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We present a formulation for non-reflecting boundaries in fluctuating hydrodynamics. Non-
reflecting boundary conditions (NRBC) are designed to evacuate sound waves out of the computa-
tional domain, thus allowing to deal with open systems and to avoid finite size effects associated
with periodic boundaries . Thermodynamic consistency for the fluctuation of the total mass and
momentum of the open system is ensured by a fluctuation-dissipation balance which controls the
amplitude of the sound waves generated by stress fluctuations near the boundary. We consider equi-
librium and out-of-equilibrium situations (forced sound) in liquid water at ambient conditions and
argon ranging from gas to liquid densities. Non-reflecting boundaries for fluctuating hydrodynamics
makes feasible simulations of ultrasound in microfluidic devices.

I. INTRODUCTION

During the last decade the interest in microfluidics has grown dramatically due to applications in industry. At
these small scales, fluid flow can be described by fluctuating hydrodynamics [1] characterized by stress and heat flux
fluctuations arising from the chaotic series molecular collisions underlying the coarse-grained hydrodynamic level
[2]. Fluctuating hydrodynamics (FH) deals with small lumps of fluids (from micrometers to nanometers) so the
generalization of the non-reflecting boundary condition (NRBC) presented here is meant to become a useful tool in
simulations involving sound in nano and microfluidics. At such small wavelengths, sound waves oscillate at frequencies
of the order of MHz-GHz, corresponding to the ultrasound regime. Ultrasound is used in a large list of technological
and medical applications, which is still being explored. An interesting example is the possibility of producing devices
to collimate sound [4], whose computational study clearly requires NRBC. Another broad field of fundamental and
technological interest is ultrasound-particle interaction, which is being used to characterize colloidal suspensions or
to transport and manipulate nanoparticles [5]. Ultrasound-particle simulations are however scarce in the literature
and have been limited to standing waves solved using periodic boundary conditions (PBC) via the lattice Boltzmann
method, see e.g. Ref. [6].

In fact, fluctuating hydrodynamics has been so far applied using either rigid walls (RW) or periodic boundary
conditions (PBC), whereby the system folds to itself and no conditions are required at the boundaries. However,
these kind of boundary conditions considerably limits the range of applications. When dealing with real devices one
usually needs to consider general boundaries which enable to “open up” one or several boundaries of the simulation
domain. Open boundary conditions are usually required when one is interested in resolving the flow within a part
of the total system (a window); an archetypal example being the flow within a channel having a non equilibrium
pressure (or density) profile. In the same way, simulations involving traveling waves require non-reflecting boundaries
which enable to evacuate sound out of the system. More generally, open boundaries can be used to let vortices or
heat travel outside the simulation window. While there has been considerable theoretical and numerical work on open
boundary conditions in standard computational fluid dynamics (CFD) [3], to the best of our knowledge there has
been no attempt to apply these ideas to fluctuating hydrodynamics. A key issue in fluctuating hydrodynamics is to
take into account the exchange of mass, momentum and energy between the open system and its surroundings. Such
exchange needs to be expressed in the form of a fluctuation-dissipation balance, ensuring that the variance of mass,
momentum and energy of the total (open) system satisfies the thermodynamic prescriptions.

In a more general context, flow-particle interactions are receiving a great deal of attention in several fields (and
scales) ranging from an ensemble of particles in open turbulent flow to one single complex molecule in low Reynolds
number flow. Consequently, computational methods designed to couple fluid and particle motion have been developed
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for different scenarios (such as turbulence, lattice Boltzmann [7] or fluctuating hydrodynamics codes [8]). The NRBC
formulation allows to extend the range of applications of these computational approaches. The present generalization of
the method can be straightforwardly implemented in fluctuating lattice Boltzmann codes [9] and it might be useful for
simulations of compressible turbulent flow in open system. Non-reflecting boundaries for fluctuating hydrodynamics
(FH) will also prove to be useful in hybrid particle-continuum schemes based on domain decomposition and flux
exchange [10, 11]. Hybrid codes, coupling either Direct Simulation Monte Carlo (DSMC) and FH [11] or molecular
dynamics (MD) and FH [10, 13], enable to study the fluid-particle interaction directly from the underlying solvent-
solute molecular collisions, i.e. without assuming any phenomenological coupling law (such like the Stokes force).
Flux based hybrid methods can solve unsteady flow and have been applied to study the interaction between flow
and complex molecules (such as polymers in flow [14, 15] or sound waves against molecular assemblies [16]). In this
context, the NRBC provides a natural way to evacuate sound waves out of the particle domain, through the open
borders of the embedding hydrodynamic region.

In what follows we first present the fluctuating hydrodynamics equations then, in Sec. III, we present the NRBC
formalism. In Sec. IV we show that the only free parameter of the NRBC formulation can be evaluated from a
fluctuation-dissipation balance which fits the variance of the total mass of the open system to its proper thermodynamic
value. Section V presents results for the equilibrium state and non-equilibrium (forced waves) situations. Finally,
conclusions are given in Sec. VI.

