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Kurdyumov∗

Department of Energy, CIEMAT, Avda. Complutense 22, 28040 Madrid, Spain

Abstract

Small-sized super-adiabatic combustion devices consisting of countercurrent
channels with heat-exchange segments are investigated for their ability to
burn ultra-lean mixtures. The study is carried out numerically using a two-
step chain-branching kinetic model in which the flammability limit appears
explicitly. Various asymptotic approximations for modeling the process are
considered, together with the solution of the two-dimensional conservation
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the considered asymptotic models for the effective prediction of the operation
of such combustion devices.
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Novelty and significance statement

In this work, the appearance of non-symmetric structures for diffusion
combustion is investigated for the first time within the framework of the
coupled Navier-Stokes and transport equations. In the considered configura-
tion fuel and oxidizer are injected from a porous plug into a planar channel
forming two edge flames. The simultaneous appearance of symmetrically and
non-symmetrically situated edge flames is demonstrated, and the regions of
existence of such structures are investigated.

Authors contributions

JB - performed research, wrote the paper; DFG - performed research,
wrote the paper; CJ - performed research, wrote the paper; VNK - performed
research, wrote the paper.

1. Introduction

Understanding and ensuring ultra-lean burning is an important issue in
combustion science, as a fundamental scientific problem, and also in view of
its practical application as a clean combustion technology for power genera-
tion from renewable hydrogen, for example. Ensuring ultra-lean combustion
refers here to designing devices that can provide self-sustained combustion
under the lean flammability limit. Although the concept of a flammabil-
ity limit has received widespread attention due to its importance in safety
matters, and the combustion literature provides numerous data on the cor-
responding concentrations of combustible substances based on experimental
studies, a rigorous mathematical definition of this concept lacks clarity in the
general case. A refinement of this concept can be made relating the defini-
tion to the existence of a planar combustion front, at least as a mathematical
object1, obtained for a given kinetics under the idealized conditions of the
absence of heat losses. In fact, this is the same definition found in a classical
combustion text book, which is: ”flammability limits are limits of compo-
sition or pressure beyond which a fuel-oxidizer mixture cannot be made to
burn”, see [1] (p. 266 in chapter 8).

1Planar flame fronts can be unstable.

2



In a mathematical sense, the flammability limit can be also associated
with the existence of a crossover temperature. Namely, if the temperature
reached after complete burning of all the available fuel at a constant pressure
2 (in other words, the mixture adiabatic temperature) is below this crossover
temperature, then there is no solution in the form of a planar flame front.
Obviously, this is a chemical-kinetic definition of the flammability limit that
cannot be applied to every kinetic scheme. For example, this is not appli-
cable to the simple one-step kinetics of the Arrhenius type, since within the
framework of this combustion model a planar combustion wave solution al-
ways can be found (in the absence of heat loss, of course), and there is no
restriction on the concentration of the combustible substance. Within this
model no crossover temperature exists.

Perhaps the simplest chemistry model in which the flammability limit is
clearly presented is the two-step kinetics scheme proposed in [3, 4, 5, 6]. This
chain branching chemistry scheme is a modification of the kinetics proposed
by Zel’dovich [7, 8, 9]. It was referred by Zel’dovich as an idealized case of
the hydrogen-oxygen combustion [8]. This mechanism was explored later by
Liñán [10] using the high activation energy asymptotic (HAEA) limit where
fast, intermediate and slow recombination regimes were identified. Some-
times this model is referred in the literature as the Zeldovich-Liñán (ZL)
model. The HAEA analysis was carried out in [11] where non-zero heat re-
lease was assumed also for the autocatalytic step. The effect of this kinetic
scheme on the properties of the combustion wave has been reported in various
publications. The asymptotic structure of the front was considered in [12],
the linear stability results were reported in [13, 14, 15, 16, 17, 18] together
with other features of the propagating wave in [19, 20].

The existence of a crossover temperature was demonstrated in [21, 22, 23]
for a reduced kinetics for lean hydrogen-air deflagrations. The reduced ki-
netics was a non-Arrhenius one-step kinetics and allowed the definition of a
crossover temperature. Interestingly, when using a complete kinetic mech-
anism for hydrogen, such as that proposed in [24], a crossover temperature
cannot be detected and, apparently, a planar deflagration front exists for
any arbitrarily low hydrogen concentration [25, 26]. It seems that reactions
involving H2O2, which are not included in the reduced one-step kinetics de-

2The combustion temperature at constant volume can be higher than that at constant
pressure [2].
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veloped in [21, 22, 23], activate a slow path of hydrogen oxidation. This
path, which is extinguished under small radiant heat loss, is also negligible
for describing planar deflagrations at high temperature, enabling a one-step
reduced kinetic description. A detailed overview of these problems and their
applications, along with a detailed discussion, can be found in[27].

A canonical design of a superadiabatic burner consists of two or more
heat-exchanging parallel channels through which the combustible mixture is
fed in alternating opposite directions. The underlying idea of this sort of
devices based on heat recirculation should be traced back to [28, 29, 30].
This heat recirculation configuration leads to preheating of the mixture in
the adjacent channel by hot products. As a consequence, not all heat is lost
from the system, and a temperature above the adiabatic temperature corre-
sponding to a given mixture composition can be reached in the combustion
zone. Theoretically, mixtures of arbitrarily lean composition can be burned
in this way. This can be achieved by lengthening the heat exchange segment
between the countercurrent channels, as well as by increasing the thermal
heat exchange through the separating wall. However, different additional
side effects, such as heat loss to the external environment, for example, or
inadequate heat exchange between channels, can reduce the burner efficiency.

