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Abstract

The propagation of an isobaric premixed flame into a quiescent gas mixture of fuel and oxidizer contained be-
tween two parallel plates is investigated numerically. The plates are separated by a small distance h and con-
sidered as adiabatic. The mixture is assumed to be lean in fuel and the combustion model includes a single-step
Arrhenius-type reaction, constant heat capacity and unity fuel Lewis number. Transport properties are considered
to be temperature dependent or constant, which allows us to decouple two different instability mechanisms of
hydrodynamic nature: (i) Darrieus-Landau (associated with the density change due to thermal expansion) and (ii)
Saffman-Taylor (associated with the viscosity contrast). By performing three-dimensional (3D) simulations, the
propagation rate and the flame front shape is analyzed as a function of the dimensionless parameter a = h/δT ,
where δT is the thermal thickness of the planar flame. The parameter a ranges from very small values to large
enough ones so that flame curvature between the plates manifests itself. Results show that, as the distance be-
tween the plates decreases, loss of momentum enhances the hydrodynamic instability in comparison with that of
a freely (unconfined) propagating flame. Likewise, viscosity contrast across the flame brings about an additional
destabilizing mechanism. When distance between the plates increases, flame curvature can become important and
contribute significantly to the overall propagation rate. Finally, by comparison with the 3D simulations, we show
that confinement effects can be effectively described by a two-dimensional formulation written in the limit a → 0,
in which momentum conservation is reduced to a linear equation for the velocity similar to Darcy’s law.
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1. Introduction

The instability produced by the deformation of a
planar premixed flame front was first discovered inde-
pendently by Darrieus (1938) [1] and Landau (1944)
[2]. This hydrodynamic instability stems from the de-
flection of streamlines through the flame front pro-
duced by gas expansion, giving rise to a positive
growth rate of any small flame wrinkle larger than the
characteristic flame thickness in absence of other ef-
fects. Insights on stabilizing/destabilizing influence
of diffusion processes and gravity on the linear evo-
lution was reported later in further theoretical works
[3–6].

The long-term dynamics of hydrodynamically un-
stable flames makes its study more difficult due to
the presence of nonlinearities. In particular, at large
times after the initial stages of the linear develop-
ment of the instability, the flame front reaches a large
cellular shape controlled by the geometrical domain
size. The nonlinear Michelson-Sivashinsky equa-
tion [7] was shown to qualitatively reproduce rele-
vant features of these unstable flames [8–13]. How-
ever, its restriction to small thermal expansion has
motivated the use of more realistic approaches built
on the complete Navier-Stokes equations [14–18].
In agreement with experiments, both theoretical and
numerical works show that the nonlinear growth of
the Darrieus-Landau instability results in the forma-
tion of a monocellular flame with a cusp-like struc-
ture (a curved flame with a sharp peak pointing to-
ward the burned gas). In moderate-size domains (of
about 40 times the flame thickness), this structure,
that fills the entire domain, remains stable. How-
ever, for larger domains, secondary structures may
appear on the flame. These structures propagate in
form of small wrinkles along the flame surface giv-
ing the flame evolution an unsteady character. The
very recent experiments [12] carried out in a large
device (150-cm long × 50-cm wide) reports a merg-
ing/splitting cell process occurring at the long-time
evolution of the nonlinear regime. This unsteady pro-
cess, also reported in numerical studies, has been ex-
plained as a result of stochastic influence of back-
ground noise [11, 12, 14, 15].

A relevant experimental facility for examining in-
trinsic flame instabilities is the Hele-Shaw burner. In
this device, the flame propagates between two paral-
lel plates separated by a small distance, h. The plates
being made of transparent material makes direct visu-
alization of the flame front possible in a quasi-two-
dimensional (quasi-2D) form. To our knowledge,
first experimental observations of flame instabilities
in Hele-Shaw burners can be traced back to the work
of Sharif et al. [19]. Since then, good experimental
progress has been made [12, 20–28]. Nevertheless,
heat and momentum losses inherent to Hele-Shaw
burners may interplay with the intrinsic flame insta-
bilities. This influence was first reported by Joulin
and Sivashinsky [29] who performed a linear stability
analysis modeling the flame as a thin discontinuity.