II. FLUCTUATING HYDRODYNAMICS EQUATIONS

We shall focus on the treatment of open boundary conditions for sound waves in fluctuating hydrodynamics.
Fluctuating hydrodynamics deals with flow within micron and submicron scales, and we shall consider sound waves
with wavelengths of about λ ∈ [10 − 1000] nm, corresponding to frequencies in the MHz-GHz (ultrasound) regime.
Due to its broad range of applications we consider water at ambient pressure and T =300 K. The adiabatic constant
(i.e. the specific heat ratio, γ = cP /cV ) of liquid water is almost unity, (γ = 1.0106) so one can neglect the effect of
temperature variations in the sound induced pressure fluctuations. We thus assume γ = 1, which corresponds to a fluid
with equal isothermal and adiabatic sound velocities. Sound propagates adiabatically and as in any adiabatic process,
temperature and density flucutations are related as (∂p/∂T )ρδT = (γ − 1) (∂p/∂ρ)T δρ. Thus for γ = 1, momentum
and temperature equations are decoupled and sound is uniquely governed by mass and momentum equations.

We shall therefore consider the mass continuity and momentum equations for fluctuating hydrodynamics of a fluid
with velocity components ui (i = {x, y, z}), density ρ and fixed temperature, T :

∂ρ

∂t
+

∂ρui

∂xi
= 0 (1)

∂ρui

∂t
+ uj

∂ρui

∂uj
= − ∂

∂xj
(pδij + Πij) , (2)

where the right hand side of equation (2) represents the full pressure tensor: p is the thermodynamic pressure and

Πij is the stress tensor, which can be decomposed into a mean contribution Πij and a fluctuating part Π̃ij . The mean
viscous tensor is given by

Πij = −
[
η

(
∂ui

∂xj
+

∂uj

∂xi
− 2

3

∂ul

∂xl
δij

)
+ ξ

∂ul

∂xl
δij

]
, (3)

where η and ξ are respectively the longitudinal and bulk viscosities and summation is indicated over repeated
subindexes.

The fluctuating tensor is written according to Serrano and Español et al.[12],

Π̃ij = A

[
dWij + dWji

2
− dWll

3

]
+ B

dWll

3
, (4)

where dWij is a random matrix of unit variance and the coefficients A and B are given by

A =

(
4kbT

η

Vc

)1/2

, (5)

B =

(
2DkbT

ξ

Vc

)1/2

. (6)



where kb is the Boltzmann’s constant, Vc the cell volume and the spatial dimension is D = 3.
The covariance of the random stress is given by,

< Π̃ij(x, t)Π̃kl(x
′, t′) >=

2kbT

Vc

[
η

(
δikδjl + δijδkl −

2

3
δijδkl

)
+ ξδijδkl

]
δ(x− x′)δ(t− t′), (7)

so that the correlation of the longitudinal components are,

< Π̃xx(x, t)Π̃xx(x′, t′) >=
2kbT

Vc

(
4

3
η + ξ

)
δ(x− x′)δ(t− t′). (8)

The equations of continuity and momentum are completed by the equations of state p = p(ρ, T ) and the constitutive
relations for the shear and bulk viscosity η = η(ρ, T ) and ζ(ρ, T ), respectively. As stated we considered water at
T = 300K and ambient pressure. The equation of state p = p(ρ) and viscosities corresponds to the TIP3P water
model at T = 100K used in MD and obtained in a previous work [17] (see Fig. 1). In order to test the model against a
broader range of thermodynamic and fluid conditions we also considered argon at several densities and temperatures
(see Refs. [18] and Fig. 1 for the equation of state and [19] for viscosities). The adiabatic constant of argon is larger
than one (γ ≃ 1.5) so in assuming γ = 1 we underestimate the sound velocity of argon. However, in doing so, neither
the physics of sound nor the open boundary model are essentially altered (see Sec. III C).
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FIG. 1: Pressure equation of state at T = 300K for argon (Lennard-Jones model) and water (TIP3P model).

III. NON-REFLECTING OUTFLOW BOUNDARY CONDITIONS

Open boundary conditions are needed in most practical cases involving fluid dynamics processes. To that end
Poinsot & Lele [20] derived the Navier-Stokes Characteristic Boundary Conditions (NSCBC) procedure for deriving
different kinds of boundary conditions in computational fluid dynamics from physical grounds. The central idea is
to use relations based on the analysis of the different waves crossing the boundaries of the computational domain.
The NSCBC method is an extension of the Euler Characteristic Boundary Condition methodology used for specifying
boundary conditions in hyperbolic systems (Euler equations) [21], [22]. Our main purpose here is to apply the NSCBC
approach to outflow boundary conditions of open fluctuating hydrodynamics systems.

