea of

this sort of devices based on heat recirculation should be traced back to [8–10] and over the past

two decades a significant number of investigations on this subject have been reported [11–22].
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An example of these superadiabatic burners is a system of parallel channels, where the react-

ing mixture moves in countercurrent flow. Despite the clear operational advantages that allow

self-sustained chemical reactions without additional energy investment, the operation of such

systems is subject to undesirable effects, such as possible extinction or instabilities, if the pa-

rameters are inadequately selected. This is due to the fact that a necessary characteristic of

these devices is a small transverse scale of the operational zone, to allow efficient heat ex-

change between the channels. But the smallness of the characteristic dimensions decreases the

volume-to-surface ratio, thus increasing possible heat losses. The investigation of these features

to determine the range of parameters favorable for stable functioning is therefore a decisive part

in the design of superadiabatic combustion devices.

It should be noted that most of the theoretical and numerical studies on combustion in su-

peradiabatic devices were carried out either on the basis of a simplified one-step Arrhenius-type

kinetics [12–15,17,18,20,22], or using complex kinetic schemes for specific chemical processes,

as in [16, 19, 21]. In the case of Arrhenius kinetics, no flammability limit can be determined (a

planar flame always exists for any fuel concentration within this kinetics). In the case of a com-

plex kinetic scheme, it is difficult to reveal explicitly and with precision the flammability limit

condition, if it exists at all. Nevertheless, the study of the interaction of the limiting flammability

conditions and the thermophysical characteristics of a small-sized device is extremely important

for better understanding its functioning principles.

A convenient kinetic scheme to study this issue is the simplified chain-branching reaction

kinetics proposed by Zel’dovich [23–25]. In this mechanism, an initial fuel F is transformed

into an intermediate radical Z by means of a thermally sensitive autocatalytic step, F+Z → 2Z,

with a finite activation energy. The radical species, being metastable, recombine into products

P in an exothermic completion step, 2Z + M → P + M + Q, with M being any type of

molecule. This chain-branching chemistry model was referred by Zeldovich as an idealized

case of the hydrogenoxygen combustion [24]. This mechanism was explored later by Liñán [26]

using the high activation energy asymptotic (HAEA) limit where fast, intermediate and slow

recombination regimes were identified. Sometimes this model is referred in the literature as the

Zeldovich-Liñán (ZL) model. The HAEA analysis was carried out in [27] where non-zero heat

release was assumed also for the autocatalytic step. A similar mechanism was used in [28] to

study hydrogen chemistry.

The above mechanism was modified by Dold [29–32], where the completion step was sug-

gested in the form Z + M → P + M . The main difference between the original ZL-model
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Figure 1: Sketch of the microburner configuration. Heat exchange between the channels takes

place within segment 0 < x̃ < L. Arrows indicate gas flow directions and the vertical bold line

indicates a flame located at x̃f .

and Dold’s modification is the linearity of the completion reaction step with respect to the rad-

ical mass fraction. This results in the existence of a chain-branching crossover temperature,

Tc, below which the rate of removal of the radical by diffusion is superior to the rate of chain-

branching. This kinetic scheme was subsequently used for the numerical and asymptotic analysis

of the structure and stability of flames [33–41]. A detailed overview of these problems and their

applications, along with a detailed discussion, can be found in [42].

The purpose of the present work is to show explicitly the possibility of implementing a self-

sustaining combustion process for extremely lean mixtures below the flammability limit in a

superadiabatic device. According to the authors’ knowledge, such an analysis has not yet been

reported on this topic. The article is arranged as follows: the general formulation is presented in

Section 2; the analytical treatment of steady-state solutions obtained in the high activation energy

limit is developed in Section 3; the asymptotic treatment of a long channel case is presented in

Section 4; the stability analysis of these steady state solutions is presented in Section 5, also

on the basis of analytical solutions; finally, a comparison of the HAEA analytical and numerical

solutions calculated for finite activation energies is presented in Section 6 and Section 7 contains

the conclusions. In addition, the flammability limits development for the large activation energy

case is given for completeness in the Appendix.

2 General formulation

A schematic representation of the combustion device investigated in the present work is given in

Fig. 1. A combustible mixture flows in one channel where the combustion process takes place.
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The adjacent channel contains a chemically inert gas flowing in the opposite direction, which

serves only to transfer heat. A similar type of device was considered in [18]. The mixture is

assumed to be deficient in fuel while the mass fraction of the oxidizer, which is in abundance,

remains nearly constant. The initial temperatures of both gases are equal to T0 and the initial

mass fraction of the combustible substance is F0.

We assume that heat exchange between the channels takes place within a section of length

L. Anticipating the results presented below, it should be noted in advance that the thermal

conditions outside the heat-exchange section become of little importance if its length is large

enough. In this study, we consider two opposite cases. In the first case, adiabatic conditions for

x̃ < 0 and x̃ > L are assumed in both channels. In the second case we consider the limiting

situation when heat exchange with the external environment is very intense, so that for x̃ < 0

and x̃ > L the gas temperatures in the two channels remain equal to the initial (cold) temperature

T0. Here and below ” ∼ ” is used to denote dimensional variables if the same notation is used

for dimensional and dimensionless variables.

The two-step chain-branching kinetic mechanism used in the present study is identical to

that explored in [29–39]. This chemistry includes the autocatalytic and recombination steps as

follows

F + Z → 2Z : ΩB = AB(ρF/WF ) · (ρZ/WZ) exp{−E/RgT},
Z +M → P +M +Q : ΩC = AC(ρZ/WZ) · (ρ/W ),

(1)

where ΩB is the chain-branching reaction rate, assumed to be thermally sensitive with activation

energy E, and ΩC is the completion reaction rate with zero activation energy. As usual, all the

heat, Q, is released in the completion step. In Eq. (1) AB and AC represent the reaction rate

constants, ρ is the density, T is the temperature, F and Z are the mass fractions of fuel and

radicals, Rg is the universal gas constant, and WF , WZ and W are the fuel, radical and mean

molecular weights, respectively.

