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Introduction

As Samanidou points,!") Liquid chromatography is the

workhorse in routine analysis. In combination with ultravio-
let (UV) and fluorescence (FLD) detectors, high perform-
ance liquid chromatography (HPLC) operating in reverse
phase is considered as consolidated for the determination of
numerous organic compounds. In spite of the limitation to
confirm the analyte identity, UV and FLD detectors have
significant advantages to continue being widely used.

Aspects such as marked reproducibility, robustness, low
consuming costs, portable equipment, easy-to-use and
widely available technique continues to be priority for labo-
ratories. This is especially true when a large number of sam-
ples are handled, for instance, during monitoring programs
in environmental studies.

Despite the requirement of fluorescent compounds is the
main limitation to apply FLD detection, its sensitivity and
selectivity remain remarkable. This type of detection is also
advantageous because it is not very susceptible to matrix
effects. A review of different types of luminescent spectro-
metric methods from 1990 to 2010 to determine pollutants
in the environment was carried out by Vega Morales et al.'*!
The determination of polycyclic aromatic hydrocarbons
(PAHs), pesticides (carbamates, organophosphorus and ben-
zimidazole), anti-inflammatory and antibiotics in different
environmental matrices were documented.

Regarding UV detection, the interest to use this analytical
tool lies in its universality and simplicity. In spite of its lim-
ited sensitivity and selectivity, HPLC/UV continues to be
widely applied in environmental analysis.

Although, the development of direct analysis plays now-
adays an important role in analytical studies, sample pre-
treatment is still mandatory in most analytical protocols.
Hence, the continuous development in extraction step can

lead to significant improvements. Moreover, life cycle con- 77
cept is gaining great interest too. In definite, green analytical 78
chemistry, low cost and minimized solvent consumption is 79
giving to interesting changes in extraction step. 80
It is, therefore, necessary to make a point in this article 81
about the main microextraction techniques that currently 82
participate in the analytical methodology. Regarding liquid 83
samples, these techniques are very briefly cited below. 8‘5‘
e Liquid phase microextraction (LPME).**! Only several 86
microliters of solvent are required to concentrate analytes

f liquid les.
rom liquid samples 29

Hollow fiber liquid phase microextraction (HF-LPME). A 20

porous polypropylene hollow fiber is used for immobiliza-
tion of organic solvent in its pores. Analytes are extracted 93
from the donor phase (i.e. water sample) into the acceptor
phase (i.e. organic solvent) that fills the inside of the fol- 95

low fiber. 96
Static mode: sample is stirred for extraction 97
98

Dinamic mode: small volumes of aqueous sample are repeatedly 99
pulled in and out of the hollow fiber. 100

Dispersive  liquid-liquid ~ microextraction ~ (DLLME). 101
Extraction requires an extraction solvent, disperser solvent 102
and aqueous sample. A cloudy solution is formed, which 103
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can or not be centrifuged for separation. Modifications using 104
extraction solvents: !

106

With higher or lower density of water 107

IL: Ionic liquids®’ 108

: Tonic liquids 109

SMS: Supra molecular solvent, i.e. surfactants (variant: Cloud 110

Point  Extraction, changes on temperature and surfactant 111

112

113

114
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concentration produce to move aqueous analytes into a micelle
phase for separation.

DES: Deep eutectic solvents,'®) with similar properties to IL.

Homogeneous liquid-liquid extraction. Initial condition
for extraction is a homogeneous solution. Phase separation
depends on temperature, salt effect, using a ternary solvent
system and so forth.

e Miniaturized solid phase extraction (Miniaturized-SPE)!”)

Solvent-dispersive micro solid phase extraction (D-uSPE).
Solid sorbent particles are dispersed into the sample solu-
tion. Phase separation can be achieved via centrifugation
or filtration

Solvent free-solid phase microextraction (SPME). The
method involves the use of a small microfiber to sorb analy-
tes. The HPLC system requires an additional device as inter-
face for solvent desorption of analytes.

Stir bar sorptive extraction (SBSE). Stir bars are coated
with an apolar polymeric phase as sorbent to extract analy-
tes while stirring.

Magnetic solid phase extraction (MSPE). Magnetic par-
ticles are coated with silica or alumina oxides to extract ana-
lytes by adsorption. Separation with an external magnetic
field, without the need centrifugation or filtration

Micro  extraction in a packed syringe (USPE).
Approximately 1 mg of sorbent as conventional SPE col-
umns is packed into a syringe or cartridge. Small particle
size, i.e. 3 um, are used, while 50-60 um are used in trad-
itional SPE.

For solid or semisolid samples, extraction methods based
on more conventional techniques such as microwave assisted
extraction (MAE), pressurized liquid extraction (PLE), ultra-
sonic extraction (US) remain being used by minimizing
solvent consumption. In this sense, some modifications such
as Matrix solid phase dispersion’ (MSPD) are reported. The
sample is dispersed and blended in a solid support material,
ie. a derivatized silica. The mix is then transferred and
packed into a syringe or cartridge for elution.

Among some of the most recent developments in sample
treatment for HPLC analysis can be pointed:

e Developments of LPME are leading to approaches such
as headspace to implement microscale mode.!®
Requirements of automation and design of special instru-
ment are considered as future researches focused to elim-
inate the disadvantage to hold extraction solvent drop.
Air burbles, vortex or ultrasound assisted DLLME are of
the most used microextraction techniques.'”’ Among
their advantages, simplicity, low cost and short time are
well known. However, for complex matrices, the tech-
nique presents limitations of selectivity and clean up effi-
ciency. DLLME in combination with other techniques
aims to eliminate associated drawbacks. Sajid and
Alhooshani'”) recently reviewed most of the combined
DLLME based methods. The article emphasizes the

improvement with individual
applications.

e Otherwise, DESs are emerging as novel green alternative
with high potential to conventional extractants and ionic
liquids."") Although, the application of these solvents for
the determination of organics in environmental matrices
is early reporting for now, its wide potential will lead to

increase the number of published papers.®

respect to technique

The use of surfactants as disperser solvent for extrac-
tion!'*"* or component of mobile phase!*! are being also
interesting alternatives for environment friendly and simple
HPLC analysis. Micellar liquid chromatography using new
types of sorbents such as monolithiccolumns can also
improve the development of asequible analytical methods.!"”!
These columns provide a lower pressure drop which is
advantageous to compensate the pressure increases caused
by surfactants mobile phases. The use of ILs as new mono-
mers to fabricate versatile monolithic columns are being
widely reported based on-its  improved separation
efficiency."*'The increasing concern on automated proce-
dures and online coupling will lead to make more attractive
the use of HPLC/UV/FLD as analytical tool. Improvements
such as low solvent volumes, handling reduction and repro-
ducibility parameters will have to lead to its implementation
in routine sample analysis, main analytical objective.

This review is focused to provide an useful guide on the
families. of organic pollutants which can be determined
using reverse phase HPLC with UV or FLD detectors. We
think this practical guide can help to the readers interested
in knowing the potential of their analytical resources.