A significant number of investigations on the subject of superadiabatic
burners have been reported over the past two decades [31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42]. Most of the studies were based on one-step Arrhenius-
type kinetics, a model for which there is no flammability limit, as mentioned
above. More complex kinetics were used in [35] for propane-air mixtures, or in
[41] for the production of hydrogen-rich syngas from methanol, for example.
Comprehensive reviews regarding these small-scale combustion devices can
be found in [43, 44, 45, 46, 47, 48] and in a very recent survey [49].

Recently, a two-step chain-branching kinetics model has been used in nu-
merical and analytical studies for heat recirculating countercurrent burners
[50, 51]. In these studies, a narrow-channel one-dimensional approximation
was introduced and used for channels thermally connected to each other
through a conductive segment of the separating wall. Although this one-
dimensional approximation describes the process satisfactorily for fairly nar-
row channels [42], a study of the impact of the channel width on the efficiency
of the burner is required. The present work attempts to fill this gap.

The article is organized as follows: Section 2 presents the problem state-
ment. Section 3 describes the asymptotic approximations used to obtain
numerical solutions. Section 4 briefly describes the numerical methods used.
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Figure 1: Sketch of the problem, coordinate system and opposite-velocity profiles in two
channels; the computational domain is marked with a dash-doted line rectangle.

Section 5 presents the results obtained, while the last section presents the
conclusions drawn by the authors.

2. Formulation

The device under consideration consists of a periodic system of identical
channels of width H separated by walls of width Hw. A mixture of fuel
and oxidizer flows in adjacent channels in opposite directions. The analy-
sis presented below is limited to cases where the flow rates are equal in all
channels. A schematic representation is given in Fig. 1 where x̃, ỹ denote
the longitudinal and wall-normal coordinates, respectively. We assume that
the heat exchange between the channels occurs in a wall segment of length
L. Assuming a periodic array of countercurrent channels, the domain un-
der consideration is reduced to two adjacent channels. When necessary, the
channels with the flow direction to the right and to the left will be designated
as 1 and 2, respectively.

For simplicity, we assume also that the channel walls are adiabatic outside
the heat exchange segment. When the length of the heat exchange zone is
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sufficient, the thermal conditions on the walls outside this segment are of no
importance. The initial (upstream in every channel) temperature is equal
to T0 and the initial mass fraction of the combustible substance is F0. The
mixture is assumed to be deficient in fuel while the mass fraction of oxidizer,
which is in excess, remains nearly constant.

According to the diffusive-thermal model applied in the present study,
the density of the mixture ρ, the average heat capacity cp, the thermal con-
ductivities of the gas and the wall material, λ and λw, and the molecular
diffusivities of the fuel and radical species in the mixture, DF and DZ , are all
constant. DT = λ/ρ cp stands for the thermal diffusivity, and is also constant
within this model. Consequently, the flow field is not affected by combus-
tion and the flow velocity is given by the parabolic Poiseuille flow in every
channel.

In the present study we use the two-step chain-branching kinetic mech-
anism initially developed in [3, 4, 5, 6]. This chemistry includes the auto-
catalytic reaction, F + Z → 2Z, and the recombination reaction, Z +M →
P +M +Q, with reaction rates given by

ΩB = AB(ρF̃ /WF ) · (ρZ̃/WZ) e
−E/RgT ,

ΩC = AC(ρZ̃/WZ) · (ρ/W ),
(1)

where ΩB is the chain-branching reaction rate, assumed to be thermally sen-
sitive with activation energy E, and ΩC is the completion or recombination
reaction rate with zero activation energy. As usual, all the heat, Q, is re-
leased in the completion step. In Eq. (1) AB and AC represent the reaction
rate constants, ρ is the density, T is the temperature, F̃ and Z̃ are the mass
fractions of fuel and radicals, Rg is the universal gas constant, and WF , WZ

and W are the fuel, radical and mean molecular weights, respectively.
Within the framework of the above simplifications, the governing equa-

tions are represented by the conservation laws for the mass fractions of fuel
and radicals, as well as for the energy. For brevity, the equations are written
down for only one channel.

∂F̃

∂t̃
+ ṽ

∂F̃

∂x̃
= DF

(
∂2F̃

∂x̃2
+

∂2F̃

∂ỹ2

)
−WF

ΩB

ρ
, (2)

∂Z̃

∂t̃
+ ṽ

∂Z̃

∂x̃
= DZ

(
∂2Z̃

∂x̃2
+

∂2Z̃

∂ỹ2

)
+WZ

ΩB

ρ
−WZ

ΩC

ρ
, (3)
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∂T

∂t̃
+ ṽ

∂T

∂x̃
= λ

(
∂2T

∂x̃2
+

∂2T

∂x̃2

)
+

Q

cp
· ΩC

ρ
, (4)

.
The characteristic time and length, tc and Lc, used to define the dimen-

sionless variables are chosen from the following relations

tcDT/L
2
c = 1, tcρAC/W = 1. (5)

The characteristic quantities tc and Lc determine the scale of the character-
istic velocity Uc = Lc/tc =

√
ρACDT/W . The parameters a = H/Lc and

� = L/Lc stand for the dimensionless channel width and the dimensionless
length of the heat exchange segments, respectively. The dimensionless wall
thickness is defined as hw = Hw/H.