A. General formulation

Linear dynamics of a monocomponent fluid can be expressed in terms of five normal modes, also called characteristic

waves: two sound waves (traveling in opposite directions), one heat wave and two shear waves in perpendicular
directions [23]. There is no exact method to specify the values of the characteristic waves amplitudes for multi-
dimensional Navier-Stokes equations in an arbitrary geometry. However, this can be done for the one-dimensional



inviscid equations. The NSCBC approach is to infer values for the wave amplitude variations in the general 3D viscous
case by extracting the local characteristic waves traveling across the normal-to-boundary direction from the so called
local one-dimensional inviscid (LODI) problem [3], [24]. Consider a flow near a boundary whose normal direction is
x. The flow velocity near the boundary is uBC , and the fluid sound velocity c. The amplitude of the characteristic
sound waves Ai arising from the linearized inviscid problem in x direction, is conserved along the characteristic line
x± λit = cste (where λi is the characteristic wave velocity, see Eq.12) so that ∂Ai/∂t + λi∂Ai/∂x = 0. According to
the notation used in Ref. [24], i = 1 corresponds to the left-wise (←) moving sound wave, i = 5 to the right-wise (→)
sound wave, i = 2 to the entropy advection mode (A2 = s) and i = 3, 4 to the two perpendicular shear modes (e.g,
A3 = v is one velocity normal to x direction).

The acoustic mode amplitudes are given by

A1 =
1

2

(
δp

ρec
− δu

)
wave moving ← (9)

A5 =
1

2

(
δp

ρec
+ δu

)
wave moving → (10)

A1 and A5 are also called the Riemann invariants associated with the acoustic waves propagating in left-wise (A1)
and right-wise x-direction (A5). The amplitudes A1 and A5 are defined in terms of perturbations of flow variables
with respect to the corresponding equilibrium value: δp = p− pe and δu = u− ue.

By noting that A1 + A5 = δp/(ρec) and A1 − A5 = δu and by introducing in the momentum equation (2) the
followig quantities L1 and L5

L1 = λ1

(
∂p

∂x
− ρec

∂u

∂x

)

L5 = λ5

(
∂p

∂x
+ ρec

∂u

∂x

) (11)

where λi are the characteristic velocities

λ1 = u− c

λ5 = u + c
(12)

one can write the LODI relations used to determine the boundary conditions for the pressure and velocity [22]

∂p

∂t
+

1

2
(L5 + L1) = 0 (13)

∂u

∂t
+

1

2ρec
(L5 − L1) = − 1

ρe

∂

∂x
(Πxx) . (14)

Physically, the operators L1 and L5 represent as the the temporal rate of change of wave amplitudes at the boundary
[24] and are thus called the sound wave amplitude variations. Indeed, Li = 2ρecλi∂Ai/∂x = −∂Ai/∂t.

Regarding the density, the LODI relation writes as follows

∂ρ

∂t
+

1

c2

[
1

2
(L5 + L1) + L2

]
= 0. (15)

where L2 is related to the entropy advection mode and given by

L2 = λ2

(
c2 ∂ρ

∂x
− ∂p

∂x

)
with λ2 = u (16)

In our case we don’t consider heat transport so that δp = c2δρ which implies L2 = 0. The equation for the density is
thus redundant with Eq. (13).

Finally, in the viscid case, the amplitudes of the sound waves travelling left and right-wise are ruled by,

∂Ai

∂t
+

Li

2ρec
= ± 1

2ρe

∂Πxx

∂x
, (17)



where the sign + at the left hand side of the equation corresponds to A1 (sign − to A5).
The NSCBC approach relies on the determination of the Li’s at (or near) the boundary. In principle, one can use

Eq. (11) to calculate Li from the local gradients of pressure and velocity. However, one needs to distinguish the sense
of the wave propagation required for this evaluation. In particular, L1 is associated to waves propagating left-wise in
x direction (while L5 corresponds to waves moving right-wise). Hence, if for example, we consider the east boundary
of a 1D domain: A5 is a wave moving outwards, but within the domain, while A1 moves inwards, coming from outside.
Thus, while L5 can be estimated using the pressure and velocity at interior points, to guess L1 one needs some extra
information (some condition at the exterior). This guess is one of the essential tricks of the trade. In the foregoing
discussion, for the sake of clarity, we shall always consider the east boundary so that L5 is associated to outgoing
waves and L1 to incoming waves, as illustrated in Fig. 2.
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FIG. 2: Incoming and outgoing sound waves through the east boundary.

Once the Li’s are known, Eqs. (15)-(14) are then used to compute all other variables required at the boundary. This
last step requires boundary conditions for the viscous terms involving normal derivatives to the boundary. According
to the theoretical results of Strikwerda [25] and Oliger & Sundstrom [26] one usually imposes weak viscous conditions
at the border. In practice this means a vanishing normal stress ∂Πxx/∂x = 0, in the right hand side of Eq. (14).
This approximation is justified by Poinsot et and Veynante [24]: viscous terms are already explicitly solved inside
the domain, so the amplitude L5 (which is measured inside) already contains viscous effects. In agreement with this
statement, we tested Eq. (14) with and without the viscous term, and found similar outcomes.