The authors concluded that friction-induced pressure
gradients, coupled with viscosity contrast, enhance
the hydrodynamic instability. The latter viscosity ef-
fects are referred to as the Saffman-Taylor instability
[30] and is originally associated with the formation
of finger-like structures at the interface between two
fluids with different viscosity driven by an imposed
pressure gradient. If the less viscous fluid displaces
the more viscous one, the interface is unstable. The
analogy with flames rests upon the viscosity change
present between the unburnt and the burnt gas across
the front that is also subject to pressure gradients.

The effect of confinement in Hele-Shaw burners
have been included in previous numerical works [31–
37] through averaged flow properties across h, thus
reducing the problem to a quasi-2D form. This for-
mulation is justified for small gap distances (h → 0),
for which the flame front remains planar between the
plates. However, for larger values of h, flame cur-
vature along the direction perpendicular to the plates
may also alter the hydrodynamic instability develop-
ing along the transversal direction. In the present
paper, the effect of momentum loss on the hydrody-
namic instability is investigated via three-dimensional
(3D) simulations, in which flame curvature in the di-
rection perpendicular to the plates naturally arises.
The dimensionless parameter a = h/δT (that can
be interpreted as a Peclet number), with δT the ther-
mal thickness of the planar flame, is used as the func-
tional parameter for the study. The 3D analysis in-
cludes comparisons with results obtained from quasi-
2D simulations performed in the limit a → 0 (i.e.,
the high wall-friction limit), as well as with pure 2D
simulations (where the gas friction with the walls is
absent). This allows to better assess the importance
of momentum loss on the hydrodynamic instability.

2. General formulation

A laminar premixed-gas flame propagating in a
Hele-Shaw burner is considered. A sketch of this con-
figuration is given in Fig. 1. Note that the study is
restricted to a semi-closed system, with the left-end
open to the atmosphere and the right-end closed. With
this arrangement, the flame propagates into a quies-
cent gas and flame acceleration is only due to changes
in the flame topology, unlike that observed in closed-
to-open or open-to-open flame propagation [38–40].

The chemical reaction is modeled by a global irre-
versible step of the type Fuel + Oxidizer → Products.
The corresponding reaction rate (moles of fuel per
unit time per unit volume) is given by an Arrhenius
law and takes the form ω′ = Bρ′2YF exp(−E/RT ′)
for a mixture deficient in fuel, where E is the overall
activation energy, T ′ is the temperature, ρ′ is the den-
sity, YF is the fuel mass fraction, R is the universal
gas constant, and B is an appropriately defined pre-
exponential factor that includes the mass fraction of
the oxidant. Primes (′) denote dimensional quanti-
ties.
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Fig. 1: Schematic view of a curved flame propagating from left to right into a quiescent gas in a Hele-Shaw burner where plates
are separated by the distance h.

The formulation is derived using the low-Mach
number approximation and constant mixture heat ca-
pacity cp, Lewis, Le = D/DT , and Prandtl, Pr =
µ′/(λ′/cp), numbers, where D is the mass diffusiv-
ity of the fuel; DT , µ′ and λ′ are the thermal diffusiv-
ity, viscosity and thermal conductivity of the gas mix-
ture, respectively. The transport properties are con-
sidered to vary with temperature, µ′/µ0 = λ′/λ0 =
(T ′/T0)

σ , with σ an exponent equals to 0 or 0.7, see
[41]. Subscript 0 denotes fresh unburnt mixture.