References where to find the information on the analyt-
ical methods have been compiled based on available litera-
ture from abstracts using Web of Science and the open
literature. No online methods or interface, i.e. SPME-HPLC,
which imply additional dispositive coupled to HPLC system
have been included. For some family of compounds, analy-
ses of other matrices have been considered when informa-
tion of analytical methods was scarce.

Carbonyls

HPLC/UV coupled to chemical derivatization is one of the
most widespread analytical techniques to determine this
kind of volatile organic compounds. Carbonyls commonly
measured include: formaldehyde, acetaldehyde, acetone,
propionaldehyde, butyraldehyde, acetone, acroleine, valeral-
dehyde, hexaldehyde, tolualdehyde, crotonaldehyde, 2-buta-
none, benzaldehyde, glyoxal, methylglyoxal, being most of
them aldehydes.

Analytical method have been highlighting by a previous
derivatization with 2,4-dinitrophenylhydrazine (DNPH) and
subsequent UV detection.!"”'® Determination of Carbonyls
from C-1 to C-12 at trace levels in air and emission samples
have been extensively studied by researchers, such as
Possanzini et al.'®! Some studies were applied to water and
wet deposition samples.’*”! To date HPLC/UV analysis with
DNPH derivatization is recognized as a standardized
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method, especially for the most volatile carbonyls.?" In fact,
most of the found papers on the determination of carbonyls
by DNPH are focused during intensive environmental stud-
ies (Table 1).

Blank contaminations are the main limitation of this
reagent. As it happens with other methods of derivatization,
there are associated issues in the measurement quality that

Q3 analyst must consider.®" Alternative hydrazine reagents
have been rarely applied in environmental measure-
ments.*>*! The most recent papers continue to be focused
for evaluating other hydrazine reagents to use with FLD**!
or UV detection.®

Carboxylic acids

They are usually present together with aldehyde forms.
Unlike carbonyl compounds, they are rarely analyzed by
reverse phase HPLC. The major disadvantage for HPLC ana-
lysis under reversed-phase conditions is when organic acids
are ionized and, thus, difficult to retain. This leads to the
need to wuse buffered mobile phases at low pH.
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to measure at wavelength above 250 nm to avoid UV moni- 292
toring of many interference substances. Second, fatty acid 293
derivatives are decreased in polarity, therefore, increasing 294
both its retention and selectivity for HPLC analysis in 295
reverse phase. 296

2,4-Dibromoacetophenone and trimethylamine have been 297
used as derivatization reagents for UV detection.””) In the 298
case of FLD detection, 9-Chloromethyl anthracene*® and 2- 299
(11H-benzo[a]carbazol-11-yl) ethyl 4-methyl-benzene-sul- 300
fonate,'*®! monobromobimane!*’! are included as derivatiza- 301
tion reagents. 302

Some polyphenolic compounds without a previous deri- 303
vatization have been also determined using HPLC/UV.!*"*2 304
In detail, eight phenolic compounds-were studied, i.e. gallic, 305
caffeic, 4-hydroxy benzoic, vanillic, p-coumaric, syringic, 306
ferulic and sinapic acids. They are frequently analyzed by 307
HPLC, although, specific literature on the analysis of envir- 308
onmental samples to quantify fatty acids by UV or FLD is 309
very limited. Among them, 4-hydroxy benzoic, vanillic, 310
syringic are of environmental interest due to their role as 311
biomass burning tracers. 312

Analytical applications for the determination of carbox- 313

Derivatization of the carboxyl is then necessary. Moreover Ylic acids by HPLC/UV/FLD are summarized in Table 2. 314
there are two additional reasons. First, this step is required 315
316
Table 1. HPLC/UV analysis of carbonyl compounds: environmental applications. 317
UV detection 318
Sample treatment 319
Aldehydes (number) DNPH technique, solvent (mL) Matrix (m*, mL) LOD (ug m~3, ng mL™") Ref 320
(10) SPE, acetonitrile(2) Air: gas® 0.28-1.38 12216
) US, DNPH/acetonitrile (5) Air: PM (90)° 10-20 31 321
(10)+ acetone SPE,acetonitrile(5) Air (0.12)% 0.005 24 359
+ acetone IL-SDME, 1-octyl-3-methylimidazolium Water (10) 0.25-2.03 1251 323
hexafluorophosphate (0.010)
carbonyls(24), PAHs+ (16) US, US: H,0 (10), DNPH: (0.2) Air: PM 24-10 el 324
) SPE, acetonitrile Indoor (0.08)? 0.5 2716 354
(2)+ acetone Passive Air® 7.6-8.8 1281b 326
(14)+ acetone SPE, acetonitrile (1) Wet deposition (13-44 x 10°)? 7-79 12916
) Passive, Radiello® Indoor/outdoor® 0.010-1.5 B 327
“Routinely analysis of real samples during environmental study. 328
PArticle available online. 329
330
Table 2. HPLC/UV/FLD analysis of carboxylic compounds. 331
332
Sample treatment Detection 333
Carboxylic (number) Derivatization reagent Matrix (m?, mL) Technique LOD Ref 334
(19) C8-C18 Biological uv >0.005 ng (43l
2,4-dibromoacetophenone 335
and. trimethylamine. (2 chro- 336
matographic columns) 337
(11) c7-C18 Direct (MAE/SPE *Plants uv 0.17-22ng [42la
for extraction) 338
@) -2 Direct ?Indoor, museum uv 650-8 g mL™" el 339
ma DNPH Air v 0.8 ug m? (45la 340
Q -C6 Biological uw 0.04ng mL™" 3712
2,4-dibromoacetophenone 341
and trimethylamine 342
C1-C6 Soil FLD 0.18-2.5 pmol [38]a 343
9-Chloromethyl anthracene
(20) C10-C24 *Plants FLD 0.56-1.59ng mL™" ol 344
2-(11H-benzol[a]carbazol-11- 345
yl) ethyl 4-methyl-ben-
zene-sulfonate 346
M a Monobromobimane Sediment FLD 0.46ng mL™! o 347
7-C1 Direct Plants v Not available “ila 349
@Routinely analysis of real samples during an environmental study. 349
Q7 PAtticle available online. 350
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Table 3. HPLC/UV/FLD analysis of PACs: environmental applications.