Dimensionless temperatures in the gas phase and in the solid material
are defined here as θ = (T − T0)/(Tc − T0), θw = (Tw − T0)/(Tc − T0),
both based on the branching temperature Tc. This temperature is usually
known as an ”inhomogeneous” crossover temperature and has been widely
discussed in [3, 4, 5, 6]. The branching temperature Tc is determined by the
relation ΩB = β2ΩC evaluated at the initial fuel mass fraction F0, where
β = E(Tc − T0)/RgT

2
c is the Zel’dovich number based on Tc. It is important

to see that the radical mass fractions Z in ΩB and ΩC are canceled out and,
finally, Tc is defined by the equation

AB

AC

W

WF

F0 =

{
E

Rg

· Tc − T0

T 2
c

}2

exp

{
E

RgTc

}
. (6)

When studying combustion in narrow channels, it is convenient to use
different scales for the longitudinal and transverse coordinates, x = x̃/Lc,
y = ỹ/H. This allows to investigate the narrow channel limit, a → 0, when
the governing equations are reduced to the one-dimensional form. Using F0

and Z0 = (WZ/WF )F0 to normalize the mass fractions of fuel and radicals,
namely F = F̃ /F0 and Z = Z̃/Z0, the dimensionless gas phase equations, to
be considered for 0 < y < 1 (the channel with rightward moving mixture)
and 1 + hw < y < 2 + hw) (the channel with leftward moving mixture), take
the form

∂F

∂t
+mv(y)

∂F

∂x
=

1

LeF

(
∂2F

∂x2
+

1

a2
∂2F

∂y2

)
− ω , (7)

∂Z

∂t
+mv(y)

∂Z

∂x
=

1

LeZ

(
∂2Z

∂x2
+

1

a2
∂2Z

∂y2

)
+ ω − Z , (8)
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∂θ

∂t
+mv(y)

∂θ

∂x
=

(
∂2θ

∂x2
+

1

a2
∂2θ

∂y2

)
+ qZ , (9)

where

ω = β2 F Z exp

{
β(θ − 1)

1 + γ(θ − 1)

}
. (10)

The dimensionless Poiseuille profiles in the two channels have opposite di-
rections,

v(y) =

{
6y[1− y], 0 < y < 1,
−6[y − (1 + hw)][2 + hw − y], 1 + hw < y < 2 + hw.

(11)

Inside the heat exchange wall segment, the equation for temperature is

∂θw
∂t

= α

(
∂2θw
∂x2

+
1

a2
∂2θw
∂y2

)
, (12)

to be solved for 1 < y < 1 + hw.
The dimensionless parameters appearing in the above equations are as fol-

lows: m = U/Uc is the dimensionless flow velocity, q = QF0/cp(Tc − T0)WF

is the dimensionless heat of reaction, γ = (Tc−T0)/Tc is the heat release pa-
rameter, LeF = DT/DF and LeZ = DT/DZ are the Lewis numbers of the fuel
and radicals and α = (λw/λ) · [(ρ0cp)/(ρwcw)] represents the dimensionless
thermal diffusivity of the wall inside the heat exchange segment, with ρw and
cw the density and the heat capacity of the wall material. Note for clarity
that, within the framework of the kinetic model used, the dimensionless adi-
abatic temperature, the temperature of the mixture assuming the complete
chemical consumption of fuel, is equal to q.

For simplicity, we will consider a periodic system of channels. It is well
known that for sufficiently narrow channels the flame structure is always
symmetrical with respect to the midplane of the channel, provided that the
boundary conditions are the same on opposite walls [53, 54]. This makes
it possible to establish symmetrical boundary conditions at the every mid-
plane of the two adjacent channels to be considered. With this symmetry
conditions, Eqs. (8)-(12) are to be solved subject to the following boundary
conditions:

• along the solid walls, at y = 1 and y = 1 + hw,

∂F

∂y
=

∂Z

∂y
= 0, θ = θw,

∂θ

∂y
=

⎧⎨
⎩

1

2
b a2 hw

∂θw
∂y

, 0 < x < �,

0, x < 0, x > �;

(13)
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• along the midplane of the channels, at y = 1/2 and y = 3/2 + hw,

∂θ

∂y
=

∂F

∂y
=

∂Z

∂y
= 0; (14)

• along the lateral conducting wall segments, at 1 < y < 1 + hw and
x = 0, �,

∂θw
∂x

= 0; (15)

• far upstream the channels,

θ → 0, F → 1, Z → 0; (16)

• at the outlet of the channels,

∂θ

∂x
=

∂F

∂x
=

∂Z

∂x
= 0. (17)

The heat exchange parameter appearing in Eq. (13) is defined as

b =
2λw

λa2hw

= 2
λw

λ
· L2

c

HHw

. (18)

The purpose of presenting the coefficient b in this form is to consider the
various limiting cases described in next section.

In the following, the flame position xf is defined as the point along the
channel midplane at which the radical mass fraction Z reaches its maximum
value. As follows from Eq. (9), this point corresponds to the point of maxi-
mum heat release. For most of the results presented below, the distributions
of temperature and mass fractions in adjacent channels turn out to be sym-
metric with respect to the x = �/2 plane. To identify the combustion mode
in this case, the position of the flame will be indicated only in the channel
where reactants flow to the right. In the adjacent channel, the position of
the flame will be x′

f = �− xf . The cases of non-symmetric solutions will be
indicated separately.

All the calculations reported below were carried out for LeF = 1, and
LeZ = 0.3. The values of the Zeldovich and heat release parameters were
fixed at β = 10 and γ = 0.7 in most cases, unless otherwise specified. It
should be noted that in the limit of β → ∞, the calculation of the di-
mensionless heat of reaction corresponding to the flammability limit gives
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q = qf = 1. As pointed out in [50], for finite values of the Zel’dovich number,
this quantity is slightly less than unity and, in the general case, depends on
β, γ and LeF . In particular, for β = 10, γ = 0.7 and LeF = 1, the values
used in this work, we have qf ≈ 0.8827, see Appendix.