2.1. 3D formulation (finite h)

The full set of the governing equations are scaled
using the temperature T0, mass fraction YF0 , density
ρ0 and viscosity µ0 of the unburnt gas. The thermal
thickness of the planar flame δT = DT0/SL, with SL

the planar burning velocity, is used as the reference
length scale, and DT0/S

2
L as the reference time scale.

The non-dimensional variables are

x = (x′/δT , y
′/δT , z

′/δT ),

u = (u′/SL, v
′/SL, w

′/SL),

t = t′S2
L/DT0 , ρ = ρ′/ρ0, p = (p′ − patm)/ρ0S

2
L,

θ = (T ′ − T0)/(Ta − T0), Y = YF /YF0 ,

where Ta = T0 +QYF0/cp is the adiabatic tempera-
ture, with Q the heat of combustion. The dimension-
less equations, written in a reference frame moving at
flame front velocity uf with respect to the wall, read

∂ρ

∂t
+∇ · [ρ(u − uf )] = 0, (1)

∂(ρu)
∂t

+∇ · [ρu(u − uf )] = −∇p+

Pr∇ · [µ(∇u +∇uT)− 2/3µ(∇ · u) I],

(2)

∂(ρθ)

∂t
+∇ · [ρθ(u − uf )] = ∇ · (µ∇θ) + ω, (3)

∂(ρY )

∂t
+∇ · [ρY (u − uf )] =

1

Le
∇ · (µ∇Y )− ω,

(4)

with the ideal gas equation of state

ρ(1 + qθ) = 1, (5)

and the reaction rate given by

ω =
β2

2u2
pLe

(1+q)2−σρ2Y exp

{
β(θ − 1)

(1 + qθ)/(1 + q)

}
.

(6)
The remaining parameters are: the Zel’dovich

number β = E(Ta − T0)/RT 2
a , the thermal expan-

sion coefficient q = (Ta − T0)/T0, and the exponent
σ of the viscosity law µ = (1+qθ)σ . In this work we
assume β = 10, q = 5, Le = 1, and Pr = 0.7, as
representative of hydrocarbon combustion; σ = 0 or
σ = 0.7 for constant or temperature dependent vis-
cosity, respectively.

The factor up = SL/UL in (6) is introduced to
account for the difference between the asymptotic
(β ≫ 1) value of the planar burning velocity, UL,
and the value of SL for finite β, and ensures that the
velocity of the planar flame equals one in the compu-
tations. The values of up are 1.0547 for σ = 0 and
0.9997 for σ = 0.7 (see [33] for further details).

The normalized flame velocity uf is determined by

uf =
1

aLy

∫ Lx

0

∫ Ly

0

∫ a

0

ω dxdy dz. (7)

The term uf is also known as the overall propagation
rate, Sc/SL, with Sc the consumption speed.

The mathematical problem described in Eqs. (1)-
(6) is solved with the general boundary conditions

z = 0, a : u = ∂θ/∂z = ∂Y/∂z = 0, (8)

x→−∞ : ∂u/∂x = ∂θ/∂x = ∂Y/∂x = 0, (9)

x→+∞ : u = θ = Y − 1 = 0, (10)

and periodic conditions in the y-direction.
The initial condition is a planar flame to which a

weak harmonic perturbation in the form ϵ cos (ky)
exp (−|x− xω|) is added in the temperature field.
The amplitude of the perturbation ϵ is set to 10−2,
with xω the position of the maximum reaction rate
and k the wavenumber. In all simulations presented
below, the wavenumber of the perturbation, k =
2πn/Ly , is fixed to the maximum growth rate ob-
tained from the linear stability analysis [35] in the
limit a = h/δT → 0. Here, n corresponds to the
number of waves set for the initial perturbation.
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2.2. Quasi-2D formulation (h ≪ δT )

In the limit a = h/δT → 0, the governing equa-
tions (1)-(4) can be reduced to a 2D set of equations,
referred to as the quasi-2D form hereafter. Indeed, av-
eraging flow quantities across the gap distance h re-
duces the momentum equation (2) to a linear relation
for the velocity similar to Darcy’s law

u = − 1

12µPr
∇p, (11)

where the operator ∇ is defined in the xy-plane only.
The derivation of the quasi-2D formulation is out of
the scope of this paper; the reader is referred to [33,
34] for further details. This formulation results in a
drastic reduction of the computational cost compared
with the full 3D description. Although the limit a →
0 has shown reasonable agreement with experimental
observations [33], its range of validity has not been
tested explicitly.

