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Abstract.
The present study addresses the effects of two-way fluid-particle interaction (“two-

way coupling”) on the settling of heavy particles in homogeneous turbulence. The
modification of turbulence by the particles and the resulting effects on the settling
velocity are analyzed by taking into account Reynolds number effects. The turbulent
carrier fluid phase is resolved by direct numerical simulation (DNS) and the particle
phase by the Lagrangian point-particle approximation. Results are presented for two
Taylor microscale Reynolds numbers Rλ = 40 and 130. While for Rλ = 40 the
Kolmogorov time scale, tη, is found almost unaltered by the two-way coupling, it
is found significantly decreased for Rλ = 130. The consequent modification of the
particle Stokes number St = τp/tη , τp being the particle response time, shows that
comparisons between one-way coupling numerical data and two-way coupling numerical
or experimental data may be inconsistent. This is particularly relevant for the particle
settling in turbulence which has been previously shown to be strongly influenced by
the dynamical interaction of the small flow scales with the particles.

1. Introduction

The knowledge of the settling of heavy particles in turbulence is relevant to many
environmental and engineering problems such as the settling of aerosol particles in the
atmosphere or combustion devices.

Direct numerical simulations that only accounted for the effects of the carrier flow on
the particles (“one-way coupling” DNS) have shown that the average settling velocity of
heavy particles is increased by turbulence (see Wang & Maxey [1], Yang & Lei [2]). The
faster settling of the particles is explained by the coupling of two mechanisms (Wang &
Maxey [1]): the tendency of inertial particles to accumulate on the peripheries of vortical
structures (referred to as “preferential concentration”) and the tendency of particles to
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move along the downward fluid motion (referred to as “preferential sweeping”). These
numerical studies also showed that the maximum increase of the settling velocity is
obtained for particles with response time τp ∼ tη (Wang & Maxey [1]), tη being the
Kolmogorov time scale, and for terminal velocity in the still fluid vt ∼ 0.5u′ (Yang & Lei
[2]), u′ defining the turbulence intensity. Similar qualitative findings were also observed
in the experiments of Aliseda et al. [3] and of Yang & Shy [4]. Note that the settling
velocity of heavy particles in turbulent flow is a quantity very difficult to measure and
that these two experiments are the main ones reported for homogeneous turbulence in
the literature.

An important open issue, on which both above experiments do not agree one with
each other, is the modification of turbulence by the particles (“two-way coupling”) and
the resulting effects on the settling velocity. On one hand, Aliseda et al. [3] showed that
the larger is the volume fraction the larger is the increase of the settling velocity. They
explained this result by concentration effects and a-priori discarded two-way coupling
effects because of the low volume fraction considered, Φv ∼ 10−5. On the contrary, for
similar volume fraction, Yang & Shy [4] found a significant increase of the turbulence
energy by the particles but obtained an increase of the settling velocity close to the
one obtained by one-way coupling simulations. This in turn suggests that two-way
coupling may not alter the settling velocity. Nonetheless, the DNS of Bosse et al. [5]
do show an additional enhancement of the settling velocity by two-way coupling effects.
However, their two-way coupling DNS results poorly compare with the experiments. It is
noteworthy to mention that the most complete experimental data set provided by Yang
& Shy [4] on both the modification of turbulence by the particles and on the settling
velocity, corresponds to a Taylor microscale Reynolds number Rλ = 120, much higher
than the one considered by Aliseda et al. [3] (Rλ = 75) and those used in the DNS,
limited to low or moderate Reynolds numbers (Rλ = 40− 75). Reynolds number effects
are thus not excluded from the numerical and experimental observations.

The present study proposes to further investigate the two-way fluid-particle
interaction in the settling of heavy particles by also addressing Reynolds number effects.
For this, two-way coupling DNS is used to simulate a particle-laden homogeneous
turbulence at a low and a high Reynolds numbers, Rλ = 40 and 130 (both values
allow comparisons with previous numerical and experimental data). Stationary but as
well decaying homogeneous turbulence are considered to assess how far the use of a
forcing scheme in the simulation of the stationary turbulence may influence the results,
especially when two-way coupling are accounted for and at low Reynolds numbers, when
the separation between the large scales and the small scales of turbulence is not complete.

2. Methodology and flow parameters

The homogeneous and isotropic turbulence is described in the Eulerian frame by the
incompressible Navier-Stokes equations
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where xi(i = 1, 2, 3) are the spatial coordinates, ui(i = 1, 2, 3) the velocity components,
ρ the fluid density, p the pressure, ν the kinematic viscosity and fi the external energy



Table 1. Numerical and flow parameters. Microscale Reynolds number Rλ, number
of computational nodes N 3, viscosity ν, box side length Lbox, integral length scale L,
large-eddy turn-over time T , Kolmogorov length and time scales η and tη, maximum

wavenumber kmax =
√

2N/3, forcing mode kp and statistical integration time Tstat

(forced flow). Values are based on the unladen flow quantities.