3. Limiting cases a → 0 and hw → 0 (with a = O(1))

The heat exchange coefficient b given by Eq. (18) and appearing in Eq. (13)
is scaled with hw and a2 in order to make it easier to consider the following
limiting cases. The first limiting case is the narrow-channel approximation for
which the governing equations are reduced to the spatially one-dimensional
form. This limit is set by the condition a = H/Lc → 0. It should be noted
that due to hw = O(1), the width of the separating wall is considered to be
of the same order as the width of the channel, Hw ∼ H. The resulting equa-
tions are obtained as the first term in the a2 expansion. The applicability of
this limit was investigated before in [42] by using an Arrhenius-type kinetics
and it is not repeated here. In their final shape, the governing equations are
reduced to their one-dimensional counterpart

∂Fi

∂t
±m

∂Fi

∂x
=

1

LeF

∂2Fi

∂x2
− ωi , (19)

∂Zi

∂t
±m

∂Zi

∂x
=

1

LeZ

∂2Zi

∂x2
+ ωi − Zi , (20)

∂θi
∂t

±m
∂θi
∂x

=
∂2θi
∂x2

+ q Zi ∓ b(θ1 − θ2) . (21)

Here the indices i = 1 and 2 denote channels with rightward and leftward mix-
ture flow directions, together with the upper and lower signs in the equation,
respectively. It is interesting to note that the same equations are obtained
in the considered limit if the constant density assumption is not made. In-
deed, in practice the procedure is reduced to averaging across the channel
and the variables in Eqs. (19)-(21) are average variables when the total flow
rate through each channel (equal to m) is fixed.

Although this study considers a periodic system of channels, one can
easily extend it to the case of only two counter flow channels, assuming
adiabaticity for the walls in contact with the external environment. To do
this, following the asymptotic consideration outlined in [42], the factor 2 must
be excluded from Eq. (18), since the integration across the channel must be

10



carried out over its entire section, and not only over a half section, as in the
case of a periodic system of channels.

The second limiting case considered here is the limit hw → 0, while
the dimensionless width of the channels, a, remains formally of order unity.
Using the scaled variable ŷ = (y − 1)/hw, the temperature equation in the
conducting segment becomes

∂θw
∂t

= α

(
∂2θw
∂x2

+
1

a2 h2
w

∂2θw
∂ŷ2

)
. (22)

Assuming (formally) that all parameters are of order unity and hw � 1,
the wall temperature is expanded in power series of h2

w, i.e. in the form

θw = θ
(0)
w + h2

wθ
(1)
w + . . . . Finally, the leading order solution for the wall

temperature reads

θ(0)w = θ1 + (θ2 − θ1) · y − 1

hw

, (23)

where continuity of the temperature field on the solid surface was used. Sub-
stituting this solution into Eq. (13) gives the boundary condition in the form

0 < x < � :
∂θ1
∂y

∣∣∣∣
y=1−

=
1

2
b a2 (θ2 − θ1),

∂θ2
∂y

∣∣∣∣
y=1+

=
1

2
b a2 (θ2 − θ1) ,

x < 0, x > � :
∂θ1
∂y

∣∣∣∣
y=1−

=
∂θ2
∂y

∣∣∣∣
y=1+

= 0 .
(24)

Thus, it can be seen that the representation of the boundary conditions in
the form given by Eq. (13) is convenient to compare the results obtained in
these limiting cases with more general ones. We also note that if we take the
limit a → 0 in the governing equations and boundary conditions (24), then
the formulation takes the one-dimensional form given by Eqs. (19)-(21).

In the asymptotic expansions presented above, all parameters, with the
exception of the parameter used for the asymptotic expansion (a for the first
case and hw for the second), should be considered (formally) as being of order
of unity. It should be noted that the approximations considered above are not
the only possible ones. In [52], the approximation of a highly conductive wall
segment corresponding to the limit λw/λ → ∞ was considered. In this case,
the high thermal conductivity of the wall leads to a uniform wall temperature
whose value must be determined from the wall heat flux balance. However,
that limiting case will not be considered in this paper.
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4. Numerical treatment

All computations were carried out in a finite domain, xmin < x < xmax,
with xmin < 0 and xmax > �. Typical values were xmin = −10 and xmax =
�+10. The spatial derivatives in all the governing equations were discretized
on a uniform grid using second order, three-point central finite differences.
The typical number of points in each direction was Nx = 2000 and Ny =
100 in each channel. These values were also doubled to provide resolution
validation. The y-derivatives appearing in the wall boundary conditions were
also discretized with second order accuracy.

The steady counterpart (∂/∂t = 0) of the governing equations was solved
using a Gauss-Seidel method with over-relaxation. Two iterating methods
were used. In the first method, the values of all parameters were fixed.
Only solutions belonging to the stable branches could be calculated using
this method. In the second method, the temperature was fixed at a point
x = x∗ (and y = y∗ for two-dimensional calculations) in the rightward flow
channel imposing θ1 = θ∗ while the value of the flow rate m, for example, was
calculated iteratively (also with a Gauss-Seidel procedure). The numerical
values of θ∗ used were between 0.7 and 1. Most of the calculations were
carried out with y∗ = 0.5 (middle of the first channel), although it is obvious
that the results should not depend on (x∗, y∗), which was confirmed. Namely,
for each selected set (x∗, y∗), the value ofm and the position of the flame were
calculated, and the dependencies of xf on m coincided for different y∗ , as it
should be. The second numerical method allows to find unstable solutions,
which is important for the exact determination of the regions of existence of
steady-state regimes.