For the sake of simplicity, the present study deals with a diffusive-thermal model, according

to which the density of the mixture ρ, the heat capacity cp, the thermal conductivity, λ, and the

molecular diffusivities of the fuel and radical species in the mixture, DF , DZ , are all constant.

DT = λ/ρcp stands for the thermal diffusivity, and is also constant within this model. The effects

of changes in density and transport properties with temperature will be discussed elsewhere.

In what follows, subindexes 1 and 2 are used to identify the channels with rightward and

leftward flow directions, respectively, as sketched in Fig. 1. The analysis presented below is

restricted to cases where the flow rates in the two channels are equal, i.e. U1 = −U2 = U .
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Thermo-physical properties of gases in both channels are assumed to be also identical. Within

the one-dimensional approximation applicable to sufficiently thin channels, see [22], the conser-

vation equations of species and energy take the form

ρ

(
∂F

∂t̃
+ U

∂F

∂x̃

)
= ρDF

∂2F

∂x̃2
−WFΩB (2)

ρ

(
∂Z

∂t̃
+ U

∂Z

∂x̃

)
= ρDZ

∂2Z

∂x̃2
+WZΩB −WZΩC (3)

ρcp

(
∂T1

∂t̃
+ U

∂T1

∂x̃

)
= λ

∂2T1

∂x̃2
+QΩC −H, (4)

ρcp

(
∂T2

∂t̃
− U

∂T2

∂x̃

)
= λ

∂2T2

∂x̃2
+H, (5)

where x̃ and t̃ are the space and time variables and H is the heat-exchange term.

It is assumed that the heat-exchange term H has the form

H = Bσ(x̃/L)(T1 − T2), (6)

where

σ(ζ) =

{
1, 0 < ζ < 1 ,

0, ζ < 0, and ζ > 1 ,
(7)

and B is the effective heat exchange parameter.

A dimensionless temperature is defined here as θ = (T − T0)/(Tc − T0). This choice is

based on the branching temperature Tc, which takes into account the amount of radical removed

by diffusion from the inner branching zone. This temperature is usually known as an ”inho-

mogeneous” crossover temperature and has been widely discussed in [29–32]. The branching

temperature Tc is determined by the relation ΩB = β2ΩC evaluated at the initial fuel mass frac-

tion F0, where β = E(Tc − T0)/RgT
2
c is the Zel’dovich number based on Tc. It is important to

see that the radical mass fractions Z in ΩB and ΩC are canceled out and, finally, Tc is defined by

the equation
AB

AC

W

WF

F0 =

{
E

Rg

· Tc − T0

T 2
c

}2

exp

{
E

RgTc

}
. (8)

In determining the dimensionless length and time parameters in combustion systems, the

thermal flame width and the planar flame propagation velocity are often used. It should be

noted that these quantities always exist in the case of a standard one-step kinetic model of the

Arrhenius type, within which there is no flammability limit. However, in the case of chain-

branching kinetics, these parameters may not exist when the initial fuel mass fraction is low,
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that is, in the case of a mixture below the flammability limit. This means that the adiabatic

temperature, namely the temperature obtained during complete fuel burning in a planar flame

without heat-losses, remains below the branching temperature. These are the cases where the

application of superadiabatic devices is of particular interest.

Because we are interested in these cases where a flame width and propagation speed can

not be defined, the characteristic time and length, tc and Lc, used to define the dimensionless

variables x = x̃/Lc and t = t̃/tc are chosen from the following relations

tc DT/L
2
c = 1, tcρAC/W = 1. (9)

The first relation is obtained by equating the orders of magnitude of the unsteady and diffusion

terms in Eq. (4). The second relation is determined from equating the unsteady and the comple-

tion reaction terms in Eq. (3). The characteristic quantities Lc and tc determine the scale of the

characteristic velocity Uc = Lc/tc =
√

ρACDT/W .

Using F0 and Z0 = (WZ/WF )F0 to normalize the mass fractions of fuel and radicals, re-

spectively, the dimensionless counterparts of Eqs. (2)-(5) take the form

∂F

∂t
+m

∂F

∂x
=

1

LeF

∂2F

∂x2
− ω , (10)

∂Z

∂t
+m

∂Z

∂x
=

1

LeZ

∂2Z

∂x2
+ ω − Z, (11)

∂θ1
∂t

+m
∂θ1
∂x

=
∂2θ1
∂x2

+ qZ − b σ(x/ℓ)(θ1 − θ2) , (12)

∂θ2
∂t

−m
∂θ2
∂x

=
∂2θ2
∂x2

+ b σ(x/ℓ)(θ1 − θ2) , (13)

where

ω = β2 F Z exp

{
β(θ1 − 1)

1 + γ(θ1 − 1)

}
. (14)

Here b is the dimensionless intensity of heat exchange between channels, defined below, ℓ =

L/Lc is the dimensionless length of the heat exchange segment, m = U/Uc is the dimensionless

flow velocity, q = QF0/cp(Tc − T0)WF is the dimensionless heat of reaction, γ = (Tc − T0)/Tc

is the heat release parameter, LeF = DT/DF and LeZ = DT/DZ are the Lewis numbers of the

fuel and radicals.

The calculation of the dimensionless heat exchange parameter b within the narrow channel

approximation is detailed in [22]. The only difference introduced in this work is the need to
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replace the thermal width of the flame δT (which may not exist for cases below the flammability

limit) by Lc. The final expression takes the form

b = α
λw

λ

L2
c

HHw

, (15)

where H and Hw are the channel and wall widths, respectively, and λw is the wall thermal con-

ductivity. The dimensionless factor α depends on the configuration of the burner: if a periodic

array of channels is considered, as is done in [22], then α = 2. If we consider only two chan-

nels with external lateral adiabatic walls thermally isolating from the external environment, then

α = 1.