B. Non-reflecting outflow at fixed pressure

The natural choice for building a non-reflecting outlet condition according to the NSCBC approach would be to
impose the amplitude variation of the incoming wave L1 to zero, L1 = 0. However, this condition leads to large
drift of the mean pressure. Physically, a perfectly non-reflecting boundary condition can be ill-posed. Indeed, the
information on the mean pressure is conveyed by waves reflected into the domain from the outside flow (where the
static pressure p∞ at infinity, or equivalently, the equilibrium pressure pe is specified). If the local pressure p at the
outlet is different from pe, a reflected wave should be produced to bring p closer to pe. With perfectly non-reflecting
boundary conditions (L1 = 0) this information is not fed back into the computation domain. It is on this physical
ground that Rudy & Strikwerda [27] proposed to add information on the mean static pressure at infinity pe, and write
the amplitude of the incoming wave as follows

L1 = K(p− p∞) with K =
σc(1 −M2)

L
(18)

where L is a characteristic length size of the domain, M = u/c the Mach number and σ is a constant that has to be
fixed. At low Mach number, as those considered in this work, one can write K = σc/L.

By inserting Eq. (18) into (13) in absence of outgoing wave (L5 = 0), one sees that the expression (18) can be
interpreted as a corrective term that relaxes exponentially the pressure at the frontier to the equilibrium pressure pe.
The relaxation time is τ ≡ 1/K = 2L/σc. Some caution is necessary to estimate the value of the constant σ (see
next section): too low values of σ can produce large pressure drift resulting in non-convergence of the calculations,
while large values of σ lead to high reflection. Thus, the price one pays for the stability of the scheme is that Eq.
(18) yields a partially non-reflecting boundary. This important drawback was recently put forward by Selle et al. [28]



and Polifke et al. [29]. They proved that although the linear relaxation term (18) leads to an effective non-reflecting
boundary for the high-frequency regime (i.e for wave frequencies much larger than the decay rate K), it becomes
highly reflecting for the low-frequency range. [34] But in fact these large, low-frequency waves are precisely those one
would like to evacuate, because they can travel over long distances before being damped by viscosity. In order to
extend the non-reflecting property of the boundary condition to the low-frequency range, Politfke et al. [29] proposed
the following modification to L1,

L1 = K(p− ρcA5 − p∞). (19)

This modification applies for plane acoustic waves with normal incidence to the boundary and it is referred as “plane-
wave masking”. It consists in removing the contribution of the outgoing waves A5 to the pressure p from the linear
relaxation term L1 so that the (reflected) outgoing wave no longer contributes to the incoming wave A1. In this way,
the incoming wave A1 is built up to suppress (or to “mask”) any reflection contribution from the outgoing wave. The
result is that, in practice, A5 leaves the domain without being reflected. Polifke et al. [29] considered acoustic waves
in turbulent flow and argue that if deviations from the equilibrium pressure pe were only caused by plane acoustic
waves (i.e. in absence of turbulent fluctuations), the use of Eq. (19) would lead to a vanishing reflection coefficient for
plane harmonic waves of arbitrary frequency. However, the results of this work for the (non-turbulent) deterministic
regime (i.e., without fluctuations) coincide with those reported in their work [29]. This indicates that the partial
reflection observed at short wavelengths (λ/∆x < 10, see Sec. VC) is in fact related to numerical resolution. Also in
the fluctuating hydrodynamics context, Eq. (19) stands as the best choice to evacuate most waves (λ/∆x > 10) out
of the system.

We now provide more insight into the incoming wave amplitude L1 proposed in Eq. (19). By using the definition
of A5 in Eq. (10) and the definition of A1 given by Eq. (9) one gets,

L1 =
K

2
(δp− ρecδu) = KρecA1 (20)

Using Eq. (17)A1 is thus governed by

∂A1

∂t
= −K ′A1 +

1

2ρe

∂Πxx

∂x
with K ′ = K/2. (21)

Equation (21) sheds more light on how the plane-wave masking controls the incoming waves. In the inviscid limit,
the solution of Eq. (21) is simply an exponential decay A1 ∼ exp(−K ′t). Hence, the incoming waves are damped at
a rate K ′. In fact, by damping the incoming wave to its equilibrium value 〈A1〉 = 0, one also controls the deviation
from the equilibrium pressure, which relaxes to 〈δp〉 = 0. By comparison, as stated above, Eq. (18) is only designed
to control the overall pressure drift, but not the amplitude of the incoming wave.