Rλ N3 ν L/Lbox L/η T/tη kmaxη kp Tstat/T
40 643 0.0178 0.211 31.56 15.85 1.32 3 ∼ 50
130 5123 0.00059 0.114 114.24 32.96 1.61 3.5 ∼ 11

source term to achieve a statistically steady turbulence (fi = 0 for decaying turbulence).

The term −f
(p)
i represents the net force per unit mass exerted by a number of np particles

within the integration control fluid volume and is computed from

f
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where m is the mass of fluid within the integration control volume and fpi
is the drag

force acting on a particle p in the xi-direction.
The particles, with density ρp much larger then the fluid density ρ, are described in

the Lagrangian frame by the equation of motion of Maxey and Riley [6]
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where vi(i = 1, 2, 3) are the particle velocity components, uxpi
the instantaneous fluid

velocity at the particle location xpi
and mp the particle mass. The response time of the

particles, τp, is given by τp = d2ρp/(18νρ) with d the particle diameter; the gravitational
acceleration gi is such that g1 = g2 = 0 and g3 = −|g| where |g| is defined from
vt = −τp|g|(1 − ρ/ρp), vt being the terminal velocity of the particles in the still fluid.

The Navier-Stokes equations are solved on a cubic fluid box of side length Lbox = 2π,
discretized into N 3 computational nodes, with periodic boundary conditions. A fully
pseudo-spectral algorithm with a de-aliasing truncation technique (referred to as the
“2/3 rule”) is used with a second-order Runge-Kutta time-stepping for the non-linear
terms and an analytic integrating factor for the viscous terms. The forcing is achieved
by introducing a power input distributed over a narrow band of wavenumbers k that
satisfy kp − 1 ≤ k ≤ kp + 1, where kp defines the peak forcing mode (see Rogallo [7]
and J́ımenez & Wray [8] for further computational details). The average mean flow
integrated over the flow domain is imposed to be zero throughout the two-way coupling
simulations. This is done by applying a mean pressure gradient that balances the net
weight of the particle phase in the periodic domain. This avoids any further acceleration



Table 2. Particle Stokes number St = τp/tη and normalized diameter; all particles have
a density ratio ρp/ρ = 5000. Values are based on the unladen flow quantities.

St 0.36 1 2
d/η 0.0359 0.0597 0.0847

of the particles in the gravity direction due to a non-zero net volume flux (see Maxey &
Patel [9] and Bosse et al. [5]).

In a Lagrangian-Eulerian approach, the computation of the drag force fpi
requires

the fluid velocity to be interpolated from the Eulerian frame to the particle location
(forward interpolation). In addition, when two-way coupling is accounted for, the force

exerted by the particles on the fluid, f
(p)
i , has to be assessed from the particle data to the

Eulerian frame (backward interpolation). Various forward and backward interpolation
schemes are proposed in the literature and recently discussed in Garg et al. [10]. In
the present study, a fourth-order Lagrangian polynomial interpolation is used for the
forward interpolation while a linear projection of the particle force over the eight grid
nodes surrounding the particle is used for the backward interpolation. These two schemes
were shown to be reasonably accurate for a flow with a high spectral content in the fluid
velocity field. For the time discretization, the same Runge-Kutta scheme as used for the
carrier fluid is used for the particle equation.

The main numerical and flow parameters are provided in table 1 and the particle
properties in table 2. Note that the particle diameter is well below the Kolmogorov
length scale so that the corresponding particle Reynolds number, Rep, is very small,
which justifies the use of the linear Stokes drag law in equation (3). The condition
Rep ≪ 1 was also checked to be satisfied during the simulation runs. Finally, the ratio
of the number of computational particles to the number of real particles is set to one
in all the low Reynolds number simulations and does not exceed 3 in the high Reynolds
number simulations (up to 2.56 × 108 particles were tracked).

3. Results

Results on the effects of two-way coupling on the settling velocity rate are presented
for the Stokes numbers St = 0.36, 1 and 2 in decaying homogeneous turbulence at
the Reynolds numbers Rλ = 40 and 130. For this flow configuration identical initial
conditions for the fluid (issued from a velocity field of the forced turbulence simulation)
and for the particles (random distribution) is used for the three Stokes numbers
considered. In the stationary turbulence, the statistics are reported for the Stokes
number St = 1. They were performed once the average settling velocity exhibited a
stationary behavior. The statistical time integrations are given in table 1.