Although time-dependent dynamics was not the subject of study, some
unsteady calculations were also carried out mainly to study the stability of
steady-state solutions. These calculations were carried out using an explicit
scheme of the first order of accuracy. The time step varied from 10−4 to 10−6.
The presence of a sharp dependence of the reaction rate on temperature
required the use of a sufficiently small time step, which allowed the use of
the explicit time method.

5. Results

Before proceeding to the description of steady-state solutions, it should
be noted that two solutions were obtained for each value of the flow rate,
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Figure 2: The flame position xf in the rightward flowing channel versus the flow rate m
plotted for q = 0.8 (left plot), q = 0.5 (right plot) and various a; all curves calculated
for � = 40 and b = 0.15. Dashed lines show the asymptotic case hw → 0; open circles
mark the maximum values of the flow rate; filled circles (left plot) correspond to initial
conditions for the simulations presented in Fig. 3. The marked segments correspond to
non-symmetric solutions, of which an example is shown in Fig. 8.

with other parameters fixed. The typical dependence of the steady-state
flame position on the flow rate showed the presence of turning points located
near the middle of the heat exchange segment, as can be seen in Fig. 2,
for example, where the turning points are marked with open circles on the
presented curves. It should be noted that the results presented in [50, 51]
were obtained on the basis of an analytical method, in which finding the flame
position was reduced to finding the roots of an algebraic equation. This made
it possible to obtain, for example, closed curves for the position of the flame
versus the flow rate. In the case of the numerical solution of the equations,
the approach taken in the present study, the calculation of some parts of
closed curves presents significant numerical difficulties due to the rigidity
of the corresponding calculations. However, it should be noted that these
difficulties are associated only with the parts of the curves corresponding
to unstable solutions (see below). For stable solutions, no difficulties were
observed.
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Figure 3: Examples illustrating evolutions of the flame position, xf , for � = 40, q = 0.8,
b = 0.15, a = 3 in the rightward flow direction channel; the initial conditions correspond
to the states lying above the turning point in Fig. 2 (marked with filled circles) for m =
2 (initially symmetric state) and m = 1.71 (initially non-symmetric state). Horizontal
dashed lines mark the corresponding stable states.

5.1. The limiting case hw → 0

Let us consider the case of the thin channel wall approximation by setting
hw → 0 when the temperature boundary conditions on the wall are reduced
to Eq. (24). The steady-state flame position xf (in the rightward flowing
mixture channel) versus the flow rate m is shown in Fig. 2 for q = 0.8 (left
plot), q = 0.5 (right plot) and various values of the dimensionless width a.
These two values of q correspond to a mixture with a fuel content below the
flammability limit. The remaining parameters are fixed at � = 40, b = 0.15,
LeF = 1 and LeZ = 0.3. The curves drawn with dotted lines show limiting
cases corresponding to a → 0 and based on Eqs. (19)-(21). These results
show that as the channel width decreases, the results tend to the limiting
case a → 0.

It can be seen in Fig. 2 that as the flow rate increases, the flame ap-
proaches the middle of the heat exchange segment �/2, near which there are
turning points marked with open circles. If we follow further, then the flame
continues to move along the channel downstream, but the corresponding flow
rate decreases, that is, for each m there are two solutions. The turning point
determines the maximum flow rate value above which the combustion pro-
cess is impossible (for these fixed values of the parameters). It is interesting
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Figure 4: Temperature contour plots illustrating the states corresponding to the points
indicated with open squares in Fig. 2 (right) for q = 0.5.

to note that for small a, the turning point is close to the middle of the heat
exchange segment, x ≈ �/2, while for larger a, the critical value is reached
before the point x = �/2. In all likelihood, this is due to the increase in
the flame curvature in wider channels. Indeed, the position of the flame, xf ,
is determined, for convenience, along the middle of the channel. For this
reason, this value may not fully reflect the flame structure in wider channels.

Global stability analysis of the obtained steady-state solutions is not the
subject of the present study. However, we can signal, parenthetically, that
all the (considered) states corresponding to flame positions lying above the
turning point (in the first channel) are unstable. Time-dependent calcula-
tions revealed that in all cases where steady solutions corresponding to the
upper branch (above the turning point in Fig. 2) were chosen as the initial
condition, then the typical time evolution illustrated in Fig. 3 took place,
that is, at a fixed flow rate, the solution lying on the lower branch was ap-
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channel width a. Open circles mark the critical values of q below which combustion is
impossible (for a given value of m).
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Figure 7: Temperature distributions along the channel axis, for different values of a cal-
culated for m = 2, q = 1.2 (upper plot) and q = 0.5 (right plot); the dimensionless heat
of reaction corresponding to the flammability limit is qf = 0.8827 for β = 10, γ = 0.7 and
LeF = 1.

proached. The initial conditions for the time evolution curves shown in Fig. 3
correspond to the filled circles in Fig. 2 (left), for � = 40, q = 0.8, b = 0.15,
a = 3. The case with m = 2 corresponds to a symmetric initial condition,
while for the case with m ≈ 1.71 the initial conditions are not symmetric. It
can be seen that after the flame transition period, the position of the flame
in the first channel approaches the steady state with xf < �/2.