It is important to highlight that in the case of fluctuating hydrodynamics, Eq. (21) also acts as a source of incoming
random waves. Indeed, the local fluctuating stress near the border is a source of white noise which triggers waves into
the system. The boundary condition given in Eq. (21) determines the resulting spectra for the amplitude of incoming
waves: at equilibrium the time correlation of incoming waves is a colored noise, 〈A1(t)A1(0)〉 ∝ exp(−K ′t)/K ′, and
their power spectral density goes like SA1

(ω) ∝ 1/(ω2 + K ′2). Implications of this fact are discussed in Sec. IV.

C. Fluctuation-dissipation balance.

In previous works the relaxation time 1/K was set proportional to the inverse of sound time over a distance L/σ,
i.e. 1/K = L/(σc). The constant σ was set according to numerical “optimization” but not based on physical grounds.
For instance, when making use of expression (18) for L1, estimations of the optimal value of σ by Rudy & Strikwerda,
provided σ = 0.58, while Selle et al. [28] suggest 0.1 < σ < π. By contrasts, by making use of Eq. (19) for L1,
Polifke et al. [29] report σ = 167 as the minimum value required to avoid pressure drift in their computations of
a fully developed turbulent channel flow. In this work we address this problem from the perspective of fluctuating
hydrodynamics and provide a route to estimate a value of K with physical content. To that end, we consider the
fluctuation-dissipation balance for the amplitude of the incoming waves A1 in the equilibrium state. The overall mass
is governed by the amplitude of the incoming waves, so that by imposing the correct variance to A1 one should get
the correct variance for the total mass in the system. In this work the “correct” variance of A1 comes out from
thermodynamic arguments, however we believe that the method proposed here below is more general and it could
be applied, for instance, to turbulent flow, provided some knowledge of the amplitude of fluctuations of A1 (i.e. of
pressure and velocity) and of the stress tensor Π.



Let us consider Eq. (21) near the east boundary, in particular at the cell face xb = xfn−1
where the NRBC is

imposed (see appendix B). We integrate Eq. (21) along a cell volume Vc = S∆x around the cell face xb to get

dA1(xb)

dt
+ K ′A1(xb) = F (t), (22)

where we note that in the spirit of the finite volume method A1(xb) = (1/∆x)
∫ xb+∆x/2

xb−∆x/2
A1(x)dx. At equilibrium, the

stress has only fluctuating part and its contribution have been collected in the noise term F (t),

F (t) ≡ 1

2∆xρe
[Πxx(xb + ∆x/2)−Πxx(xb −∆x/2)] (23)

Equation (22) is a stochastic differential equation which can be solved using standard techniques [30]. The noise
source is coming from the local stress tensor, which at equilibrium satisfies [see Eq. (8)],

〈Πxx(t)Πxx(0)〉 = 2kBTηL

Vc
δ(t) (24)

where ηL = 4η/3 + ξ, is the longitudinal viscosity. Moreover, the fluctuating stress tensor is uncorrelated in space so
the time correlation of the noise F (t) satisfies

〈F (t)F (0)〉 = 2Φδ(t) =
kBTηL

∆x2ρ2
eVc

δ(t) (25)

where the noise amplitude 2Φ is defined from the same equation (25). The fluctuation-dissipation balance, applied to
Eq. (22), states that (see e.g [30]),

〈A2
1〉 =

Φ

K ′
(26)

At equilibrium the variance of A1 can be obtained from standard thermodynamics. From Eq. (9) 〈A2
1〉 =

(1/4)
[
〈δp2〉/(ρec)

2 + 〈δu2〉
]
. But 〈δp2〉 = c4〈δρ2〉, 〈δρ2〉 = ρekBT/(c2Vc) and 〈δu2〉 = kBT/(ρeVc) so one concludes

that,

〈A2
1〉 =

1

2

kBT

ρeVc
. (27)

Inserting (27) and (25) into (26) one finally gets the decay rate K ′ or equivalently of K (see Eq. 21)

K ′ =
νL

∆x2
→ K =

2νL

∆x2
(28)

where νL = ηL/ρe is the kinematic longitudinal viscosity. The result contrasts with the form of K proposed in
previous works (K = σc/L); in fact Eq. (28) shows no dependence with the sound velocity c or on the system size L.
As stated, in this work we consider a fluid with adiabatic constant γ = 1, such as liquid water. However, we note that
the derivation of Eq. (28) remains valid for arbitrary γ [35]. We note that for γ = 1 the isothermal and adiabatic
sound velocities coincide and one can neglect temperature effects on the sound waves while, for compressible fluids
such as argon (γ > 1), one needs to consider the energy equation to consistently solve sound. However, the inclusion
of the energy equation in the present open boundary formalism does not require any extra (relaxation) parameter at
the boundary. In fact the propagation of the heat mode across the boundary can be solved using the information
within the computational domain (see Ref. [24]).

In the appendix B we present a numerical implementation of the plane-wave masking boundary conditions for
staggered grid which ensures numerical stability for “open” fluctuating hydrodynamics.