Sample Detection
PACs Technique, sorbent Matrix (g, mL) LOD (pg mL™", pg g™ Ref
PAHs (number)
3) MSPE, Fe;0, magnetic Lake, river waters (300) FLD 0.33-8.33 47la
nanoparticles + IL
(4)+PAEs(4) MSPE, Fe;0, magnetic nanoparticles Waters (500) FLD UV 2-5 19-59 48la
caged into hydrophilic bar-
ium alginate
SPE, Titanate Nanotube array modi- Natural water FLD 26-820 1l
fied by
CetylTriMethylAmmonium Bromide
(6) MSPE, Fe;0, magnetic nanoparticles Water (200) FLD 0.04-3.75 [50la
(10) USPE, Sulfur pparticles Sea,wastewaters (100) uv 7-48 1511
(6) SBSE Lake water FLD 0.03-3.75 52
(5) MSPE, Metal-Organic Framework, Lake water (20) uv 2.8-27 [531a
(16) LLME Rain water FLD (541
(6) MSPE, Fe;0,/polydopamine Tap,river water (500) FLD 0.5-1.9 [551a
(6) USE-SPE, Titania Nanotubes/Titanium Soil 1.5-400 fsel
plate modified
(6) MISPE, Graphene functionalized Water uv 2.9-52 571
Silica gel
IL-DLLME Water uv 0.5-880 (58]
SBSE, Graphene-Stainless Steel Wir Soil 0.2-50 159
(5) MM-ILMSPE, Fe;0, magnetic Water (150) FLD 0.1-2 feal
nanoparticles + IL + Methyl Orange
NanoParticles
(6) SBSE-US, Polydimethylsiloxane and River,lake water FLD 0.05-2.94 61l
Metal-Organic Framework
7) ZIF-US Water FLD 0.08-1.6 62la
@ HF-LPME, carbon Water FLD 0.4-4 f63]
(13) SPE, Styrene/DiVinylBenzene/Glycidyl Water (500) FLD 0.004-0.23 641
MethAcrylate
(12) SPE, N-Acetyl-L-Cysteine modified CdS Tap water (500) FLD 1-100 [63la
Quantum Dots
(5)+NAr(6) MSPE, Tetraazacalix[2]arene[2]triazine Natural waters FLD UV 0.09-0.15 6-11 teel
coated Magnetic NanoParticle
(3)+fluoroquinones -+ sulf- CPE, Triton X-100 Tap,surface,wastewater uv 40-380 1671a
anamides
SFD-DESs, tetra-n-butyl ammonium Water FLD 0.7-6.6 (e8]
bromide + carboxylic acids
OHPAHs (number)
(1)+PAHs(2)+Acides (2) Agitation Soil (5-10) uv, FLD 3-4 pug mL™! [69la
3) us PM FLD 6-190 fmol 701
(2)+PAHs (10) US, methanol (10) BPM (135) FLD Tng mL™! (711
NPAHs (number)
) Soxhlet, sodium sulfide PM 67-81pg [721a
3) Titanium (lll) Water 68-629 pg 73l
(4) US, sodium borohydride BSoil (0.5) FLD 14-1000 (74l
(5)+ MAE, dichloromethane (20) 5PM (225) FLD 4 [751a
PAHs(12)+ OHPAHs(2) US,methanol(10) 1
BTEX (number)
(6) N, gas. drag Water (100) uv 180-600ng mL™" 76la
(5)+PAHs (3) Direct Water uv 77

“Article available online.
PRoutinely analysis of real samples during an environmental study.

Aromatics

Polycyclic aromatic compounds (PACs) can be divided into
PAHs and derivatives of these such as nitro-derivatives
(NPAHs), hydroxy-derivatives (OHPAHs) and quinone-
derivatives (PAHQ). The substitution, alkylation and hydro-
genation of the molecules of PAHs result to their formation.
Sixteen priority pollutant PAHs according to United States
Environmental Protection Agency'*® can be analyzed using
either UV or FLD, while derivatives are preferably quanti-
fied by FLD (Table 3).Other aromatics such as benzene,
toluene, ethylbenzene, and o-m- and p-xylenes (BTEX), have
been also included in this section for organization issue.
They can be detected by UV (Table 3).

Polycyclic aromatic hydrocarbons

The determination of the 16 PAHs considered as priority is
well documented in literature, especially in atmosphere.!”*7?)
Naphthalene, acenaphthene, fluorene, phenanthrene, anthra-
cene, fluoranthene, pyrene, benz[a]anthracene, chrysene,
benz[b]fluoranthene), benz[k]fluoranthene, benz[a]pyrene,
dibenz[a,h]anthracene, benzo[g,h,i]perylene, 1-methyl- naph-
thalene, 2-methyl-naphthalene are usually determined.

The analysis by means of HPLC in reverse phase by using
both detectors is quite usual, applying very conventional
chromatographic conditions. FLD detection is the most rec-
ommended for the analysis of PAHs by HPLC due to its
high selectivity and sensitivity. However, higher extraction
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efficiency should be searched when HPLC/DAD is used for
the analysis of trace PAHs. Advances in this field include
the enrichment of PAHs from environmental samples prior
to HPLC analysis by using novel adsorbents to be applied as
micro solid phase extraction (USPE). Because this kind of
HPLC analysis is really extensive, only papers from 2010
have been considered of interest in this review. The most
recent reports are focused on the analysis of waters.

Hydroxy polycyclic aromatic hidrocarbons

While PAH determination have been broadly documented
in environmental analysis, the quantification of hydroxy
polycyclic aromatic hidrocarbons (OHPAHS) is actually rare,
mainly in water and sediments. For extraction, these polar
PAH metabolites need the addition of salts, i.e. Na,SiO;,®"
or polar solvents such as methanol'® to effectively recover.
Regarding HPLC/FLD determination, it is carried out with
high sensitivity and without previous derivatization.!”®*"!
However, depending on the isomer to be analyzed, the
selectivity of the technique may not be sufficient.

Hydroxyl derivates such as 1-hydroxy-pyrene and 2
hydroxy phenanthrene have been determined by
HPLC/FLD.

Polycyclic aromatic hydrocarbons quinones

The presence of these compounds in atmosphere has been
related to photo-oxidation of PAHs. A review of analytical
procedures was carried out by Kishikawa and Kuroda in
2014."%%) The authors include analytical applications using
UV to detect a few ng of naphtoquinone, 9,10-phenanthre-
nequinone and 9,10-anthraquinone in airborne particles.
Regarding FLD analysis, bibliographic references based on
the reduction of quinone to fluorescent hydroquinone using
chemical reductants such as sodium borohydride, zinc, ben-
zaldehyde and platinum are also. included. In this case,
reached detections were up to femtogram level.

Nitro polycyclic aromatic hidrocarbons

HPLC analysis ‘with. FLD detection has been frequently used
to determine nitro polycyclic aromatic hidrocarbons
(NPAHSs).*>%* Some of them include nitro-naphthalene,
nitro-phenanthrene, nitro-pyrene and nitro-fluoranthene.
High selectivity of FLD quantification is advantageous on
the presence of interferences produced, for example, by the
original PAHs, which are much more abundant in samples.
However, when not enough selectivity for proper separation
of isomers is achieved, drawbacks are associated to limita-
tions for identifying isomers.

The analysis requires a previous stage of derivatization
for the reduction of the nitro group to the amino producing
compounds with high fluorescence. Derivatization by
sodium borohydride is economically affordable compared to
others such as those using Pt columns.