The following boundary conditions are applied. For the mass fractions of fuel and radicals,

we use

x → −∞ : F − 1 = Z = 0, x → ∞ : ∂F/∂x = ∂Z/∂x = 0 . (16)

For the temperature field, two types of conditions will be used. In the first case, where heat

losses outside the heat exchange segment are neglected (adiabatic walls), we assume

x → −∞ : θ1 = ∂θ2/∂x = 0; x → −∞ : θ2 = ∂θ1/∂x = 0 . (17)

In the second case, where very fast heat exchange with the external environment is assumed and

the temperature becomes close to the initial temperature for x < 0 and x > ℓ, we impose

x = 0, ℓ : θ1 = θ2 = 0 . (18)

The flame position, xf , is defined below as a point where the temperature is equal to the

branching temperature, θ1(xf ) = 1. This point is close to that where the radical mass fraction Z

reaches its maximum value. In the limiting HAEA case considered below, these points coincide.

Nevertheless, it should be noted that at finite β, the branching temperature becomes slightly

smaller than unity, so that the unit temperature in the channel may not be attained. In these

cases, the point with the maximum concentration of radicals is used for the flame position.

Taking into account that the molecular weight of the radicals is usually smaller than the

molecular weight of the initial substances, the case of Lez = 0.3 will be considered below,

unless otherwise indicated. It should also be noted that the steady-state results do not depend,

or only slightly depend (at finite β), on the Lewis number for the initial fuel, LeF . This fact is

not new and was noted in [29–32] for the modified ZL-model. In contrast, the stability results

depend on the fuel Lewis number.
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3 Analytical steady-state solutions for β ≫ 1

In the HAEA limit, β ≫ 1, the radical production term is reduced to the Dirac δ-function located

at the point where θ1 = 1, namely ω ∼ δ(x−xf ) and xf is the flame-sheet position, see [29–32].

The jump conditions for variables across the flame sheet take the form[
Z
]
=

[
F
]
= Le−1

F

[
F I

]
+ Le−1

Z

[
ZI

]
= 0, (19)

θ1|xf− = θ1|xf+ = 1,
[
θ2
]
=

[
θI1
]
=

[
θI2
]
= 0 , (20)

where [f ] = f(xf + 0) − f(xf − 0) and f I denotes a derivative with respect to x. These jump

conditions for variables and derivatives are obtained by combining the equations and integrating

over the flame sheet.

Imposing ∂/∂t ≡ 0 and assuming that at x = xf the fuel is consumed completely, the

steady-state solutions of Eq. (10)-(11) take the form

F =

{
1− exp [LeF m (x− xf )], x < xf ,

0, x > xf .
(21)

Z =

{
Zf exp[am(x− xf )], x < xf ,

Zf exp[ap(x− xf )], x > xf ,
(22)

where

am =
LeZm+

√
Le2Zm

2 + 4LeZ
2

, ap =
LeZm−

√
Le2Zm

2 + 4LeZ
2

, (23)

and

Zf =
mLeZ√

Le2Zm
2 + 4LeZ

(24)

is obtained from the jump conditions given by Eq. (19). Note that regardless of the boundary

conditions selected for the temperature at x < 0 and x > ℓ, the solutions given by Eqs. (21)-(24)

for the mass fractions remain the same.

The equations to determine the steady-state temperature distributions in both channels be-

come {
mθI1 = θII1 + qZ − b σ(x/ℓ)(θ1 − θ2) ,

−mθI2 = θII2 + b σ(x/ℓ)(θ1 − θ2) ,
(25)

For the sake of completeness, the calculation of the flammability limit condition, defined as

the value of q = qf below which a planar adiabatic freely propagating flame can not exist, is
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given in the Appendix for the case of large β. This issue was discussed for the first time in [29].

It was shown that qf = 1 is obtained independently of the Lewis numbers within the HAEA

limit.

3.1 No heat losses outside the heat-exchange segment

Let us consider first the case of adiabatic conditions for x < 0 and x > ℓ. Equations (25) are

to be solved with the boundary conditions given by Eq. (17). Because the heat-exchange term

is zero for x < 0 and x > ℓ, the solution for the temperature field outside the heat-exchange

segment becomes

θ1 =


A1e

mx +
qZf

mam − a2m
eam(x−xf ) , x < 0,

A2 +
qZf

map − a2p
eap(x−xf ) , x > ℓ,

θ2 =

{
A3 , x < 0,

A4e
−mx , x > ℓ,

(26)

where Ai, i = 1, . . . 4 are unknown constants. Eq. (26) allows to write the following conditions

independent of Ai

x = 0 : mθ1 − θI1 = qZf
m− am

mam − a2m
e−amxf , θI2 = 0 ,

x = ℓ : θI1 = qZf
ap

map − a2p
eap(ℓ−xf ), mθ2 + θI2 = 0 .

(27)

Thus, the problem of finding the temperatures in the two channels is reduced to solving

Eq. (25) separately for 0 < x < xf and xf < x < ℓ followed by application of the conditions

on the flame sheet. The total number of conditions is nine: five conditions provided by Eq. (20)

and four by Eq. (27).