IV. MASS FLUCTUATION AT EQUILIBRIUM

As stated above, by ensuring the fluctuation-dissipation balance for the amplitude of the incoming waves one
expects to provide the correct variance of total mass, whose value at equilibrium is prescribed by thermodynamics. In



particular, at equilibrium, the mass M(t) of an open system of volume V at temperature T , fluctuates with a variance
given by kBTV/c2, while the variance of the mean density ρ̄(t) = M(t)/V is,

〈(δρ̄)2〉 =
kBT

c2V
, (29)

where δρ̄ = ρ̄−ρe is the deviation from the (spatial) mean density with respect to its equilibrium value. The relaxation
time 1/K for incoming waves should be set so as to guarantee condition (29). According to the fluctuation-dissipation
balance set in Eq. (28), the relaxation parameter K should be casted in this form,

K =
νL

(δR∆x)2
. (30)

By reference to Eq.(28), the non-dimensional parameter δR introduced in Eq. (30) should be δR = 1./
√

(2) ∼ 0.7.
For the numerical calibration of the open boundary it is important to analyze how the mass variance depends on
δR. Figure 3 shows the variance of the mean density 〈(δρ̄)2〉 against δR for argon at 〈ρ̄〉 = 1.35gm/cm3 (which
corresponds to an equilibrium density of 〈ρ̄〉 = 0.8σ−3 in Lennard-Jones units) and temperature T = 300K. The
mesh size is ∆x = 1.377 nm and the total volume V = 3371mn3. The total mass fluctuation increases with δR (i.e.
with the relaxation time 1/K). According to Fig. 3, for δR = 0.4 the mean density variance coincides with the
thermodynamic prescription. This value of δR shall be called its optimum value. The optimum value of δR obtained
from numerical simulation (δR = 0.4) differs slightly from the theoretical prediction in Eq. (28) (δR = 0.7). This
difference may come out from the way one implements the non-reflecting boundary conditions into the discretized
fluctuating hydrodynamics equations (see appendix B) [36]
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FIG. 3: The standard deviation of the total mass in the simulation domain at equilibrium, versus the parameter δR which
determines the relaxation rate K = νL/(δR∆x)2. Dashed line is the thermodynamic prescription. At the optimum value
δR ≃ 0.4, the variance of the overall mass coincides with the thermodynamic value.

We tested the theoretical prediction given by Eq. (28) against a broad range of conditions (varying the mesh size
∆x, thermodynamic state and fluid properties, using water and argon at several densities). Some results for the
standard deviation of the total mass are shown in Table 1. Using δR = 0.4 in all cases, the largest differences with
respect to the thermodynamic value were about 10%. A finer estimation of the optimum δR provided δR = 0.40±0.04.
We thus conclude that the scheme is robust and that the relaxation parameter K should be set according to Eq. (30),
with δR = 0.4 [37]. This is also confirmed by the spectral analysis presented below.

In order to understand how the open boundary works, it is instructive to consider the power-spectral density
(PSD) of the local density ρ(x, t). The time Fourier-transformed density ρ̂(xi, ω) can be used to evaluate the PSD
as, Sρ(xi, ω) = ρ̂(xi, ω, )ρ̂∗(xi, ω, ), where ∗ denotes the complex conjugate. We first discuss the behavior of the
spatially-averaged PSD, S̄ρ(ω) ≡ (1/Ncell)

∑
i Sρ(xi, ω), where Ncell is the number of cells in the simulation domain.

This function is shown in Fig. 4, for a set of values of δR. According to fluctuating hydrodynamics, at equilibrium,
fluctuations of all possible wavelengths are equally present in the system and one expects to obtain a flat spectra over
a wide band of frequencies. We note, however, that all the spectra resulting from the numerical solution of the FH
equations shown in Fig. 4 presents a sudden decrease below a cut-off wavelength λcut ≃ 4∆x. These short waves
are in fact filtered out by the numerical resolution, because from a numerical standpoint one cannot describe a sound
wave with less than few cells.

Figure 4 illustrates how the parameter δR modifies the spectra of sound waves in the system. Large values of δR

mean small relaxation rates K = νL/(δR∆x)2 for which the “source” of incoming waves is slowly relaxed in time. To
better understand the effect of the random generation of incoming waves at the border, one can consider the power
spectral density (PSD) associated with Eq. (22) given by SA1

= Φ/(K2 + ω2). At the long-wavelength range (low
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FIG. 4: Spatially averaged PSD of density for liquid argon at ρ = 1.35 gr/cm3 and T = 300K versus de wavelenght λ = 2π c/f .
The cutoff frequency λcut is indicated at 4∆x. Results corresponds to several values of δR, which determines the relaxation
rate K = νL/(δR∆x)2. The longitudinal viscosity is νL = 1.9 10−3 cm2/s (ηL = 0.25 cP). The box size is Lx = 135nm and the
grid spacing is ∆x = 1.377nm. The optimum δR corresponds to δR = 0.4.