There is a shortage of methodology to determine NPAHs
by HPLC in waters.
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Benzene, toluene, ethyl benzene and xylene isomers 528

. . . . . 529
HPLC is very rarely applied to determine BTEX in environ- 530

mental analysis. However, some applications using UV 53,
detection have been reported in other fields, such as occupa- 53,
tional exposure and tars production from biomass gasifica- 533
tion.'®>%! From an analytical point of view, HPLC could be 534
chosen for analysis because facilities a simultaneous separ- 535
ation of BTEX and other polar compounds, phenols 53¢

or aromatics. 537
538
539
Phenols 540

The term phenolics refer to an extremely |large number of 541
compounds and many classifications can be established. 542
These compounds can be chlorinated, nitrated, methylated 543
or alkylated. They have been divided into at least ten groups 544
depending on their basic structure: phenols, phenolic acids, 545
hydroxyamic acids, naphthoquinones, xanthones, stilbenes, 546
anthraquinones, flavonoids-and lignin. Either they can be
also divided as industrial and-natural phenolics by including
more than 100 types of compounds.’®”! It would encompass
practically all the organics that may be of interest in this
review. To address organization, we have considered
including in this chapter the works devoted to the analysis
of priority phenolics by the EPA and some relevant alkyl-
phenols, such as nonylphenol and octylphenol. The list of 555
11 phenolic compounds includes: phenol, 4-nitro-phenol, 55,
2,4-nitro-phenol, 2-chloro-phenol, 2-nitro-phenol, 2,4- 557
dimethyl-phenol, 2-methyl-4, 6-dinitrophenol, 4-chloro-3- 554
methyl-phenol, 2,4-dichloro-phenol, 2,4,6-trichloro-phenol 559
and penta-chloro-phenol. 560

Bisphenol A (4,4’-(propane-2,2-diil) diphenol) (BPA) has 541
been also included in this chapter. Analytical applications 562
for the referred phenols in different environmental matrices 563
are summarized in Table 4. 564
565
566
567
The relatively low level of concentrations of phenols as 568
water pollutants leads to the need of a pre-concentration 569
stage to reach the trace levels. Thus, more recent studies are 570
focused to develop previous treatment step to HPLC quanti- S71
fication and improving extraction efficiency (Table 4). 572
Regarding detectors, UV detection has been commonly 57
employed as the preferred detector of HPLC when phenol >74
concentrations are above 1pgmL™'. Literature on FLD
detection is mainly devoted to determine octylphenol and
nonylphenol. A detailed review on pre-concentration step 578
for the determination of chlorophenols in real environmen- 579
tal samples was carried out by de Morais et al.!''®’ The 580
authors stress the importance of sampling, storage and pre- 5,
concentration stages for chromatographic analysis. In gen- ¢,
eral, among the latest advances in the development of 5g3
microextraction techniques, the most recent papers on the 534
determination of phenols and alkylphenols, mainly water, 585
stand out. 586

549
550
551

553

Phenols and alkylphenols

576
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Table 4. HPLC/UV/FD analysis of phenols and alkylphenols: environmental applications.

Phenols (number)

Sample treatment

Technique, sorbent/solvent (mL)

(1)
A3)

SPE, PSDB
MM-IL-MSPE, IL modified on Fes0,
nanoparticles

(3) LLE, dichloromethane (15)
(2) LLE, dichloromethane (1:20,water)
(1) SBSE, polydimethylsiloxane
(5) DLLME-SDME, toluene
) SPE, Oasis® HLB
(2) HF-LPME, dihexylether
(5) Derivat.,coumarin-6-sulfonyl chloride
(2) US-SPE, water/methanol-C18
SBSE, polydimethylsiloxane + covalent
triazine framework
Bisphenol

A + phenols (number)

®3)

M

IL-DLLME, 1-octyl-3-methylimidazolium
hexafluorophosphate
MAE-SPE

HF-LLME

SBSE, metal organic framework
DLLME, chlorobenzene (0.2)
US-DLLME, chloroform (0.025)
DLLME, chlorobenzene (0.1)
USPE,TiO, nanotubes

IL-HF-LPME, 1-octyl-3-methylimidazo-
lium hexafluorophosphate

MMSPD-DLLME, Fe;0, nanoparticles

USPE, IL based surfactants on Fes0,
nanoparticles

SPE-DLLME, solidification of floating
drop/undecanol (0.03)

dispersive-SPE, dummy molecularly
imprinted Fes0, nanoparticle

US- uSPE, molecularly
imprinted polymer

HF-DLLE, membrane based pextraction

Surfactant coated TiO,,based
nanoparticles

SBSE, carbon nanotubes in polyamide

Detection
Ref
Matrix (mL,g) LOD (ng mL™", ng g™")
Tap water wv, 10-900 [88la
River, tap water (200) WY 0.20-0.35 (89l
Tap water uv 5-15 [90la
River, wastewater” FLD 50-75 101l
Natural waters (30)° FLD, 0.4-1.8 [92la
Environmental water uv 0.016-0.084 931
River,drinking Water (250) uv, 25-30 [o4la
Drinking, river, urban FLD 0.5 [951a
waste water
Tap,recycled water FLD [961a
Sediment (2)° FLD 0.08 o7l
Environmental water uv 0.080-0.30 981
Water FLD 0.23-0.48 991
Wastewater(100) uv 0.1 (1001
Sewage 100
Sediment uv 0.055-1.46 tonl
Water uv 0.15-0.35 (102)
Water FLD 0.002-0.0065 (1031
Water (5) v 0.13-0.63 (104la
Snow,tap Water (10) uv 0.11-0.62 (10sla
Water FLD 0.012-0.036 (1061
uv 0.022-0.093

River water® uv 0.03-0.1 [107]
Water FLD 0.002 (108l
Water (100) 0 0.20-1.3 [1095a
Water (100) FLD 0.002 (1101a
Water uv 0.3 o
Drinking Water (20) uv 0.07 (2l
Water v 0.5-4.6 (13l
Water v 0.5 4
Water (10) Y 300 (31

“Article available online.
PRoutinely analysis of real samples during an environmental study.

Bisphenol A

The environmental interest to monitor Bisphenol A (4,4-
(propane-2,2-diil) diphenol) (BPA) is based on its estrogenic
activities. Many papers are also focused to its determination
and other estrogens such as 17 f{3-estradiol, estriol, 17
a-ethynylestradiol, ethylhexyldiphenyl phosphate, estrone,
diethylstilbestrol, 2-ethylhexyl-4-methoxy Cinnamate, benzo-
phenone and brominated BPA derivatives (Table 4). In rela-
tion to environmental applications through both detectors,
there is a rebound in the number of publications in recent
years. The most found articles corresponded to environmen-
tal measures in aqueous matrices. BPA can be determined
by HPLC using UV detection."'”!"81 A poor resolution with
the HPLC/FLD in high BPA levels has been noted.!""!

Phthalates

Literature on environmental monitoring of phthalic acid esters
(PAEs) using HPLC with UV and FLD detectors is rarely

found."® This is especially so for phthalic acid di-esters,
which are the most commonly monitored based on their
widely environmental distribution.!"*!! However for determin-
ation of phthalic acid mono-esters (MPEs), primary metabo-
lites of the di-esters, HPLC would be more suitable because
the free fatty acid group makes the compound more polar.!***!
Thus, HPLC analyses don’t require previous derivatization,
even direct analysis of aqueous samples could be carried out.