Note that, at least for the considered range of parameters, the instabil-
ity has a monotonic character, i.e. no oscillatory dynamics was observed.
This result agrees with the stability analysis reported in [50] carried out
analytically within the one-dimensional approximation. Of course, selected
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time-dependent calculations cannot replace a rigorous linear stability analy-
sis, which will be reported somewhere else.

Fig. 4 compares the temperature distributions in the channels calculated
for two channel widths with a = 1 and a = 5, both for q = 0.5. The heat
exchange segment is marked in the figure with white vertical dash-dotted
lines. The distributions correspond to the values marked with open squares in
Fig. 2 (right plot), that is, to flow ratesm = 1. It can be seen that for the case
of the narrower channel, a = 1, the temperature distribution depends only
weakly on the transverse coordinate, while for the wider channel, a = 5, the
temperature varies in the transverse direction. The temperature distribution
for the unstable solution belonging to the upper solution branch is illustrated
in Fig. 5. This state corresponds to the point indicated by an open square
for m ≈ 1.44 in Fig. 2 (left).

Shown in Fig. 6 are the dependencies of the position of the flame on the
dimensionless heat of reaction q calculated for various values of a, all curves
obtained for � = 40, m = 2 and b = 0.1. Open circles indicate critical
values of q below which combustion in the device is impossible. It can be
seen that as the channel width increases, the critical value also increases,
that is, the efficiency of the heat exchanger decreases and a higher energy
content of the fresh mixture is required to guarantee sustained combustion.
Obviously, these critical values depend on the flow rate. The plotted curves
correspond to m=2 and for different values of the flow rate a different set of
curves will be obtained. The behavior at different flow rates will depend on
the combination of two effects. On one side, a higher flow rate will increase
the flame burning speed, but on the other side it will also change the flame
position, bringing it farther away in the channel and this will decrease the
heat exchange between channels and therefore the efficiency of recirculation.
In this sense, it can be seen again that for small a, the turning point, and
therefore the point of minimum heat recirculation efficiency determining the
critical q value, practically coincides with the middle of the heat exchange
segment, while it occurs earlier for large values of a.

Temperature distributions along the channel axis are shown in Fig. 6 for
cases with q = 1.2 and q = 0.5. In the first case, the mixture composition
remains above the flammability limit, while for the second it is below this
limit, i.e. the adiabatic temperature is lower than the corresponding cross-
over temperature. Nevertheless, the figure demonstrates that in both cases
the temperature inside the heat-exchange segment reaches values exceeding
the cross-over temperature and therefore a self-sustained flame exists, even
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Figure 8: An example of the temperature distribution along the channel axis for a non-
symmetric (unstable) solution, calculated for � = 40, a = 5, q = 0.8 and m ≈ 1.28.

far below the flammability limit. We also note that in the absence of heat
loss, the temperature at the outlet of the burner is equal to the adiabatic tem-
perature of the mixture, q, as it should follow from the energy conservation
law.

One can ses also, that the solutions on the upper (unstable) branch be-
come non-symmetric with respect to the channel mid-axis. This area is
marked in Fig. 2 (left). The temperature distributions along the channel
axis corresponding to these non-symmetric solutions are illustrated in Fig. 8.
It is interesting to note that the temperature of the mixture in channel 1
(rightward flowing channel) at the outlet of the heat exchange segment is
higher than that in the adjacent channel. However, it can be seen that the
average value over the two channels is still equal, as it should be, to the adi-
abatic temperature, θ = 0.8. This value is marked with an horizontal dashed
line in the figure. In all likelihood, the emergence of solutions that are not
symmetric with respect to �/2 is not related to the chain-branching kinetic
model, since similar non-symmetric solutions were also observed for one-step
Arrhenius kinetics [42]. We emphasize once again that these solutions are
unstable.

The parametric interval in which the superadiabatic device can operate
depends significantly on the properties of the separating wall. Within the
model used, this is expressed by the value of the coefficient b. For b = 0.15,
a = 1 and q = 0.5 the flow rate should not exceed m ≈ 1.95 (see Fig. 2
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Figure 9: The dependence of the position of the flame in the channel on the flow rate for
various a, for b = 1, � = 40 and q = 5. The limiting a → 0 solutions are shown by a
dashed line.

(right)). Figure 9 shows the dependence of the flame position on the flow
rate for cases calculated with a channel wall with b = 1. It can be seen that
the maximum value for the flow rate is approaching m ≈ 7 for a = 1. Thus,
a change in the wall parameter from b = 0.15 to b = 1 results in a large
variation in the parametric range where self-sustained combustion can occur.

One of the main goals of the present study is to demonstrate that, with an
adequate choice of dimensionless parameters, the limiting case of the narrow
channel approximation, a → 0, satisfactorily describes the behavior of the
considered device. This was demonstrated for flammable mixtures, using one-
step Arrhenius kinetics in [42]. Here, since we are using the chain-branching
chemical model, we can extend this demonstration to ultra-lean mixtures,
below the flammability limit. Figure 10 shows the position of the flame as
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m = 2 and b = 0.15.

a function of the channel width, for � = 40, q = 0.8 and b = 0.15 with a
flow rate of m = 2 for decreasing values of the channel width a, compared
to the position predicted using the narrow channel limit equations (a → 0).
It can be seen that the position of the flame in the channel approaches the
asymptotic value obtained from the narrow channel approximation and that
for values of the channel width as large as a = 1 this approximation remains
sufficiently accurate.