3.1. Reynolds number effects: overview

The average increase of the settling velocity normalized by the terminal velocity,
< Δvs > /vt =< (vs − vt) > /vt (where vs is the particle settling velocity), is given as a



Table 3. Forced turbulence, Rλ = 40 and 130: average settling rate < Δvs > /vt and
particle Stokes number St; Φv = 3 × 10−5, vt = vη.

Rλ = 40 Rλ = 130

St < Δvs > /vt St < Δvs > /vt

1-way 1 0.479 1 0.630
2-way 1.064 0.712 1.7 0.574
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Figure 1. Forced turbulence,
Rλ = 40, vt = vη(= η/tη): com-
parison with previous DNS of the
normalized average settling rate
< Δvs > /vt as a function of the
Stokes number St. For both two-
way coupling DNS Φv = 3×10−5.

function of the Stokes number St in figure 1 for the one-way and two-way coupling DNS
performed for the forced turbulence at Rλ = 40. In agreement with Wang & Maxey
[1] and Bosse et al. [5], the present results reproduce the maximum of the settling
rate for St ∼ 1 and also show an additional increase effect by the two-way coupling
which is significant for the three Stokes numbers considered. The observed quantitative
discrepancies can be mainly attributed to the smaller forcing radius used in the present
simulations compared to the one used in the DNS of Wang & Maxey [1] and of Bosse et

al. [5]. Similar forcing effects were reported by Wang & Maxey [1] for a lower Reynolds
number (see figure 7 in [1]). The significant enhancement of the settling velocity by
the two-way coupling is also confirmed in the decaying turbulence for identical flow and
particle parameters as shown in figure 2(a).

By contrast, the DNS results obtained for Rλ = 130 show that clear conclusions are
difficult to extract regarding the effects of the two-way coupling on the settling velocity.
Figure 2(c) exhibits a two-way coupling settling rate well above the corresponding
one-way coupling settling rate for St = 0.36. However, for the particles with higher
inertia, the two-way coupling DNS provide results close to the one-way coupling DNS
except at large times where the settling velocity is found larger in the two-way coupling
DNS. Regarding the stationary turbulence, the settling rate is found smaller in the
two-way coupling simulation (see table 3). Nevertheless, it has to be stressed out
that for Rλ = 130 a direct comparison between two-way and one-way coupling DNS
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Figure 2. Decaying turbulence, Rλ = 40 and 130: time evolution of the settling rate,
Δvs/vt, and of the particle Stokes number, St; Φv = 3 × 10−5, vt = vη.

is not consistent because of the large increase of the Stokes number resulting from
the interaction of the particles with the fluid. This is shown in figure 2(d) for the
decaying turbulence and in table 3 for the stationary turbulence. The enhancement
of the particle inertia reflects a significant decrease of the Kolmogorov time scale by
the presence of the particles. By comparison, in the low Reynolds number case, figure
2(b) and table 3 show that the Kolmogorov time scale is only slightly reduced by the
two-way coupling. Reduction of length flow scales was also observed experimentally by
Poelma et al. [11] in particle-laden turbulence submitted to gravity effects for different
flow and particle parameters from those considered herein. Note that kmaxη based on
the Kolmogorov length scale computed from the two-way coupling simulations takes the
minimum instantaneous values 1.04, 1.12 and 1.23 for the respective Stokes numbers
St=0.36, 1 and 2 in the decaying turbulence case while it takes the value 1.15 for St = 1
in the forced turbulence case. These values ensure an adequate numerical resolution.

3.2. Turbulence energy redistribution

Figure 3 compares the instantaneous unladen and laden turbulent flow energy spectra
obtained in the decaying turbulence for a given time at which the particle Stokes numbers
differ slightly from their initial value. For the low and high Reynolds numbers and for
all the Stokes numbers considered, a considerable energy transfer from the particles to
the fluid is observed in the large wavenumber range while the low wavenumbers are not
significantly modified. In agreement with Yang & Shy [4], the maximum turbulence
augmentation at the dissipative scales (very large wavenumbers) is obtained for St ∼ 1,
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Figure 3. Decaying turbulence, Rλ = 40 and 130: instantaneous three-dimensional
energy spectra; Sto refers to the initial Stokes number value and S(t) to the Stokes
number value at the considered time. Φv = 3 × 10−5, vt = vη.

at which the preferential concentration is commonly reported to be the most significant.
At the intermediate wavenumbers, the turbulence energy spectra present similar features
as those found in absence of gravity acceleration by Ferrante & Elghobashi [12].