Among the scarce found literature, mono- and di-ethyl-
hexyl phthalates have been determined using HPLC/UV for
biological monitoring."?*7'**) More recently, Fernindez-
Amado et al determined six EPA PAEs in low volume rain-
water samples, using simple equipment based on monolithic
columns and low reagent volumes.'**!

The main analytical problem comes for minimization of
blanks. Errors are very common since their ubiquitous char-
acter. There is mostly a shortage of documentation regard-
ing well-validated and suitable methods for the analysis of
phthalate esters. Furthermore, there are no adequate refer-
ence materials for these compounds.'?”!
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Table 5. HPLC/UV/FD analysis of phthalates esters: environmental applications. 764
Sample treatment . 765
Detection

PAEs (number) Techn, Sorbent/solvent Matrix (g, mL) Technique LOD (ng mL™") Ref 766
6) MAE, methanol Sediment (2) UV,FLD Not found 2712 767
3) CPE, non ionic surfactant Water (10) uv 1.0-3.8 n28la 749
@ SPE, titanate nanotubes Water (1000) FLD 0.019-0.039 S 70

(5) IL-SPE, 1-dodecyl-3-methylimidazolium bromide Water (300) uw 0.12-0.17 (130la
@ SPE, bamboo charcoal Rain, tap water uv 0.35-0.43 w770
(5) SPE, nylon nanofibers Water uv 0.002-0.033 ns2 771
9 PLE, subcritical water Soil uv SRS D)

@ LLE, chloroform + methanol + salt Water w 0.18-0.25 (134
@) MSA-DLLME, dodecane & stirring Water uv 130-380 s 773
@) MSPE, Graphene-Fe;0, Water (300) uv 10-40 nsela 774
6) DLLME, carbon tetrachloride Water uv 10-30 (137 775
(6) LLE, dichloromethane + petroleum ether Mineral water uv 0.12-0.50 [138la 776

Article available online.

PRoutinely analysis of real samples during an environmental study. 77
778
Table 6. HPLC/UV/FD analysis of isocyanates: environmental applications. 779
Detection 780
Sample treatment 781
Isocyanate (number) Sample/derivatizing reagent, solvent (mL) Matrix (L) Techn LOD (ng m) Ref 782

(4) Impinger/tryptamine, dimethyl sulfoxide Air FLD 0.1-0.3 pug (43l
(1) Diffusive sampler, 4-nitro-7-piperazinobenzo-2-oxa-1,3-diazole , acetonitrile Air FLD 0.15-3 nea 783
(5) Adsorbent tube/a piperazine derivative reagent, acetonitrile (3) Air (15) UV FLD n4sla 784
15-40 pmol 13-25 pmol 785

(1 XAD-7 tubes/pyridyl piperazine, acetonitrile Air FLD 33 (471
@) PTFE filters/ pyridyl piperazine, acetonitrile + dimethyl sulfoxide (2) Air (2000° FLD 0.14-0.80 nola 786
@) Filter/ pyridyl piperazine, acetonitrile 4- dimethy! sulfoxide (2) Air° uv 1.1-2.9 negla 777
2Article available online. 788
PRoutinely analysis of real samples during an environmental study. 789
790

Table 5 includes a summary of the few works found for
the determination of phthalates by HPLC/UV/FLD in envir-
onmental samples, mainly waters.

Isocyanates

The evaluation of occupational exposure of workers has
been investigated frequently during environmental studies.
Commonly studied compounds are phenylisocyanate, tolu-
ene-2,4-diisocyanate, toluene-2,6-diisocyanate, hexamethy-
lene-diisocyanate and methylenebisphenyl-4,4-diisocyanate.

The analysis is carried out by a simultaneously derivatiza-
tion and sampling. Derivatization is usually based on the
group -N =C=0; which can react with water, alcohols or
primary amines to give a urea or-urethane derivative (carba-
mate). For sampling workplace air, filters against impingers
are recommended. The main reason is to avoid the use of
organic solvents for personal sampling. The formed deriva-
tives allow generally both FLD and UV detection. Although,
FLD detection is commonly preferred, both detectors oper-
ating in series increase selectivity of the analysis.

Therefore, filters are coated with fluorescent reagent prior
to collection of air samples. After sampling, filters are
extracted and analyzed.!"*' A comparison between methods
from National Institute for Occupational Safety Health
(NIOSH) and Occupational Safety & Health Administration
(OSHA) of USA to determine different isocyanate in work-
place environment was reported in 1998."*°) Dahlin also
reported in 2007 a detailed review on sampling and analysis
of aerosol to determine isocyanates.!"*!! Piperazine derivatiz-
ing reagents are frequently used.!'*>14>-14%]

The main limitations of sampling and analytical methods 791
to determine isocyanates using fluorescent reagents for 792
workplace exposure were compiled by Streicher et al.l1461 1n 793
this sense, few advances have been reported since then to 794

improve determination of isocyanates by FLD detection. 795
Analytical determinations regarding isocyanate using FLD 790
and UV detection have been included in Table 6. ;g;
799

Pesticides and degradation products 800

01
02
803

The literature related to the use of liquid chromatographyg
for determination of pesticides is certainly extensive. This is
mainly due to the polar characteristics, low volatility and
thermal instability of many pesticides. A complete mono-
graph in the environmental analysis to determine pesticide
residues by HPLC was published by Tuzimski and Sherma 307
in 2015."*) ‘We have found the most recent review in 808
2018.1"°%1 The article compiles available analytical methods 809
in a more briefly way. With the purpose of summarizing, we ¢
refer to the major families of pesticides susceptible for ana- ¢4
lyzing by HPLC with UV and FLD detection, trying to bring g,
the studies published in the last decade. 813

The QuEChERS (Quick, Easy, Cheap, Effective, Rugged g4
and Safe) sample preparation methods have been mainly g5
developed to monitor pesticides in different kind of samples g4
by its simplicity and efficiency. These methods do not use to g1~
involve pre-concentration step of analytes. Thus an attractive g1g
alternative is the combination of QUEChERS extraction and g9
pre-concentration methodology such as DLLME!"*"! to UV gy
and FLD detection. Once again, it is worth mentioning the g71
influence of the most recent techniques of sample treatment g2
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Table 7. HPLC/UV/FD analysis of pesticides: environmental applications