Equations (25) written on both sides of the flame sheet are linear and have an analytical

solution containing eight constants, {Ci, i = 1, . . . 8}, four on each side. These constants are

determined from any eight conditions given by (20) and (27), which requires solving a system

of eight linear inhomogeneous equations. The remaining ninth condition providing a solvability

condition of the form

F(xf ;m, q, ℓ, b, Lez) = 0 (28)

is applied to determine the flame position, xf . This analytical procedure was carried out using

MAPLE, which facilitates the algebraic steps tremendously. Although this leads to an analytical

expression for F , this is a very long expression with no way to be written explicitly in this

article. In addition, it does not reveal much about the nature of the solution. Typical examples
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Figure 2: Typical examples of the function F of Eq. (28) with two, one and zero roots.

of the function F plotted versus xf are shown in Figure 2, where one can see the cases with two,

one and no roots. The intermediate one-root case corresponds to a critical event where two roots

merge into one and then disappear. The exhaustive parametric study presented below is based

on the numerical evaluation of the analytical expression for F .

The calculated values of xf are presented in Fig. 3 as a function of q. The left plot shows

the curves evaluated for ℓ = 50 and different values of the heat transfer coefficient b. The right

figure shows the values of xf obtained for b = 0.5 and various values of ℓ. It can be seen in

the left plot that for very lean mixtures, q < 1, steady-state solutions exist for a sufficiently

large heat transfer coefficient b when the length ℓ is fixed. The right plot shows that when the

coefficient b is fixed, an increase in ℓ also leads to the appearance of combustion modes for

q < 1. Anticipating the results presented in Section 5, it should be noted that the solution with

a larger value of xf is unstable.

Typical temperature and mass fraction distributions are illustrated in Fig. 4 for the cases of

mixture richer than the flammability limit (q > 1, left plots) and leaner than the flammability

limit (q < 1, right plots). These distributions correspond to the open circles shown in Fig. 3

(left).

Figure 5 shows the dependence of the flame position on the flow rate m for different values

of q. The left picture shows cases with b = 0.1, the right one with b = 0.5. One can see that there
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Figure 3: Dependence of the combustion front position xf versus the dimensionless heat of

reaction q for different b values (left plot) and different ℓ values (right plot). Open circles in the

left plot correspond to the distributions shown in Fig. 4. The vertical dash-dotted lines indicate

the standard flammability limit qc = 1.
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Figure 4: Examples of the temperature distributions in the two channels (θ1 for the reacting

channel and θ2 for the non-reacting gas) and the distribution of radicals Z for the four steady-

state solutions marked with open circles in Fig. 3.

is always a maximum flow rate above which there are no solutions. For q < 1, the curves in
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Figure 5: Dependence of the combustion front position xf versus the dimensionless flow rate m

for several values of q. Open circles correspond to the distributions shown in Fig. 6.

the figure are closed. However, with an increase in q, it can be seen that xf approaches the edge

of the heat-exchange zone when the flow rate decreases. Obviously, at q > 1 unsteady regimes

exist in which the combustion wave propagates upstream in the adiabatic segment x < 0. These

dynamical modes exist at values m < mc, where mc is determined from Eq. (50). The value

of mc calculated for q = 1.2 is marked with a vertical dashed line in the left plot of this figure.

Nevertheless, the curves plotted for q = 1.2 in Fig. 5 shows that steady-state solutions with

0 < xf < ℓ can also exist simultaneously. The temperature distributions for this kind of steady-

state solutions are exemplified in Fig. 6 corresponding to the open circles shown in Fig. 5 (left).

3.2 Isothermal (cold) conditions for x < 0 and x > ℓ

In the limiting case of intensive heat losses applied for x < 0 and x > ℓ, the procedure to solve

Eqs. (25) remains the same as described above. The only difference is that Eq. (18) is applied

instead of Eq. (17). Figure 7 compares the cases where the segments x < 0 and x > ℓ are

isothermal (solid lines) and adiabatic (dashed lines). It can be seen that a change in boundary

conditions at the entrance of the heat-exchange section leads only to slight variations in the

steady-state results. The difference also decreases with an increase of the heat exchange section
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Figure 6: The temperature distributions in the two channels (θ1 for the reacting channel and θ2

for the non-reacting channel) and the distribution of radicals Z corresponding the points marked

with open circles in Fig. 5. These solutions exist simultaneously with a time-dependent solution

corresponding to the flame propagating upstream.

length. The asymptotic considerations for the limiting case ℓ ≫ 1 are presented in the next

Section.

Obviously, the steady-state solutions obtained within the HAEA limit cannot depend on LeF ,

since this parameter disappears from the conditions at the flame sheet, and, thus, from the final

analytical steady-state expressions. Up to this point, all the results presented have been reported

for LeZ = 0.3. Figure 8 compares the curves obtained for different values of LeZ calculated

with the isothermal conditions at x < 0 and x > ℓ. One can see in this figure that the influence

of LeZ is extremely small. Apparently, this can be explained by the fact that the impact of the

Lewis number on the flame structure is important in cases of curved flames, which is not the

case of the present study.
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4 Asymptotic solution for ℓ ≫ 1

The solutions presented in Section 3 were obtained analytically. However, their analysis is

extremely difficult due to the length of the resulting formulae that would fill several pages. The

asymptotic approximation presented below helps to understand better the general structure of

the solutions. An additional purpose of considering this limit is to validate the analytical results

obtained in the previous Section.

Consider the limit of a long heat-exchange segment, ℓ ≫ 1. We assume also that b =

b̂/ℓ, where b̂ is considered to be (formally) of order unity. To solve Eqs. (25), the method

of matched asymptotic expansions is applied [43]. To do this, as usual, the inner and outer

variables are introduced as follows: η = x − xf for the inner variable and ξ = (x − xf )/ℓ for

the outer variable. The internal and external variables for the temperature are denoted as θin(η)

and θout(ξ), respectively. The first order matching conditions read

lim
ξ→0−

θout1 (ξ) = lim
η→−∞

θin1 (η) , lim
ξ→0+

θout1 (ξ) = lim
η→∞

θin1 (η) . (29)

The inner region corresponds to |η| = O(1). Taking into account that b = b̃/ℓ, the heat-

exchange term is small in the inner region, to the leading order. Thus, the solution of Eqs. (25)

for θin1 is given by

θin1 (η) =


c1 + c2e

mη +
qZf

mam − a2m
eamη , η < 0 ,

c3 + c4e
mη +

qZf

map − a2p
eapη , η > 0 ,

(30)

where ap, am and Zf are given by Eqs. (23)-(24).