2.3. Pure 2D formulation (unconfined geometry)

This case corresponds to the classical 2D formula-
tion where the vector operators in Eqs. (1)-(4) are de-
fined in the xy-plane only. Pure 2D simulations have
been used extensively in the context of hydrodynamic
(and diffusive-thermal) theory [14–18].

3. Numerical treatment

Transient computations are carried out in a finite
domain of dimensions Lx × Ly × a in the respec-
tive longitudinal, transversal and normal directions.
The set of Eq. (1)-(4) are integrated using the Open
source Field Operation And Manipulation (Open-
FOAM) toolbox [42]. The code is based on the finite
volume method formulated in a collocated grid ar-
rangement. The pressure-velocity coupling to ensure
mass conservation is realized making use of the PIM-
PLE iterative algorithm. A first-order Euler scheme
is used for temporal discretization whereas for spatial
discretization a second-order scheme is used.

A grid resolution of ∆x = ∆y = ∆z = 0.1 was
shown to be sufficient to correctly capture the flame
evolution. Doubling the resolution did not result in
appreciable changes in the flame dynamics. For the
smallest values of a employed in this work, the reso-
lution in the normal direction was reduced to ∆z =
0.006 to capture the development of the Poiseuille
flow profile. Finally, Lx is taken to be twice Ly to
avoid any influence of boundary conditions on the so-
lution, and a fixed time step equal to ∆t = 5×10−5 is
used for numerical stability. The total computational
cost of the study is approximately 1.25 × 106 CPU
hours.

4. Length scale considerations

The temperature dependence of viscosity modi-
fies the flame thickness compared to that obtained
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Fig. 2: The variation of the propagation rate with time for
constant viscosity (σ = 0) and â = 0 (quasi-2D), 0.033,
0.066, 0.659, and 1.978. Transversal size is L̂y = 26.3.
Pure 2D simulation is plotted with dashed curve.

assuming constant viscosity [31]. The length scale
δT used to normalize Eqs. (1)-(6) does not main-
tain identical domain size to flame thickness ratio be-
tween the variable and the constant viscosity cases.
A more appropriate length scale that enables us to
make better comparisons is the flame thickness based
on the maximum temperature gradient δf = (Ta −
T0)/max (dT/dx′). For a meaningful comparison
between constant and variable viscosity cases, δf is
thus used to re-scale the size of the computational do-
main. Based on planar flame computations, the ratio
δf/δT is 1.52 and 4.34 for σ = 0 and 0.7, respec-
tively. This implies that the domain employed for
σ = 0 must be re-scaled by a factor of 2.86 when
computing cases using σ = 0.7. To simplify the dis-
cussion below, the hat symbol is used to refer to vari-
ables normalized with δf , i.e. x̂ = x/δf , â = h/δf ,
and L̂y = Ly/(δf/δT ).

5. Results and discussion

The influence of momentum loss and viscosity
contrast is first analyzed in Section 5.1 by varying â

and keeping L̂y fixed. In Section 5.2, the influence of
L̂y is analyzed. The effect of flame curvature along
the z-direction is investigated in Section 5.3. A brief
summary is finally given in Section 5.4.