5.2. Influence of hw = O(1)

All the results presented above were calculated within the limiting case
hw → 0. For a finite wall thickness, it is necessary to solve, in addition to
the gas equations, Eq. (12) for the temperature inside the wall. Figure 11
illustrates the temperature distribution for a device with a wall thickness
equal to half the width of the channel, hw = 0.5, a = 3, � = 20, m = 3, b = 2
and q = 0.8. The top and bottom plots in Fig. 12 show the distributions
of temperatures and mass fractions along the middle of the channels of the
device for for q = 0.8 with m = 3 and q = 0.5 with m = 0.8.

Fig. 13 compares the flame positions in the rightward channel plotted
versus the flow rate for hw = 0.5 (solid line) and in the limiting case hw → 0
(dotted line). It was important to verify that finite values of hw affect only
slightly the flame position and even for hw = 0.5 the coincidence of the curves
is good. Of course such a good match is possible because of the definition of
the heat transfer coefficient proposed in Eq. (13).

Fig. 14 shows the changes in flame position as a function of hw calculated
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for m = 3, � = 20, b = 2 and various values of a. The curve calculated
for a = 1 demonstrates that even for hw = O(1), the deviations of the
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flame position xf from the asymptotic hw → 0 value (dashed line) are small.
However one can see that with increasing values of a, the upper values of hw

below which this difference remains small decrease. This can be explained by
the fact that the dimensionless channel width is based on Lc determined by
Eq. (5), namely a = H/Lc, while the dimensionless wall thickness is defined
as hw = Hw/H. If we re-scale the wall thickness using the length Lc, namely
h′
w = Hw/Lc, then we have h′

w = a×hw. This means that, in fact, h′
w = hw×a

plays the role of small parameter in the corresponding expansion.

6. Discussion and conclusions

The main characteristic of superadiabatic combustion burners is their
property of reaching temperatures in the combustion zone significantly ex-
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ceeding the temperature obtained after complete fuel burning, that is, the
adiabatic temperature. This effect is achieved through heat recirculation in
the device, when part of the heat from combustion remains inside the de-
vice and is not lost as hot combustion products are carried away from it.
This valuable property allows the burning of extremely lean mixtures with-
out external preheating. However, the performance of heat recirculation is
highly dependent on the design of the device. The stability of combustion in
these devices and the adequate values for their operation must be assessed
in advance, at the design stage.

One of the difficulties in designing combustion devices is the large number
of involved parameters, which makes difficult to find their adequate values for
optimal burner operation. A possible approach to overcoming this obstacle is
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the construction of simplified models, in which, with the help of asymptotic
simplifications, the problem becomes more accessible for analysis. Possible
asymptotic simplifications often arise from the fact that, with an adequate
choice of scales for dimensional variables, the corresponding dimensionless
formulation of the problem contains small/large dimensionless parameters
that can be used to construct the asymptotic model. On the other hand, a
situation often arises when the asymptotic model, obtained as a result of ex-
pansion using a small/large parameter, becomes applicable in a much wider
range than is dictated by the requirement that the parameter be small/large.
However, it should be noted that the applicability of the resulting model can-
not be derived from the asymptotic procedure itself. This can only be done
by comparing the results obtained from the full and the simplified models.
An attempt to analyze this problem was made in the present work by ap-
plying asymptotic analysis to superadiabatic devices. The study focused on
the consideration of two asymptotic cases, the case of a narrow channel and
the case of a narrow wall, to simplify the problem statement by introducing
effective parameters characterizing the heat recirculation in the device.

The heat recirculated through the separating walls and therefore the ac-
tual realization of high temperatures in the combustion zones is influenced by
geometric parameters such as the length of the heat-exchange segment, the
width of the channels, or the thickness of the walls; by physical parameters
such as the thermal conductivity of the solid wall material; and by operating
conditions such as the flow rate. All of these parameters and conditions define
the existence of stable (or unstable) positions of the flame in the counter-flow
channels within which the degree of heat recirculated varies. The asymptotic
approximations attempt to reduce the number of these effective parameters,
observing, for instance, an increase of the heat recirculation with the decrease
of the ratio a = H/Lc or with the decrease of the ratio hw = Hw/H.

This study was carried out on the basis of a chain-branching two-step
kinetic mechanism in which the flammability limit is clearly included. This
made it possible to demonstrate distinctly that the combustion of ultra-lean
mixtures, that is, those for which the adiabatic temperature is below the
cross-over temperature for a given mixture composition, is indeed possible in
such devices. Theoretically, if the degree of heat recirculation is sufficiently
high, then combustible mixtures with an arbitrarily small energy content can
be burned under ideal conditions of no heat loss.

Besides, as another important result of this study, it can be emphasized
that the application of the narrow-channel approximation and the narrow-

25



separating-wall approximation can be used, not only in the cases where the
corresponding parameters are very small, but also for cases where they are
of order unity. This opens up wider possibilities for using asymptotic 1D
models to design and evaluate the performance of superadiabatic burners.
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Appendix. Flammability limit for finite β

The flammability limit for final β values was calculated in [12]. In that,
a planar combustion wave was considered and the critical value of q = qf
corresponds to a zero value of the flame propagation velocity. The solution
was obtained by the method of matched asymptotic expansions and will not
be repeated here. As a result of this procedure, an algebraic equation to
obtain the critical combustion wave temperature takes the form

βθf
(1 + γ(θf − 1))2

− LeF [k(θf )− 1] = 0, (25)

where

k(θf ) = β2 exp

[
β(θf − 1)

(1 + γ(θf − 1))

]
.