Rewriting this inner solution in terms of the outer variable ξ = O(1) indicates that c4 = 0

should be imposed in order to eliminate the corresponding exponentially large term, namely the

term ∼ c4e
ℓm ξ growing exponentially for positive ξ = O(1) and ℓ ≫ 1. Applying conditions

(20) written at η = 0,

θin1 (0+) = θin1 (0−) = 1, [dθin1 /dη] = 0 ,

gives

c1 = 1− qZf

m

{
m− am

mam − a2m
+

ap
map − a2p

}
c2 =

qZf

m

{
ap

map − a2p
− am

mam − a2m

}
c3 = 1− qZf

map − a2p

(31)
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Thus, from Eq. (30) it follows that

lim
η→−∞

θin1 (η) = θ
(−)
1 , lim

η→+∞
θin1 (η) = θ

(+)
1 , (32)

where θ
(−)
1 = c1 and θ

(+)
1 = c3. It can be checked also that θ(+)

1 − θ
(−)
1 = q, as it should be, and

θ
(−)
1 < 1 and θ

(+)
1 > 1. These values are used for the matching procedure between the inner and

outer solutions.

The leading order of Eqs. (25) written in terms of the outer variable takes the form

mdθout1 /dξ = −b̃(θout1 − θout2 ) ,

−mdθout2 /dξ = b̃(θout1 − θout2 ) ,
(33)

because the radicals mass fraction Z given by Eq. (22) is exponentially small in the outer region

ξ = O(1). These equations are to be solved separately for −ξf < ξ < 0 and for 0 < ξ < 1− ξf ,

where ξf = xf/ℓ, to be found. The corresponding boundary and matching conditions are

θout1 (−ξf ) = 0, θout2 (1− ξf ) = 0,

lim
ξ→0−

θout1 (ξ) = θ
(−)
1 , lim

ξ→0+
θout1 (ξ) = θ

(+)
1 , θout2 (0+) = θout2 (0−) .

(34)

Here the first two conditions represent the leading order of the boundary conditions obtained

from Eq. (27) in the case of adiabatic segments. In the case of isothermal walls, these conditions

are accurate.

The general solution of Eqs. (33) has the form

θout1 (ξ) =
C1 + C2

2
− b̃

m
C1ξ, θout2 (ξ) =

C2 − C1

2
− b̃

m
C1ξ , (35)

where C1 and C2 are arbitrary constants. Thus, there are four constants (two on each side of the

flame) which are found by means of any four conditions from (34). The last fifth condition is

used to determine the position of the flame. After these algebraic steps, the explicit expression

for the flame position can be obtained. In terms of the external variable ξf , the result is

ξf1,2 =
qb̂±

√
q[b̂2q − 4θ

(−)
1 m(m+ b̂)]

2qb̂
, (36)

where there are two roots and θ
(−)
1 is determined by Eq. (32). Remember that ξf = xf/ℓ and

b̂ = b · ℓ.
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Equation (36) allows us to find analytically the minimum value of q above which there are

two solutions. This value corresponds to the point where the two roots of Eq. (36) are merged,

ξf1 = ξf2. We have

qmin =
4m(m+ b ℓ)

b2ℓ2 + 4αm(m+ b ℓ)
, (37)

where

α =
Zf

m

{
m− am

mam − a2m
+

ap
map − a2p

}
.

It can be seen from Eq. (37) that qmin ∼ ℓ−1 as ℓ ≫ 1 for a fixed value of b and qmin ∼ b−1 for

a fixed value of ℓ. It means that for any arbitrarily small q, there is a critical length of the heat

exchange segment, ℓc, or a critical value of the heat-exchange parameter, bc. Thus, combustion

can be carried out having qmin < q if ℓ > ℓc or b > bc. In other words, there is always a way of

making the combustion process feasible, either by making the heat exchange segment longer or

by making the heat exchange coefficient larger.

This asymptotic procedure helps to understand the structure of solutions for ℓ ≫ 1 and

b = O(1/ℓ). In the inner region, |x − xf | = O(1), a thermal balance occurs between the

diffusion and heat release terms. In the outer region, |x−xf |/ℓ = O(1), a balance is established

between the heat convection term and the heat-exchange term between the channels.

Figure 9 (left) compares the flame position xf versus q calculated using the asymptotic result

given by Eq. (36) (solid lines) and the general analytical solutions developed in Section 3 (dashed

lines) for ℓ = 1000, m = 2, Lez = 0.3 and various b. The right plot in Fig. 9 shows the

dependence of the scaled flame position, ξf = xf/ℓ, as a function of q for two values of the

scaled heat-exchange coefficient, b̂ = 100 and 10, and various ℓ. The solid line represents the

asymptotic curve given by Eq.(36) while the dashed, dash-dot and dash-dot-dot lines show the

general result obtained for ℓ = 1000, 300 and 100, respectively, where the coefficient b calculated

as b = b̂/ℓ with b̂ fixed at 100 and 10. This plot demonstrates convergence to the asymptotic

result with increasing values of ℓ. The values of qmin given by Eq. (37) are plotted in Fig. 10

as a function of m for ℓ = 1000 and various b where the standard flammability value qf = 1 is

indicated with a horizontal dash-dot line.

One can see also, that the requirement b = O(ℓ−1) made at the beginning of this analysis is

necessary for the flame position to be at a distance xf = O(ℓ) (in terms of the inner variable).