frequencies, ω << K) the PSD of incoming waves becomes SA1
≃ Φ/K2 ∼ Φδ4

R. This means that the amplitude of
the long random waves generated at the boundary decreases with the square of the relaxation time 1/K2 (i.e. with
δ4
R). This can be clearly seen in Fig. 4 where the presence of longer wavelengths is rapidly increased with δR (see

the δR = 2.5 case). At the short-wavelength range (high frequencies, ω >> K) the PSD of incoming waves becomes
K-independent, SA1

∼ Φ/ω2. In agreement with this fact, the low-wavelength region of the spectra in Fig. 4 (which
takes into account incoming and outgoing wave contributions) does not greatly vary with K or δR. We highlight that,
precisely at δR = 0.4, one gets a flat spectrum over the whole range of allowed frequencies (and even for wavelengths
much longer than the system size, see Fig. 5 below).

The mass variance is equal to the integral over the whole frequency range of its power spectral density, thus Fig.
4 clearly indicates that the excess of mass fluctuation observed for large δR (see Fig. 3) is due to an excess of long-
wavelength waves. In the same way, for low values of δR, long waves are over-suppressed and the total mass of the
system becomes too much constrained. In conclusion, an optimum value of the relaxation rate K is crucial to control
the overall mass variance by providing the correct amount of large-wavelengths into the system.

A. Comparison with periodic boundaries and rigid walls

One of the objectives of this work is to show that open boundary conditions are required in simulations of phe-
nomena involving the propagation of sound waves. Also, when dealing with fluctuating hydrodynamics, and even
at equilibrium, the stress fluctuations induce sound waves which might become a significant source of momentum,
depending on the boundary condition used. In fluid-particle simulations based on the Stokes friction coupling [8], such
momentum is transfered to the solute particles, thus generating spurious forces and non-physical time correlations at
sound times. To illustrate this statement, it is quite instructive to compare the sound power spectral densities (at
equilibrium) obtained using non-reflecting boundary conditions (NRBC), periodic boundary conditions (PBC) and
rigid walls (RW). Such comparison is illustrated in Fig. 5 for a one-dimensional computational domain of dimension
Lx = 135nm and discretized into 98 cells. For PBC and RW, significant peaks are observed at the natural frequencies
of the box [fn = n c/Lx and fn = n c/(2Lx), respectively]. These peaks become quite large as one approaches the
fundamental frequency (n = 1), corresponding to wavelengths λ = Lx in PBC and λ = 2Lx in the RW case (in Fig.
5 we indicate the system size wavelength λ = Lx with a vertical dashed line). The PSD of the velocity exhibits peaks
at identical frequencies. As long as the fluid velocity is used for the Stokes force in fluid-particle simulations, these
peaks can induce spurious forces to the particles. As shown in Fig. 5, the NRBC formulation avoids finite size effects
induced by the eigen-frequencies of the simulation box.

We have not yet discussed how does the distribution of sound waves varies at each computational cell. In principle,
at equilibrium the distribution should be isotropic and density and velocity at any cell should have a similar spectra.
In Fig. 6 we show contour plots of the PSD at each cell location, Sρ(x, ω). In order to facilitate their reading, the
frequency ω = 2πf has been expressed in wavelength units λ = c/f and both, position and wavelength, are given
in units of the mesh size ∆x (i.e. λ/∆x in abscissas and xi/∆x in ordinates). In the case of NRBC, the position-
dependent PSD Sρ(x, ω) is almost everywhere flat for all wavelengths larger than the cut-off λcut ≃ 4∆x (as stated,
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FIG. 5: The spatially averaged power spectral density S̄ρ(ω) for argon at ρ = 1.0gr/cm3 and T = 300K. The simulation domain
is Lx = 135nm and ∆x = 1.377nm. Comparison between non-reflecting boundaries (NRBC), periodic boundaries (PBC) and
rigid walls is made. Frequency ω = 2π f is expressed in wavelength units, (λ = c/f), using the sound velocity c = 577.7m/s.
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FIG. 6: Contour plot of the PSD of density at each cell of the domain Sρ(xi, ω) for the same cases in Fig. 5: non-reflecting
boundaries (NRBC), periodic boundaries (PBC) and rigid walls (RW). The wavelength (abscissas) and the cell position (or-
dinates) are both given in mesh units ∆x. In this units, the box size is Lx/∆x = 98. We note that in the NRBC case, the
spectra remains flat even at λ >> Lx.

λcut corresponds to the limiting wavelength resolved by the mesh). It is worthwhile to mention that the NRBC ensures
that the spectra remain flat even for frequencies much larger than the box length (in Fig. 6 we are plotting up to
λ > 10Lx). This nice behavior contrasts with what obtained in periodic and purely reflecting (rigid) walls shown in
Fig. 6.