The redistribution of the turbulence energy is visualized by the energy spectra of the
horizontal, E11 and E22, and vertical, E33, components given in figure 4. The spectra
show that, under gravity, the turbulence becomes anisotropic with a redistribution
of energy from the horizontal to the vertical components. This corroborates the
DNS findings of Elghobashi & Truesdel [13], Ferrante & Elghobashi [12] and also the
experimental observations of Poelma et al. [11]. For the high Reynolds number, the
redistribution of energy occurs up to very low wavenumbers while at the low Reynolds
number it is damped by viscous dissipation at relatively larger wavenumbers. This
may partly explain the significant reduction of the Kolmogorov scales by the particles
observed for the high Reynolds number. At the low Reynolds number the energy added
by the particles at the small flow scales and redistributed to larger scales is dissipated
over the full range of the flow scales as a consequence of the not-complete separation
between the energetic and dissipative scales. On the other hand, at the high Reynolds
number, dissipation mainly occurs at the small turbulence scales so that the Kolmogorov
scales further stretch (and thus decrease) to dissipate part of the additional energy.

The energy spectra obtained in the forced turbulence for Rλ = 40 and 130 and
St = 1 (not shown here) exhibit similar features as those reported above for the decaying
turbulence.

3.3. Particle force field

An illustration of the preferential concentration effect is supplied by figure 5 which
represents the instantaneous particle positions drawn in a transversal plane of the fluid
box in the case of the decaying turbulence for the two Reynolds numbers and for St = 1.
Compared to the low Reynolds number, the particle clusters tend to concentrate in small
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Figure 4. Decaying turbulence, Rλ = 40 and 130: instantaneous vertical and horizontal
flow velocity components energy spectra; see legend in figure 3.

flow regions in the high Reynolds number turbulence (see inset for Rλ = 130). This
indicates that particles mainly accumulate at the small turbulence scales, in agreement
with the observations of Aliseda et al. [3] and Yang & Shy [4]. The force exerted by the
particles on the fluid is analyzed in figure 6, by showing the probability density function
(PDF) of the particle force density. The large probability for zero force is associated with
regions of fluid devoid of particles (see figure 5) and reflects a highly non-homogeneous
particle force field due to concentration effects. As shown in figure 6, concentration effects
are very small for St = 0.36. The particles are shown to mainly exert a negative force
on the fluid or equivalently a downward force which in turns accelerates the fluid in the
gravity direction. Also, the PDF of large values of the downward force is found to increase
when the preferential accumulation of the particles becomes more significant. This is
well shown by comparing the PDF obtained for the less inertial particles (St = 0.36)
with the more inertial ones (St = 1 and 2). Note that the downward force exerted by
the particles on the fluid must result in an enhancement of the settling velocity. This
was clearly observed for Rλ = 40 but not for Rλ = 130. The preferential concentration
of the particles highly depends on their Stokes number. Thus, for Rλ = 130, the large
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Figure 5. Decaying turbulence, Rλ = 40 and 130: instantaneous particle positions
drawn in the plane X2 = 2π/2; Φv = 3 × 10−5, vt = vη. The inset for Rλ = 130 is a
inbox zoom of the particle positions field.
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Figure 6. Decaying turbulence, Rλ = 40 and 130: PDF of the force density exerted by
the particles on the fluid along the gravity direction; Φv = 3 × 10−5, vt = vη.

increase of St by two-way coupling significantly alters the concentration effects. This in
turn implies that the resulting effect of the downward force on the settling velocity is
strongly dependent on the modification of the small turbulence scales by the two-way
coupling (see comment at the end of next section).



Table 4. Forced turbulence, Rλ = 130: comparison with experiment. vt = 0.5u′

(vt = 3.46vη).

DNS, Rλ = 130 Experiment, Rλ = 120
1-way 2-way 2-way Yang & Shy [4]

Φv × 10−5 - 1.5 3 5
Φm - 0.075 0.15 ∼ 0.05

< Δvs > /vt 0.216 0.326 0.366 0.24
< Δvs > /u′ 0.106 0.153 0.165 0.13

u′/u′

o 1 1.029 1.08 1.2
St 1 1.52 2.23 -

3.4. Comparison with experiments

Table 4 compares the present particle and flow DNS data with experimental data
given by Yang & Shy [4]. In both the numerical and experimental studies the carrier
turbulence is stationary homogeneous and isotropic, the gravity acceleration is such that
vt = 0.5u′ and the Stokes number is St = 1 (value based on the unladen-flow Kolmogorov
time scale). The Reynolds number, volume fraction and mass loading (Φm = ρpΦv/ρ)
are somewhat different in the DNS but still very close to the experimental values. For
Φv = 3×10−5 the value of kmaxη is 1.1 so that no higher volume fraction was considered
for the sake of numerical resolution.