Equation (36) shows that (formally) for b = O(1), or equivalently for b̃ ≫ 1, the flame position

xf is located at a distance of the order of unity from the boundaries of the heat exchange segment.
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Figure 9: Left plot: the flame position xf versus q for the general case (dashed lines) and the

asymptotic approximation obtained for ℓ ≫ 1 (solid lines, plotted with b̃ = b · ℓ). Right plot:

the scaled flame position ξf = xf/ℓ versus q for various ℓ; the solid lines shows the asymptotic

results, the dashed, dash-dot and dash-dot-dot lines show the cases with ℓ = 1000, 300 and 100,

respectively, plotted for b̂ = 100 and b̂ = 10 (where b = b̂/ℓ was applied).

5 Stability analysis

Stability analysis of the solutions presented in Section 3 is now performed. The steady-state

distributions of the mass fractions, the temperatures in both channels and the steady-state flame

position, all now denoted by subindex ”0”, are perturbed as usual with small perturbations

F = F0(x) + ϵF̂ (x) exp (λt) ,

Z = Z0(x) + ϵẐ(x) exp (λt) ,

θ1 = θ10(x) + ϵθ̂1(x) exp (λt) ,

θ2 = θ20(x) + ϵθ̂2(x) exp (λt) ,

xf = xf0 + ϵ exp (λt) ,

(38)

where λ = λR + IλI is a complex number. The real part of λ represents the growth rate, and ϵ

is a small amplitude. The aim of this section is to clarify if a given steady-state is stable or not,

and not to construct a complete spectrum of eigenvalues. For this purpose, it is enough to find

out whether there are eigenvalues with λR > 0.
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Figure 10: Dependence of qmin on the flow rate m calculated from Eq. (36); the dashed-dot
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The linearized eigenvalue problem obtained when substituting Eqs. (38) into Eqs. (10)-(13)

reduces to finding non-trivial solutions of the following system of equations

λF̂ +mF̂ I = Le−1
F F̂ II ,

λẐ +mẐI = Le−1
Z ẐII − Ẑ ,

(39)

λθ̂1 +mθ̂I1 = θ̂II1 + qẐ − b σ(x/ℓ)(θ̂1 − θ̂2) ,

λθ̂2 −mθ̂I2 = θ̂II2 + b σ(x/ℓ)(θ̂1 − θ̂2) .
(40)

These equations are to be solved on either side of the flame sheet.

The corresponding linearized conditions at the flame sheet obtained from Eq. (19)-(20) take

the form [
ZI

0 + Ẑ
]
= 0 ,

[
F I
0 + F̂

]
= 0 ,

Le−1
F

[
F II
0 + F̂ I

]
+ Le−1

Z

[
ZII

0 + ẐI
]
= 0 ,

(41)

(θI10 + θ̂1)|xf0−0 = 0 , (θI10 + θ̂1)|xf0+0 = 0 ,
[
θII10 + θ̂I1

]
= 0 ,[

θI20 + θ̂2
]
= 0 ,

[
θII20 + θ̂I2

]
= 0 ,

(42)

The boundary conditions at infinity for perturbations of mass fractions are

x → ±∞ : F̂ = Ẑ = 0 , (43)
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For simplicity, consider the case of isothermal segments for x < 0 and x > ℓ by imposing the

following boundary conditions

x = 0, ℓ : θ̂1 = θ̂2 = 0 . (44)

The procedure for constructing solutions for perturbations is similar to that used to construct

steady-state solutions. Let us use the following notation:

s =
√

LeZ [m2LeZ + 4(λ+ 1)] p =
√
LeF [m2LeF + 4λ]

b̃m =
mLeF + p

2
ãm =

mLez + s

2
, ãp =

mLez − s

2

D1 =
LeZm[(LeF − LeZ)m− s− p]

2s
, D2 = D1 + LeZ m.

Solutions for Eqs. (39) for F̂ and Ẑ subject to the conditions (41) and (43) can be written as

follows

F̂ =

{
LeFmeb̃m(x−xf0) ,

0 ,
Ẑ =

{
D1 e

ãm(x−xf0) , x < xf0 ,

D2 e
ãp(x−xf0) , x > xf0 .

(45)

After that, an analytical solution for the temperature perturbation field was obtained with the

help of MAPLE.

Equations (40) are linear on both sides of the flame. Their solution contains eight constants,

which are determined from any eight conditions of the nine conditions given by Eqs. (42) and

(44). The last ninth condition provides the solvability condition,

G(λ;m, q, ℓ, b, LeZ , LeF ) = 0 , (46)

which was used to calculate λ. Remember that the steady state flame position, xf0, is already a

function of the other parameters and therefore is not included in the argument list for G. As in the

case of steady-state solutions, it seems impossible to write down Eq. (46) explicitly because of its

length. However, the existence of an analytical and explicit expression allows us to investigate

the presence or absence of eigenvalues of the problem in the right half-plane of the complex

λ-plane.

Function G is complex for complex λ values. Estimating numerical values of G showed that

the eigenvalues appear in the right half-plane only on the λI = 0 axis, at least for the cases

considered in this work. Figure 11 illustrates this.

The left plot of Fig. 11 shows the contours of zero values of the real (solid lines) and complex

(dashed line) parts of the function G evaluated for ℓ = 100, m = 2, b = 0.5, LeF = 1, LeZ = 0.3
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Figure 11: Left plot: Example of zeroth isolines of the real (solid lines) and imaginary (a dashed

line) parts of G given by Eq. (46) and plotted for ℓ = 100, m = 2, b = 0.5, LeF = 1 LeZ = 0.3

and various xf . Small circles indicate the eigenvalues λ. Right plot: dependence of xf versus q

for the same parameter values. Small circles indicate the cases of xf shown in the left plot.

and various xf near the turning point. The dependence of xf on q for the same parameter values

is shown in the right plot of Fig. 11, where the cases of the xf values from the right plot are

marked with small circles.