Calculating θf from Eq. (25), the critical heat of reaction corresponing to the
flammability limit is given by

qf =
θf · k(θf )
k(θf )− 1

. (26)
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Eq. (25) does not have an explicit solution for θf . However, one can
obtain an asymptotic expression in the form

β → ∞ :
θf = 1− ln(LeF · β)

β
+

a2 ln
2 β + a1 ln β + a0

β2
+O

(
β−3 ln3 β

)
,

qf = 1 +
LeF − ln(LeF · β)

β
+

b2 ln
2 β + b1 ln β + b0

β2
+O(β−3 ln3 β

)
,

(27)
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where
a0 = γ ln2 LeF + (2γ − 1) lnLeF + LeF ,
b0 = γ ln2 LeF + (2γ(1− LeF )− 1) lnLeF + LeF ,
a1 = 2γ(1 + lnLeF )− 1,
b1 = 2γ(1 + lnLeF )− 1− 2LeFγ,
a2 = b2 = γ.

Fig. 15 compares the values for the dimensionless critical heat of reaction
corresponding to the flammability limit, qf , obtained from the numerical
solution of Eqs. (25)-(26) (solid line), with those obtained using one-term
(long-dashed line) and two-terms (short-dashed line) expansions given by
Eq. (27).
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[10] A. Liñán, A theoretical analysis of premixed flame propagation with
an isothermal chain-branching reaction, Insituto Nacional de Tech-
nica Aerospacial Esteban Terradas (Madrid), USAFORS Contract No.
E00AR68-0031, Technical Report No. 1, 1971.
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dyumov, Analysis of an idealized counter-current microchannel-based
reactor to produce hydrogen-rich syngas from methanol, Int. J. Hydr.
Eng. 44 (2019) 23807-23820.

[42] V.N. Kurdyumov, D. Fernández-Galisteo, C. Jiménez, Superadiabatic
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[52] V.N. Kurdyumov, C. Jiménez, Flame stabilization in narrow channels by
a highly conductive wall segment: Application to small-scale combustion
devices, Combust. Flame 245 (2022) 112348.

[53] V.N. Kurdyumov, Lewis number effect on the propagation of premixed
flames in narrow adiabatic channels: Symmetric and non-symmetric
flames and their linear stability analysis, Combust. Flame 158 (2011)
1307-1317.
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Figure captions

Figure 1. Sketch of the problem, coordinate system and opposite-velocity
profiles in two channels; the computational domain is marked with a dash-
doted line rectangle.
Figure 2.The flame position xf in the rightward flowing channel versus
the flow rate m plotted for q = 0.8 (left plot), q = 0.5 (right plot) and
various a; all curves calculated for � = 40 and b = 0.15. Dashed lines
show the asymptotic case hw → 0; open circles mark the maximum values
of the flow rate; filled circles (left plot) correspond to initial conditions for
the simulations presented in Fig. 3. The marked segments correspond to
non-symmetric solutions, of which an example is shown in Fig. 8.
Figure 3.Examples illustrating evolutions of the flame position, xf , for � =
40, q = 0.8, b = 0.15, a = 3 in the rightward flow direction channel; the
initial conditions correspond to the states lying above the turning point in
Fig. 2 (marked with filled circles) for m = 2 (initially symmetric state) and
m = 1.71 (initially non-symmetric state). Horizontal dashed lines mark the
corresponding stable states.
Figure 4.Temperature contour plots illustrating the states corresponding to
the points indicated with open squares in Fig. 2 (right) for q = 0.5.
Figure 5.Temperature contour plots illustrating the unstable state corre-
sponding to the point indicated with open square in Fig. 2 (left).
Figure 6.The dependence of xf on q calculated for m = 2 and different
values of the channel width a. Open circles mark the critical values of q
below which combustion is impossible (for a given value of m).
Figure 7.Temperature distributions along the channel axis, for different
values of a calculated for m = 2, q = 1.2 (upper plot) and q = 0.5 (right
plot); the dimensionless heat of reaction corresponding to the flammability
limit is qf = 0.8827 for β = 10, γ = 0.7 and LeF = 1.
Figure 8.An example of the temperature distribution along the channel axis
for a non-symmetric (unstable) solution, calculated for � = 40, a = 5, q = 0.8
and m ≈ 1.28.
Figure 9.The dependence of the position of the flame in the channel on the
flow rate for various a, for b = 1, � = 40 and q = 5. The limiting a → 0
solutions are shown by a dashed line.
Figure 10.Flame position value obtained at different values of a, for � = 40,
q = 0.8, m = 2 and b = 0.15.
Figure 11.An example of temperature distribution in a device with a finite
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wall thickness, hw = 0.5, plotted for m = 3, � = 20, a = 3, b = 2 and q = 0.8.
Figure 12.Examples of variable distributions along the channel axis calcu-
lated for hw = 0.5, upper plot for q = 0.8 and m = 3, lower plot for q = 0.5
and m = 0.8.
Figure 13.Dependence of the flame position in the channel on the flow rate
m calculated for q = 0.8 and 0.5, all curves calculated with � = 20, a = 1,
b = 2 ; solid line - hw = 0.5, dotted line - hw → 0.
Figure 14.Dependence of the flame position on the value of the wall thick-
ness, calculated for m = 3, b = 2, q = 0.8 and � = 20. Dashed lines indicate
the limiting values calculated in the limit hw → 0.
Figure 16.Dependence of the flammability limit critical value for the dimen-
sionless heat of reaction on the Zel’dovich number, for γ = 0.7 and LeF = 1;
the solid line represents the solution of Eqs. (25) and (26), the lines with long
and short dashes show one and two terms in the asymptotic expansion (27),
respectively.
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