5.1. Momentum loss and viscosity contrast effects

Figure 2 compares the time evolution of the overall
propagation rate, Sc/SL, for â → 0 (quasi-2D) and
finite values of â ranging from 0.033 to 1.978, with
results obtained from the pure 2D formulation. The
size of the transversal domain is fixed to L̂y = 26.3,
for which the maximum growth rate of the perturba-
tion is set using n = 2. As a result, the initially pla-
nar flame destabilizes into two cusps to finally reach,
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Fig. 3: Illustration of the single-cusp structure represented
by the reaction rate isocontour (ω = 1) in the plane ẑ =
0 for different values of â and for the pure 2D simulation.
Same conditions as given in Fig. 2.

at large times, a single cusp that fills the entire do-
main and remains steady (see the flame structure in
Fig. 3). The peaks in the Sc/SL curve are associated
with merging of the two cusps. For â ≤ 0.659 all
cases converge to the final value of Sc/SL ≈ 1.56,
but for â = 1.978 the propagation rate decreases by
5%. The figure clearly shows that the propagation
rate is larger in the presence of confinement than in
the case where the geometry is unconfined (pure 2D
simulation).

Figure 3 illustrates the flame front topology (rep-
resented by the reaction rate isocontour ω = 1) for
different values of â and for the conditions given in
Fig. 2. The flame propagates from left to right. As
expected, the increase in the propagation rate is due to
the increase in the flame surface area. Because of the
gas friction with the walls, the motion of the hot-gas
products in the left side induces a higher strain near
the trough (the region that is concave toward the fresh
mixture) as h decreases, significantly elongating the
flame surface. By reference to the pure 2D simulation,
in which the flame cusp manifests only through ther-
mal expansion, Figs. 2 and 3 indicate that momentum
loss (related to confinements effects) enhances the in-
stability mechanism associated to thermal expansion,
and that the 3D simulations are in close agreement
with the quasi-2D formulation for â ≲ 1. For larger
â, contribution of wall friction to longitudinal pres-
sure gradient decreases, which in turn, reduces the
flame elongation and thus flame propagation speed.
Note that as â increases flame curvature may also oc-
cur in the direction perpendicular to the plates (along
z); see Section 5.3.

The time evolution of the propagation rate for vari-
able viscosity (σ = 0.7) is shown in Fig. 4. Sim-
ilarities with the dynamics described in Fig. 2 for
â ≥ 0.659 are evident. However, for â ≤ 0.066, spo-
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Fig. 4: The variation of the propagation rate with time for
variable viscosity (σ = 0.7) and â = 0, 0.033, 0.066,
0.659, and 1.978. Transversal size is L̂y = 26.3. Pure 2D
simulation is plotted with dashed curve.
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Fig. 5: Evolution of the flame front topology represented by
the reaction rate isocontour (ω = 0.2). The snapshots are
taken at the times marked with square symbols in Fig. 4 for
â → 0.

radic oscillations are obtained. An increase in spatial
resolution (up to a factor 10) did not affect/suppress
the oscillatory temporal behavior, as it results from
the merging/splitting of the flame cusps. To illustrate
this process, the flame front evolution for â → 0
is plotted in Fig. 5 at representative times (marked
with square symbols in Fig. 4). The initial two cups
(t = 100) destabilize at t = 200 to merge into one
cusp at t = 250. Subsequently, this one-cusp flame
front splits again into two cusps (between t = 300
and t = 350) to finally recover a one-cusp shape
(t = 400). Note that the single-cusp structure shown
at t = 250 and t = 400 are similar, the only differ-
ence being the displacement in the transversal posi-
tion; the local minima in the Sc/SL curve are asso-
ciated with splitting of the crest (the leading part of
the flame) while peaks are associated with merging of
the cusps. The merging/splitting process repeats over
time and it is similar to that previously observed in
pure 2D studies [11–16] and experiments [12] in large
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Fig. 6: Illustration of the single-cusp structure represented
by the reaction rate isocontour (ω = 0.2) in the plane ẑ = 0
for constant viscosity (σ = 0) and variable viscosity (σ =
0.7). Calculated for L̂y = 26.3 and â = 0.659.

domains. The appearance of this unsteady dynamics
depends on L̂y and it is briefly analyzed in the next
section.