Sample treatment

Detection

Pesticide (number) Technique, sorbent/solvent (mL, mg) Matrix (mL) Tech LOD (ng mL~", ng g”) Ref
Carbamates
(5) DLLME Water uv 0.1-0.5 (153)
(1)+0P (1) DLLME, acetonitrile(1)+tetrachloroethane (0.015) Tap,river water (5) FLD 0.012-0.016 (15412
() DLLME, tetrahydrofuran (0.75)-+chloroform (0.080) Water (5) FLD 0.5-1.0 (155la
Soil (20) 1-1.6
(6) US + surfactant,chlorobenzene -+ chloroform Water uv 0.1-0.3 [156]
(3) LLME + low temperature, acetonitrile Water (2) uv 5-10 (1571
1) LLE+derivatization, hexane(20) Wastewater (500) uv 13 (158la
USPE + solid sorbent, Zeolite(40) Water (7) uv 4-4000 (159]
3) SBSE, zinc sulfide + activated carbon + IL Tap,river mineral water uv 0.3-0.5 101
Organophosphorus
(4) IL-DLLME, alkyl-methylimidazolium hexafluorophos- Water (5) uv 0.1-5 (61la
phate (0.035)
?) US, surfactant Water uv 0.1-0.3 f162]
(3) DLLME, methanol (1.5)+chloroform (0.25) Tap water (5) uv 2-3 1163
m IL-DLLME, tetrahydrafuran(0.26)+butyl methyl imi- Water (8) uv 02 (1641a
dazolium hexafluorophosphate (0.065)
) SPE, Anionic resin Tap water (100) uv 90-200 f165]a
@ DLLME, acetonitrile + dodecanol Water (10) uv 0.25-1 [166la
(4)4+PAHs(2) IL-MSPE, acetonitrile (0.5)+dodecanol (0.1) Water (8) uv. 0.25-1 (1671
) SPE River water uw 0.003 1681
3) SPE, carbon nanofiber (15) Water (1) uv 0.090-0.22 (16la
(3) MSPE, nanoparticles (150)/tetrahydrofuran Water (100) uv 0.01-0.25 [170]a
©) MSPE, silica coated Fe;0, Water uv 0.09-0.14 a7
Phenylureas
3) IL-DLLME, butyl methylimidazolium hexafluoro- Snow,tap,lake waters (10) uv 0.04-0.43 (172la
phosphate (0.065)
DLLME, acetone + toluene/carbon sulfhide(0.148) Tap,river (5) waters uv 0.01-0.5 (73la
01
(5) SPE, C18/acetonitrile(1.5) Tap water uv 0.84-1.35 (1741a
@ Thin film pextraction, poly(vinyldene) fluoride Natural water (20) uv 0.1 73
(4 Agitation/methanol (10) Soil (5) uv 10-50 (176la
Pyretroids
(5) IL-DLPME, hexyl-methylimidazolium Clean water w 0.28-0.60 (77
hexafluorophosphate
Triazines
(3) MISPE, titanate nanoparticles Water uv 3.00 nmol L™ (178l
Soil 4.8nmol kg™
7) DLLME, 1-octanol (0.3) Seawater (25) uw 0.19-1.12 (1791
9) MSPD, graphitized carbon black/ethyl acetate (20) Marine sediment uv 22-37 (180l
(6) HF-IL-MISPE, [hexyl-methylimidazolium Water (10) Uv- 0.14-0.48 nn
hexafluorophosphate
(6) SBSE, polydimethylsiloxane Lake water uv 0.021-0.079 ezl
Multiclass pesticides
3) SPE Soil uw 25-50 (1831
(4) SPE, C18 (200) Water (250) uw 0.2 (18412
(6) IL-DLLME, hexyl-'methylimidazolium hexafluoro- Soil FLD <10 (185]
phosphate (118)
(4) MEPs, C18 Soil (2) uw 0.050-0.58 [1861a
Tap water
@) IL-DLLME, Water uv 0.1-1.8 (&7
(3) SDME, hexyl- methylimidazolium hexafluorophos- Water (10) uv 0.13-0.19 [188la
phate ZnO nanoparticles
(5) Agitation, dichloromethane-ethyl acetate(40) Sail (5) uv Not found (18912
Wastewater (200)
(4) LPME, DEs (0.05)+salt(0.5) Water (10) uv 0.05-0.5 [152la

“Article available online.
PRoutinely analysis of real samples during an environmental study.

in the improvement of the analytical methods for the deter-
mination of pesticides.

Similarly to the study of phenols and alkylphenols, the
literature found focuses on the development of analytical
methods based on the most advanced micro extraction. For
instance, a first application of LPME and the freezing of
deep eutectic solvent (FLDES) has been developed to deter-
mine pesticide in environmental water samples.!"**! Two or
three green and affordable extractants are mixed to act as
hydrogen bond donor or acceptor. The proprieties for
extraction are similar to ionic liquids, but cheaper, easier to

produce and less toxic. The results were very promising to
determine organic compounds in water samples.

Table 7 lists representative analytical applications to deter-
mine pesticide using UV/FLD in environmental samples.

Benzimidazole

Some of the best known benzimidazole pesticides include:
benomyl, carbendazim, tiabendazole, fuberidazole. HPLC
has been widely used for the analysis of these compounds.
However, HPLC-based methods often require a more
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thorough sample preparation step, particularly when the
concentration levels are very low. Benomyl is quickly con-
verted to carbendazim and is determined as such.
Benzimidazole fungicides are strongly fluorescents.'?!

Carbamates

Among the most used, methidocarb, carbaryl, carbofuran or
methomyl are included. FLD detection is commonly applied
for the determination of carbamates. The methods are based
on the postcolumn hydrolysis of n-methyl carbamates to
methylamine and the subsequent derivatization with o-phtha-
laldehyde. Official organization, such as USEPA (United States
Environmental Protection Agency), includes determination of
n-methyl carbamates by FLD as standard protocol.!"*"!

Organophosphorous

The determination of some organophosphous pesticides, i.e.
dimethoate, ethion, malathion, phorate, phosalone and para-
thion, by HPLC was promptly reported.!!)

CRITICAL REVIEWS IN ANALYTICAL CHEMISTRY 9

Phenylureas

HPLC is usually employed for quantitative analysis of phe-
nylureas because they are polar and nonvolatile compounds.
For example, USEPA Method 532 includes the determin-
ation of eight phenylurea herbicides in drinking water using
UV detector."? In detail, the following compounds are
included: diflubenzuron, diuron, fluometuron, linuron, prop-
anil, siduron, tebuthiuron, thidiazuron. FLD detection has
been also applied after derivatization.!'*

Pyrethroids

Scarce literature presents application of UV or FLD for
determination of pyretroids in environmental matrices.
Among them, Feo et al.'**) reviewed a few published analyt-
ical methods in 2010..The review includes application on
biological samples using UV detection. Only a reference is
cited for FLD detection after derivatizing by photochem-
ically-induced fluorimetry.
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Triazines

Determination of triazines is easy by UV because of their
strong absorbance at 220nm. A relatively recent review on
chromatographic methods for analysis of triazine herbicides
was performed by Abbas et al.l'! The article reported ana-
lytical methods between 2011 and 2014 described by using
DLLME, graphen, SPE, dynamic MAE, US assisted emulsifi-
cation microextraction, resins XAD4 for the analysis in envir-
onmental matrices. Later papers are included in Table 7.