The average settling rate computed from the one-way and two-way coupling DNS
compare reasonably well with the experiment, a better agreement being obtained with
the two-way coupling DNS and when the mass loading is closer to the one reported in the
experiment. Note that as the volume fraction increases, the settling rate increases as well.
This behavior corroborates the experimental observations of Aliseda et al. [3]. Table
4 shows that the two-way coupling DNS reproduce the enhancement of the turbulence
energy by the particles as observed in the experiments but the ratio of the turbulence
intensity of the laden flow to the one of the unladen flow, u′/u′

o, is found smaller in
the simulations. More important, as previously observed in section 3.1, the DNS show
that the particle Stokes number computed a-posteriori in the two-way coupling DNS is
significantly above its value based on the unladen flow quantities (one-way coupling St).
This again implies that the Kolmogorov scales have been significantly decreased by the
interaction of the particles with the turbulence. This effect can not be experimentally
measured as there is no data supplied regarding the modification of the dissipative scales
by the particles. The significant alteration of the small flow scales by the presence of the
particles found in the present DNS shows that comparisons between one-way coupling
simulations and experiments might be not-consistent and that further studies on the
modification of the structure of the small turbulence scales by the particles are required.

Note that in section 3.1 (for vs = vη), the two-way coupling effects are shown to
result in a net increase of the particle settling velocity for Rλ = 40 (for all values of
St considered) while for Rλ = 130 they are more ambiguous to interpret. Section 3.3



shows that the resulting force exerted by the particles on the fluid must have an increase
effect on the particle settling whatever the Reynolds number considered. Keeping in
mind that particle concentration effects are strongly dependent on St (commonly found
to be optimum for St ∼ 1), the significant decrease of the small scales of turbulence (or
equivalently the significant increase of St) observed in the two-way coupling simulations
for the high Reynolds number will in turn alter the particle concentration compared
to the one-way coupling simulations. Thus, the enhancement of the particle settling
through the downward force may be reduced or increased by a less or more efficient
concentration mechanism of the particles depending on the change in St. By considering
the DNS results reported in table 4, the increase of St (becoming larger than unity) with
Φv may suggest a less effective particle concentration as the volume fraction is enhanced
and explain that the settling velocity obtained from the one-way and two-way coupling
simulations are not drastically different. By contrast, for the low Reynolds number
simulations, because of the slight alteration of the dissipative scales by the two-way
coupling effects it can be argued that particle concentration effects are similar in the
one-way and two-way coupling simulations and that the downward force exerted by the
particles on the fluid has a net increase effect on the settling velocity (see table 3). The
Reynolds number dependence of two-way coupling effects on the Kolmogorov scales may
in part explain the apparent contradiction between the experimental results of Aliseda
et al. [3] and Yang & Shy [4].

4. Conclusions

The present study reported preliminary results from one-way and two-way coupling
DNS of heavy particles settling in a low and high Reynolds number homogeneous
turbulence. Decaying and stationary turbulence were considered as well as particle
inertia effects.

The main results of this study are found similar for both Reynolds numbers in
the decaying and forced turbulence simulations. Thus, it can be concluded that the
use of a forcing scheme in the simulation of the stationary turbulence does not alter
fundamentally the results.

For the low Reynolds number and all the particle Stokes numbers considered, the
force exerted by the particles on the fluid has an additional increase effect on the settling
velocity when compared to the one-way coupling DNS. This is explained by the alignment
of the force with the gravity direction which in turns accelerates the fluid and thus the
particles. It is found that the more significant is the preferential concentration of the
particles, the larger is the probability of finding large values of this downward force.

For the high Reynolds number, it is shown that the interaction of the particles with
the fluid causes a significant decrease of the Kolmogorov time scale. The consequent
modification of the Stokes number brings out an important consequence: direct
comparison between one-way and two-way coupling DNS is not consistent. The two-way
fluid-particle interaction is obviously inherent in experiments so that the consistency of
comparisons between one-way coupling DNS and experiments is also questioned. The
two-way coupling DNS results are found in fair agreement with the experiment of Yang
& Shy [4].

The particle inertia and the small flow scale dynamics play a fundamental role in the



settling of particles in turbulence. In this sense, the present results evidence that the
interaction of the particles with the small turbulent vortical structures under gravity
must be further investigated in a two-way coupling approach.
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