The main consequence of introducing variable vis-
cosity is an increase in the overall propagation rate.
This increase is significant for small â. For instance,
for â = 0.659, variable viscosity increases Sc/SL by
about a 35% relative to the constant viscosity case.
The comparison of the corresponding topologies is il-
lustrated in Fig. 6. The flame surface is further elon-
gated when variable viscosity is considered, indicat-
ing that viscosity contrast may induce an additional
destabilizing mechanism. In absence of confinement,
however, viscosity contrast plays a minor role. This is
clearly seen when comparing the pure 2D simulation
in Figs. 2 and 4. In both cases, Sc/SL ≈ 1.23 at the
final evolution.

5.2. Transversal domain size variation

The oscillations observed in Fig. 4, associated with
the transveral domain size, have been discussed ex-
tensively in the context of pure 2D simulations. Our
interest here is on determining the onset of unsteadi-
ness when momentum loss is present. Figure 7 shows
Sc/SL at the final evolution as a function of L̂y for
both constant and variable viscosity. Due to the high
computational cost, only quasi-2D and pure 2D sim-
ulations are compared. As expected, the propagation
rate corresponds with the planar velocity (Sc/SL =
1) when the transversal size is below a critical value,
L̂yc . Above this critical length, the flame destabilizes
into a single cusp and the propagation rate increases
steadily with L̂y until it reaches a plateau. For large
L̂y , the unsteady oscillatory behaviour described in
the previous section emerges. This latter is indicated
with empty circles in Fig. 7, for which the propagation
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Fig. 7: The variation of the propagation rate with transversal
size domainL̂y for constant (σ = 0) and variable (σ = 0.7)
viscosity, given for quasi-2D (high confinement) and 2D (no
confinement) geometries. Empty circles stand for unsteady
flame regime.

rate is calculated as a time-averaged value. As can
be seen, variable viscosity and/or confinement trigger
the onset of oscillations at smaller L̂y than constant
viscosity and/or unconfined geometries. The figure
shows that the quantitative effect of wall-friction and
viscosity contrast (in terms of the propagation veloc-
ity) is domain-size dependent.

There is agreement between the value of L̂yc found
in our simulations with those reported in linear stabil-
ity studies. For instance, the value of L̂yc = 11.7
for the pure 2D simulation (σ = 0) agrees well with
the value reported by Sharpe et al. [18]; and the value
of L̂yc = 8.3 for the quasi-2D simulation (σ = 0)
coincides with that reported in [35]. The upper limit
of the propagation velocity for the pure 2D problem
is also in agreement with previous studies in the con-
text of the nonlinear development of hydrodynamic
flames [15–17, 43, 44]. For instance, Bychkov et
al. [43] reported a value of Sc/SL ≈ 1.22, and Al-
tantzis et al. [16] reported a value of Sc/SL ≈ 1.25,
both in agreement with that found in the present study
(Sc/SL ≈ 1.23).

5.3. Curvature along the gap distance

The hydrodynamic mechanism at the origin of the
cusp-like structure in the xy-plane can also alter the
flame shape in the xz-plane. Obviously, because of
the different boundary conditions in the transversal
xy-plane (periodic) and in the normal xz-plane (non-
slip), the hydrodynamic effect manifests itself differ-
ently on the flame topology in each plane.

Figure 8 illustrates the flame topology that emerges
in the xz-plane for σ = 0.7 and for increasing values
of â. Of interest here is the existence of a critical gap
distance, âc, above which the symmetric flame desta-
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Fig. 8: Illustration of the flame curvature along h repre-
sented by the reaction rate isocontour (ω = 0.2) in the plane
ŷ = 0, for σ = 0.7 and â = 0.659, 3.3, and 4.6.