Emerging

Currently, many works focus on the determination of chem-
icals in environmental analysis that are not commonly
monitored but can be or are present due to their continued
use. The term encompasses very different families of

compounds such as surfactants, pharmaceuticals, personal
care products, flame retardants, amine derivatives.!*®!
Complex matrices of samples and extremely trace/subtrace
concentrations are the main limiting factors to apply UV and
FLD detectors in the analysis of emerging. Related literature
is extremely limited compared to more sophisticated and
expensive liquid chromatography.!"”'*®! However, they can
be an alternative in samples with higher concentrations and
the analysis of large set of samples during environmental
monitoring studies. Once again novel developments involving
microextraction stages should make up more research lines
for using theses affordable detectors in routine laboratories.
For instance, Shishov et al.!'*’! have developed a very inter-
esting effervescence tablet-assisted approach for microextrac-
tion of water samples. This promising- method involves
dissolution of two effervescent tablets for on-site pretreat-
ment reaching high enrichment factors. The authors used

Table 8. HPLC/UV/FD analysis of emerging contaminants: environmental applications

Detection
Sample treatment Ref
Technique, sorbent (g) /solvent (mL) Matrix (g, mL) Tech LOD (ng g’1, ng mL™")
PPCPs
SAs,TC(1),FQ(1),penicillin G SPE, Oasis® HLB Wastewater (100) uv 0.1-40 1200]
SAs HF-LLME, nitro-xylene + diisobutyl ketone (0.007)  Lake water (12) uv 0.11-0.77 1201l
TC SPE, anion exchange Wastewater uv 100 1202]
FQ(1),TC(1),TMP(1) SPE, Water uv 1203]
SAs(4) MSPE, mixed hemimicelles on nanoparticles Water (500) uv 0.24-0.33 [204)
PPs(13) SPE, C18 Wastewater (50) u 1.0-50 1205la
Soil (0.5)
Cephalosporin antibiotics SPE, Oasis® HLB Clean, wastewater (500) uv 0.026-0.059 12061
FQs(4), SAs(5) Agitation bSoil (2) UV, FLD 12071a
Endocrine disrupters (9) SPE, Oasis® HLB Polluted waters (2000) uv 0.004-0.018 1208]
Endocrine disrupters(5) MISPE, Clean waters uv 1209]
Endocrine disrupters (9) SPE, Oasis® HLB PEstuarine waters(2) uv 0.003-0.012 [2105a
PPs(9), steroids(3) SPE, Strata® X Water (500-1000) w 0.01-1.1 1217
FLD
PPs(3) Specific sampler, Oasis HLB PWaste water (150) uv 0.2-4.1 [212]a
PPs(2) DLLME + single drop, Undecanol (0.08) Water (20) uv 0.33-0.56 2131
FQs(11) SPE, cation exchange PWastewater FLD 20-100 pg [214]
SAs(4) DLLME + single drop, octanol/MeOH Lake, wastewater (10) uv 0.22-1.92 2131
Nitroimidazole(3) SPE, triazine framework Water uv 0.11-0.13 [216]
SAs(3),FQs(4),PAHs(4) CPE, Triton X100 + hexafluoro isopropanol Clean,wastewater (5) uv 0.04-1.3 167]a
Antidepressant (1) DLLME PWastewater FLD 0.024 217]
Parabens
Fullerenes (Cqo) PLE Soil, sediment uv 20 [218]
(8) US-MISPE Soil,sediment uv <1 2191
(1)+3 PAHs + BPA IL-MAE, hexadecyl methyl imidazolium bromide  Sediments (0.1) uv 40 (220]
- HF-LPME Water u 0.2 12211
@ D-uSPE, metal organic framework Waters uv 0.1 12221
m MISPE Wastewater v 24 12231
Surfactants
NPEO, NP MAE-SPE, hexane:acetone (1 mL H,0) bSludge (0.03-0.3)  FLD 1820-2860 1224]
NPEO, NP US-SPE, methanol:water/C18 Soil (2) FLD 60-520 2251
LAS(4)+PAHs (16) US-SPE, methanol Sludge (1) uv 6000-37000 1226]a
FLD 2000-9000
LAS(4) MAE, methanol Sludge (0.5 ) uv 250-2500 12271
FLD 330-1830
LAS(4) SPE, carbon nanotubes River waters (500) uv 0.02-0.03 12281
LAS(4) Soxhlet-SPE/anion exchange Waste water (10) FLD 10 229
Sludge (5)
NPEO(8) PLE-SPE, metanol/C18 PSoil (5) FLD 6-60 23012
LAS(4) MAE, methanol (25) Sludge FLD 3.3-54 12311
Retardants
Brominated (7) US-SBSE Soil,dust uw 2.9-4.2 12321
Perfluorinated carboxylic (11) SPE, Derivatization Water (100) FLD 43-75 12331
Brominated (3)+ phosphates (3)  SPE, bond elut ENV+(uHPLC) PRiver (1000) uv 0.008-0.518 1234]

?Article available online.
PRoutinely analysis of real samples during an environmental study.
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this strategy to determine testosterone, progesterone, estradiol
and hydrocortisone by HPLC/UV in water samples.

The families of compounds susceptible to their analysis
by UV/FLD considered in this review are indicated below.
They have been added in decreasing order according to the
number of works collected (Table 8).

Pharmaceuticals and personal care products

Antibiotics

The main families of antibiotics are chemically classified as
Quinolones and fluoroquinolones (FQs), Tetracyclines
(TCs), Sulfonamides (SAs), Trimezoprim (TMP). The chro-
matographic analysis can be performed with UV. FLD
detector allows direct determination in FQs, while TCs and
SAs require previous derivatization.

A review of analytical methods for the determination of
fluoroquinolones and sulfonamides in water was carried out
by Peixoto et al.**! The authors include detailed informa-
tion about analytical methods for determination 30 individ-
ual antibiotics. One third of reported literature
corresponded to bibliography using UV or FLD detectors
and limits of detection in ngL ™" range by FLD are included.
Other review of analytical techniques for determination of
selected quinones includes both detectors as frequently used
tools of analysis.'®”! To a lesser extent they are also included
in the review of Seifrtova et al.[>*®!

Sulfacetamide, sulfadiazine, sulfathiazole, sulfamerazine,
sulfadimidine and sulfaquinoxaline are included among the
most monitored sulfonamides. Analogously, the group of
fluoroquinolones includes norfloxacin, enrofloxacin, cipro-
floxacin, danofloxacin.

Endocrin disruptors
Estrogens belong to the family of the so-called 'steroid hor-
mones, capable of replacing. natural hormones and causing
disorders in the process of reproduction and development.
In 2010, Kozlowska-Tylingo et al.*”) carried out a review
of the chromatographic methods applied to the determin-
ation of estrogen disruptors in environmental samples. The
authors point to separations in reversed phase with conven-
tional columns, using both UV and FLD detection.
Compounds frequently determined include estradion,
estrone, daidzein, genistein, biochanin A, 17-alpha-ethyny-
lestradiol, bisphenol A, 4-octyl phenol and 4-nonylphenol.
Some of them have been included in the previous section
of phenols.