It can be seen that for xf = 48 (the value below the turning point) the solid and dashed lines

do not intersect and, thus, there are no eigenvalues in the right half-plane of λ. For this set of

parameters, the turning point is situated approximately at xf ≈ 49. For this value, the solid

and dashed lines intersect at the point λ = 0. For larger xf values (above the turning point, the

curves plotted for xf = 50), the solid and dashed lines intersect at λR > 0 and λI = 0. Plots of

GR versus λR along the real axis are shown in Fig. 12, where zero values are marked with small

circles. A similar dependence for the eigenvalues in the right half-plane was observed for other

values of the parameters.

Thus, we can conclude that in the presence of two steady-state solutions, the solution cor-



May 24, 2021 22

0 0.002 0.004 0.006 0.008 0.01
-0.002

-0.001

0

0.001

0 0.002 0.004 0.006 0.008 0.01
-0.002

-0.001

0

0.001

0 0.002 0.004 0.006 0.008 0.01
-0.002

-0.001

0

0.001

xf=50

xf=48
xf=49

λR

GR
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responding to a larger value of xf is unstable. The instability is monotonous in nature. When

xf crosses the turning point, the eigenvalue λ = 0 appears. This eigenvalue moves to the right

half of the complex plane with a further increase of xf and remains purely real. No oscillatory

instabilities (λI ̸= 0) were found, at least for the considered range of parameters.

6 Comparison of analytical and finite-β solutions

It is interesting to compare the analytical HAEA results obtained in Section 3 and those for finite

Zel’dovich numbers. For this, the steady-sate counterpart of Eqs. (2)-(5) was calculated applying

the Gauss-Seidel method with over-relaxation. Before doing the comparison, it is necessary to

make the following remarks.

At finite β, the value of the critical heat of reaction for the flammability limit, qf , depends

on Lez and γ being qf → 1 for β → ∞, see [39]. The calculation of this limit was done using

the planar flame propagation velocity as a small parameter. The dimensionless chain-branching
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Figure 13: Spatial distributions of temperature, fuel mass fraction and radicals mass fraction

calculated for β = 10, ℓ = 50, b = 0.5, γ = 0.7, LeZ = 0.7 and LeF = 1 and two values of q,

marked in Fig.14 with vertical arrows facing the axis q.

temperature also falls below unity at finite β values.

When obtaining analytical solutions for the HAEA limit, the position of the flame was de-

fined as a point where θ1 = 1. This is the point at which the δ-function is located replacing

the spatially distributed reaction rate ω given by Eq. (14). It coincides with the point of the

maximum mass fraction value of radicals Z. But in the case of β finite, this does not happen.

The points where the temperature is equal to unity and where the mass fraction of radicals has

a maximum value coincide only in the HAEA limit. All this can lead to the fact that the point

with θ1 = 1 may not exist in some cases, when the θ1 remains less than unity, and the only way

to characterize the flame position is the point where Z reaches its maximum.

The spatial distributions of quantities calculated for β = 10, ℓ = 50, b = 0.5, γ = 0.7



May 24, 2021 24

0 0.5 1 1.5 2
0

10

20

30

40

50

0 0.5 1 1.5 2
0

10

20

30

40

50

0 0.5 1 1.5 2
0

10

20

30

40

50

0 0.5 1 1.5 2
0

10

20

30

40

50

0 0.5 1 1.5 2
0

10

20

30

40

50

0 0.5 1 1.5 2
0

10

20

30

40

50

q

xf

β=5 β=∞
β=20

β=10

l=50, m=2, b=0.5, Lez=0.3, γ=0.7

Figure 14: Comparison of the flame positions xf for finite (dashed, dash-dotted and long-dash

lines for β = 20, 10, and 5, respectively, defined as a maximum of Z) and infinite (solid curve,

defined as θ1 = 1) Zel’dovich numbers; small triangles show the points where θ1 = 1 for β = 10

when they exist. The two vertical arrows pointing downward indicate the cases shown in Fig. 13.

are illustrated in Fig. 13 for the case of isothermal (cold) conditions outside the heat-exchange

segment. For the case with q = 0.5789 (upper plot), the value of θ1 = 1 is reached and is marked

with a small open circle. For the case with q = 0.4139 (lower figure), the temperature in the first

channel never reaches the value θ1 = 1.

Figure 14 compares the flame position xf versus the dimensionless heat of reaction q ob-

tained for finite and infinite β values. The solid line shows the analytical HAEA results using

the points with θ1 = 1. The dashed, dash-dotted and long-dash lines represent the numerical

curves calculated for β = 20, 10 and 5, respectively, drawn using the points where the mass frac-

tion of radicals is maximum. As indicated above, near the turning point q = qmin the value with

θ1 = 1 is not reached anymore. Small triangles indicate the positions of these points (θ1 = 1)

plotted for β = 10 when they are reached.

One can see in this figure that the curves tend to converge as β increases, as it should be.
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We can also note that, to some extent, the difference observed for finite and infinite Zel’dovich

numbers is due to the different methods used for determining the flame position, as described

above. When the points with θ1 = 1 exist at finite β (shown with small triangles in Fig. 14 for

β = 10), they are noticeably closer to the asymptotic curve than points corresponding to the

maximum of Z.

7 Discussion and conclusions

Advances in computing power have qualitatively changed the understanding of combustion pro-

cesses in the last decades. Numerical simulations for 2D and 3D problems with complex chem-

ical kinetics are already becoming commonplace for researchers. However, in this regard, a

significant increase in the possibilities for constructing analytical solutions by means of com-

puting facilities, and their application to combustion problems, often remains unappreciated. On

the other hand, the analytical solutions not only bring clarity to the understanding of complex

processes, but also serve as a reliable basis for verifying purely numerical results.