bilizes into a non-symmetric shape, as shown in Fig. 8
(top). According to [45], when the non-symmetric
flame solution exists, it is stable and the correspond-
ing symmetric solution is unstable; the unstable sym-
metric solution can be forced by halving the computa-
tional domain in the h direction (i.e. Lx ×Ly ×h/2)
and imposing a symmetry boundary condition on the
z = h/2-plane. Expectedly, non-symmetric shapes
result in a significant increase of the flame surface
area and consequently in the propagation velocity.
This is illustrated in Fig. 9, where the variation of the
propagation rate with â is shown for L̂y = 13.15.
In this figure, triangles correspond to non-symmetric
flame solutions whereas filled and empty circles rep-
resent stable and unstable (forced) symmetric solu-
tions, respectively. The critical gap distance is in ac-
cordance with the value âc ≈ 3.9 reported for a pla-
nar channel in [45, 46].

Figure 10 shows the 3D flame shapes obtained for
the non-symmetric (top) and the forced symmetric
(bottom) solutions, for â = 4.6 and L̂y = 13.15.
Note the significantly reduced (or even suppresed)
elongation of the cusp in the xy-plane for the non-
symmetric flame compared to the symmetric flame.
Clearly, the high curvature of the non-symmetric
flame along the xz-plane may play some role. This
outcome suggests that flame curvature in the gap dis-
tance competes with that present in the xy-plane. In
the case of Fig. 10 (top), the main contribution to the
propagation rate reported in Fig. 9 comes from the
flame curvature along xz-plane. A well formed flame
cusp in the xy-plane would certainly occur by further
increasing L̂y , but was not considered here due to the
high computational cost.

5.4. Summary

Figure 9 summarizes nicely our results. For small
â the difference in the propagation velocity between
variable and constant viscosity is appreciable. The
propagation velocity and the difference between σ =
0 and σ = 0.7 diminishes as the gap distance in-
creases, approaching the pure 2D formulation results;
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Fig. 9: The variation of the propagation rate with gap dis-
tance â, calculated for L̂y = 13.15. Filled and empty cir-
cles stand for stable and unstable (forced) symmetric flame
solutions in the xz-plane. Triangles indicate stable non-
symmetric solutions. Dashed lines represent pure 2D for-
mulation values.

confinement effects may thus be considered negligi-
ble. However, for â ≥ 4, the propagation veloci-
ties (denoted with a dashed-dotted line) increase again
due to the high flame curvature in the xz-plane that re-
sults from a non-symmetric shape. Finally, note that
Fig. 9 was obtained for L̂y = 13.15, a transversal size
for which all flames have a final steady solution.

6. Conclusions

Confinement effects on the large-scale hydrody-
namic instability of a flame propagating between two
adiabatic plates was analyzed in three dimensions by
varying the distance separating the plates, h. The
limit a = h/δT → 0 (high friction limit) and the pure
2D simulations (no confinement) were also consid-
ered and used for comparisons. The present numer-
ical study confirms the analytical results anticipated
by Joulin and Sivashinsky [29] in the linear regime: i)
high wall friction and ii) viscosity contrast reinforce
the hydrodynamic instability. Our results also show
that there is a critical distance (h/δf ≈ 3.9) above
which flame curvature in the xz-plane (that of a non-
symmetric shape) can compete with the large-scale
single cusp that develops in the xy-plane, resulting
in stabilizing effects. The emergence of an unsteady
regime, associated with a sucessive merging/splitting
process of the cusps, as previously discussed in the
literature, is also reported in the present study. How-
ever, it is found that the unsteady behavior is triggered
for a smaller size L̂y of the domain in presence of
high confinement and/or variable viscosity. Finally,
the quasi-2D formulation was found to provide very
satisfactory results up to a ≈ 1, when comparing to
the 3D simulations.
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Fig. 10: 3D illustration of the flame shape represented by the
reaction rate isocontour (0.3 < ω < 0.6). Calculated for
L̂y = 13.15, â = 4.6, and σ = 0.7. Top: non-symmetric
solution; bottom: forced symmetric solution.
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