Pharmaceuticals active products

Other pharmaceutical contaminants, also referred to as
pharmaceutical active products (PPs), comprise organics
belonging to different therapeutic classes. Among the most
frequently used have been determined

e carbamazepine (anti-epileptic),
e clofibric acid and fenofibrate (lipid regulators),
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e ibuprofen, naproxen, ketoprofen, fenoprofen and diclofe- 1236

nac (analgesic), 1237

o cthinylestradiol,  estradiol =~ and  estrone  (ster- 1238
oid hormones), 1239

e etoricoxib, salicylic acid, valdecoxib, nimesulide (anti- 1240
inflammatory). 1241
1242

Patrolecco et al.”*'" proposed determination of nine PPs 1243

in polluted waters using HPLC/UV/FLD. The method shows 1244

the feasibility of applying to real samples (LODs, 1245
0.01-1.1ng mL™") 1246
1247
1248
UV filters 1249

Reversed phase HPLC is widely used for determination of 1250
organic UV filters.?*®) The most used UV filters are benzo- 125]
phenone-3, octyldimethyl-p-aminobenzoic acid, 4-methyl- 1252

benzylidene  camphor, = ethylhexyl = methosycinnamate, 1253
octylmethoxycinnamate,._octocrylene, butylmethoxydiben- 1254
zoylmethane, terephtalylidine dicamphorsulfonic  acid, 1255
ethylhexyltriazone. 1256

1257
Parabens 1258

1259
Some alkyl parabens, ie. methyl, ethyl, isopropyl, propyl, ;5¢.

isobutyl, butyl parabens, can be determined by HPLC/UV |5,

with detection limits below 0.1ng mL™' in environemental 1262
[222] : :

waters. The most recent literature is focused to develop |5¢3

new microextraction protocols for sample treatment. 1264
1265
Surfactants 1266
1267

Environmental applications include determination of anionic
and nonionic surfactants, such as linear alkylbenzene sulph-
onates (LAS) and nonylphenol polyethoxylates (NPEOS), I

. 1270
respectively. The latter are usually analyzed together nonyl 1271

phenol (NP), its raw material. HPLC/UV/FLD have been

268

widely used in the last decade, although it presents some- 1272
time a lack mg}f sensitivity and specificity at low g;i
concentrations. 1275
1276

Amine derivatives 1277
i . . , 1278
Aliphatic and aromatic amines 1279

A previous derivatization step is usually required to deter- j5g
mine aromatic and mainly aliphatic amines by HPLC with |,
both, UV and FLD detectors. A detailed review of HPLC 1282
methods applied in the environment field was published by |5g3
Fekete et al.”*”! The article compiles more than twenty 1284
references of HPLC/UV/FLD analytical methods including 17g5
different derivatization reagents. Primary and secondary 17g¢
amines generally require independent derivatization reagents 1287
For example, those such as o-phthaladehyde and 9-fluorenyl- 1785
methyl chloroformate are used for primary and secondary 1289
aliphatic amines, respectively. Simultaneous analysis of ali- 129
phatic and diamines has been also proposed.?*"! 1291

Short chain aliphatic amines such as methylamine, dime- 1292
thylamine, trimethylamine, ethylamine, diethylamine, pro- 1293
pylamine and butylamine are present in the atmosphere. 1294
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Among other, aromatic amines such as aniline, aniline deri-
vates, toluidine can be determined in waters.[2**24!)

Nitramines

Nitramines used in explosives or degradation products also
are present in environment. EPA Method 8330 is intended for
the trace analyses of hexahydro-1,3,5-tetranitro-1,3,5,7-tetrazo-
cine, hexahydro-1,3,5-trinitro-1,3,5-triazine, 1,3,5-trinitroben-
zene, 1,3-dinitrobenzene, methyl-2,4,6-trinitrophenylnitramine,
nitrobenzene, 2,4,6-trinitrotoluene, dinitrotoluenes and nitro-
toluenes by HPLC/UV.**?! Gaurav et al. carried out an
exhaustive review in 2006 in the field of HPLC methods for
the analysis of explosives.**’

Other aliphatic (linear and cyclic) nitramines comes from
postcombustion CO, capture technology. They can be also
classified as emerging pollutants. Among the scarce litera-
ture on nitramines determination in environment, a review
was performed by Lindahl et al.'”***! The work highlighted as
analytical shortcomings the need of more research on
extraction step and suitable chromatographic liquid col-
umns. Common names of nitramines are included, such as
nitrodiethylamine, nitrodimethylamine, nitroethanolamine,
nitromethylamine, nitropiperazine.

An evaluation of remedial technologies to removal nitros-
amines, nitramines, amines and aldehydes within wash
waters during amine-based carbon capture was developed by
Shah et al.?**! In this work, the determination of 2 nitroso-
amines, 5 nitramines and 3 amines were monitored by
HPLC with UV detection. Miguel Mercader et al.’**! also
monitored some nitrosamines during the study of its deg-
radation in drinking water purification.

Nitrosodimethylamine is frequently determined a disin-
fection by-products in chlorinated waters.**”)

Flame retardants

Scarce literature can be found on measurement of flame
retardants by using UV or FLD detectors. Among the few
works found, Wang et al.'"® conducted an optimization
and evaluation to determine tetrabromobisphenol A and its
five derivatives by using ultrasound-dispersive liquid-liquid
microextraction. Only three references have been found
(Table 8).

Conclusions

The development and optimization of analytical procedures
requiring no sophisticated and expensive instruments
remains of great interest for many analytical laboratories.
HPLC/UV/FLD is a robust and affordable analytical tool to
use in routine monitoring. However, there is currently a
shortage of literature when compared to a more sophisti-
cated liquid chromatography. This work tries to make a
claim about its application in environmental analytical
measurements.

Current advances related to analyte extraction step must
continue promoting the application of HPLC with UV and

FLD detectors in environmental analysis. For instance, new
liquid phase microextraction method with freezing deep
eutectic solvent need increases of studies on the analysis of
organic field. This emerging solvent involves very interesting
advantages to contribute in the analysis of organic for its
simplicity, low cost, low toxicity, and in general high poten-
tial to bring sensitivity. Likewise, methods based on efferves-
cence tablet assisted to pretreatment of liquid samples on
site seem especially interesting. Advantages such as in situ
preparation, low cost, simplicity of operation and high
enrichment factors make it necessary to study more applica-
tions in these promising new extracting agents.

There is still a lack to assure the trueness and accuracy of
the concentrations obtained with the most methods. The
increasing research papers using microextraction techniques
to improve sensitivity of HPLC/UV/FLD analysis need to
expand well validated methods applied to real samples of
unknown composition. Both the results of recoveries and
precision obtained for spiked samples usually are better than
those obtained from real -samples, naturally contaminated
samples. There is a lack of research papers on analytical
method validation from analyses of real environmental sam-
ples. Comparability of data is essential and it’s not always
guaranteed. In other fields such as the pharmaceutical or
food, the requirement of well validated analytical methods
is essential.
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