Still, some similarities between modern numerical and analytical approaches to problem

solving should be noted. As for numerical procedures, detailed presentation of analytical results

to a reader may not be possible in some cases, mainly due to their length. On the other hand,

extremely long expressions for analytical formulae hardly bring a greater understanding of the

phenomena being studied. However, the existence of an analytical expression, even without the

possibility of being presented to a reader, opens up much greater opportunities for a parametric

analysis of the problem, since this no longer includes intrinsic numerical parameters, such as the

grid spacing, or the degree of convergence of the results, for example.

In the present work, the study of combustion of ultra lean mixtures in superadiabatic devices

of the counterflow type is presented. A chemistry model with two-step kinetics within which the

flammability limit appears explicitly was chosen. The existence of a planar adiabatic combustion

front was taken as the fundamental flammability criterion. The investigation is carried out on the

basis of analytical solutions; this becomes possible in the HAEA limit when the autocatalytic

reaction rate is replaced by the Dirac δ-function. As a model of the device, a simplified shape

was chosen in the form of narrow channels through which the gas flows in a counterflow regime

and the heat exchange between the channels is carried out over a finite wall length.

The analysis of the obtained solutions showed that the total number of steady-state modes

with combustion in the system can be up to two, and if we include the cold mode (without
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reaction), then up to three. It should also be noted that one of the combustion modes is always

unstable.

The parametric study of the obtained solutions showed that the main parameters for the

device operation are the length of the heat-exchange segment and the effective heat-exchange

coefficient between the channels. It has been shown that for virtually any mixture, including

lean ones and those below the standard flammability limit, an increase in the length of the heat

exchange segment to a sufficient large value provides a feasible combustion process. A similar

conclusion can be made about the effective coefficient of heat exchange between the channels,

that is, an increase in this parameter to a sufficiently large value ensures stable combustion for

any lean mixture. However, an increase in this parameter can be limited by the thermo-physical

properties of the device material.

Nevertheless, it should be noted that within the model under consideration, the heat-losses

from the combustion zone to the external environment were neglected. The inclusion of this

effect into consideration will possibly limit the lower value for the initial fuel mass fraction

above which a stable combustion process is possible.
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Appendix. Conditions of limit burning

For the sake of completeness, we consider below the limiting flammability conditions appearing

in the HAEA limit, that we define as the value of q below which a planar adiabatic freely prop-

agating flame can not exist. The governing equations describing the flame front with heat losses

neglected steadily propagating with the velocity m are
mF I = Le−1

F F II −mδ(x− xf ) ,

mZI = Le−1
Z ZII − Z +mδ(x− xf ) ,

mθI = θII + qZ .

(47)

These equations are to be solved separately for x < xf and x > xf . The nonlinear term

describing the rate of radical formation is replaced by a δ-function with a factor obtained by

integrating the F -equation over x from −∞ to ∞. The boundary conditions in the distance
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become

x → −∞ : θ = F − 1 = Z = 0; x → ∞ : θI = F I = Z = 0 . (48)

Without limitations, the combustion front is fixed at xf = 0. The solutions for F and Z

functions are identical to those of Eqs. (21)-(22). For the temperature field, on can get

θ =


(
1− qZf

mam − a2m

)
emx +

qZf

mam − a2m
eamx x < 0 ,(

1− qZf

map − a2p

)
+

qZf

map − a2p
eapx x > 0 ,

(49)

where am, ap and Zf are given by Eqs. (23)-(24). Substitution of Eq. (49) into the condition of

continuity of the temperature derivative across x = 0 gives the relation to determine the wave

speed, m, in an implicit form

q =
m

Zf

{
m− am

mam − a2m
+

ap
map − a2p

}−1

. (50)

This function is shown in Fig. 15 (left plot) for different LeZ .

Combustion in a planar front corresponds to m > 0. It can be seen from Eq. (50) that q → 1

as m → 0 for any Lewis numbers. For m < 0, the solution takes on a non-physical nature.

Thus, qf = 1 represents the limiting condition for the planar combustion wave front as β → ∞.

The critical conditions for the combustion front existence, namely the limiting values of qf
representing the flammability limit, were obtained asymptotically for finite values of β in [39].

In that study the velocity of the flame front propagation was taken as a small parameter and an

implicit algebraic expression determining qf as a function of parameters was obtained. The right

plot of Fig. 15 shows the dependencies q on m obtained numerically for various increasing β

values. It can be seen that a very close approximation to the asymptotic curve for β → ∞ is

observed only at very large (may be non-physical) values of the order of a hundred, while at

more physical values, β = O(10), the approaching of the curves to the asymptotic one is only

satisfactory. One can also see that at finite β, the flammability limit values, qf for m → 0, turn

out to be less than the unit value obtained for β → ∞.

The existence of the standard flammability limits can also be understood by means of the

first integral of Eqs. (47)-(48)

m[θ + q(Z + F − 1)] =
d

dx

[
θ + q

(
F

LeF
+

Z

LeZ

)]
. (51)

With complete combustion of fuel, F (x → ∞) = 0, we have θ(x → ∞) = q. And if q < 1, the

branching temperature (θ = 1) can never be reached within the HAEA limit. We mention again,

that at finite β the critical value for q is slightly below unity, see [39].
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Figure 15: Left plot: the dependence of q versus m for a planar adiabatic combustion front

calculated for β → ∞ from Eq. (50). The combustion wave exists for m > 0. The flammability

limit value, qf = q(m → 0), results to be 1 for any LeZ and there are no physical solutions for

q < 1. Right plot: the dependence of q versus m obtained numerically for varying β.
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