As shown in Fig. 6 the spectra obtained with NRBC presents, however, two small regions near the open boundaries
where an excess of short wavelentgh is observed. The formation of these “boundary layers” are due to the partial
reflection of short waves. Indeed, a closer inspection of Fig. 6 shows that the structure of the local maxima of Sρ(x, λ)
at these boundary layers is similar to that produced by purely reflecting rigid walls over the whole spectral range (the
reflected waves produce an “echo” whose amplitude has local maxima at nxn = mλm; n and m being integers.). The
main effect of these reflected waves is to increase the local standard deviation (STD) of density σρ(x) (or velocity
σu(x)) near the open boundary, as can be seen in Fig. 7a. The standard deviation σρ(x) decays exponentially towards
its equilibrium value at the bulk σeq

ρ and thus enables to obtain a characteristic length δ, which is a measure (lower
bound) of the thickness of the “reflecting boundary layer” (see caption of Fig. 7a). Values of δ calculated for quite
different cases are plotted in Fig. 7b. Interestingly, δ scales with the group (c/νL)∆x2 which is a measure of the sound
absorption length. A wave with wavenumber λ is damped by viscosity at a rate (2π2)νL/λ2 (the sound absorption
coefficient is νL/2). Thus, before being damped, reflected waves are able to penetrate back into the domain up to a
distance δλ ≃ cλ2/(2π2νL) . Inspection of Fig. 6 (for NRBC) indicates that these reflected waves are shorter than
a certain wavelenght λ < λr and that they are responsible for the boundary layer thickness; so one expects δ ∼ δλr

.
The trend shown in Fig. 7b indicates δ ∼ ∆x2(c/νL), so one concludes that the reflected wavelenghts λ < λr should
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FIG. 7: (a) The standard deviation of the density σρ versus the distance from the open boundary x, for argon at ρeq = 1
gr/cm3, T = 300 and ∆x = 0.689 nm. The value of δ, measuring the thickness of the reflecting boundary layer, is measured
using the fit σρ(x) = σeq

ρ +A exp[−x/δ] (solid line) where σeq
ρ is the equilibrium value and A is a fitting constant. (b) Values of

δ against the sound absorption length (c/νL)∆x2. The dashed line indicates the order of magnitude estimate δ ∼ (c/νL)∆x2.
Results were obtained for a system with Lx = 134.98nm, cell volume Vc = 34.4nm3 and different grid spacing ∆x. All results
for argon at different densities ρ = [0.17 − 1.34] gr/cm3 and temperatures (T = 300K, 178.5K and 476K).

Fluid ρ (gr/cm3) T (K) c (m/s) νL (cm2/s) ∆x (nm) L/∆x VT (nm3) σ
(num)
ρT

σ
(theor)
ρT

(gr/cm3)

Water 1.049 300 1467.1 0.4560 2.24944 60 2064.3 0.000939 0.000988

Argon 1.012 476 746.16 0.00158 1.37734 98 3371.8 0.002007 0.001889

Argon 1.012 300 577.72 0.00106 1.37734 98 3371.8 0.001956 0.001923

Argon 1.012 178.5 379.38 0.00132 1.37734 98 3371.8 0.002192 0.002226

Argon 1.349 300 942.15 0.00189 1.37734 98 3371.8 0.001501 0.001366

Argon 1.349 300 942.15 0.00189 0.6885 196 6737.8 0.000875 0.000964

TABLE I: Results obtained for water and argon at different thermodynamic states, longitudinal kinematic viscosities νL and
several mesh sizes ∆x. Comparison is made between the numerical and theoretical standard deviation of the mean density σρ̄.
In all cases we used δR = 0.4. VT is the total volume of the system and L = 397nm is the system’s size in x-direction

only depend on the spatial resolution: this first order estimate yields, λr ∼
√

2π∆x. Calculations of the reflection
coefficient in Sec. VC confirm this conclusion.

It is interesting to note that, in water, the thickness of the reflecting layer is quite small due to the large viscosity
of water (ηL = 4.78 cP), which yields (c/νL)water = 0.4nm−1. For instance, for ∆x = 2.5nm, the reflecting layer
remains restricted to the outermost cell. By constrast, in argon at a similar density (c/νL)argon = 3.85nm−1 so the
reflecting layer is visible (as in Fig. 6 and Fig. 7a).



V. RESULTS

A. Equilibrium

Several tests at equilibrium are first required when presenting a fluctuating hydrodynamics solver. Figure 8 shows
the standard deviation of the density at one fluid cell, obtained for argon, ranging from gas to liquid. Deviations
from the thermodynamic prescription (solid line) are negligible small. Figure 9 shows the standard deviation of the
velocity σv and density σρ at each fluid cell. Results correspond to the water model. The standard deviation of the

velocity is in good agreement with the thermodynamic value
√

kBT/(ρeVc), where T is the “input” temperature, Vc

the cell’s volume and ρe the equilibrium density. Deviations are less than few percent (see caption of Fig. 9) and the
effective (“output”) temperature, To = ρeVcσ

2
v/kB, deviates about 2 and 6K from the imposed value T = 300K in

calculations using ∆x = 1.37nm and 2.25nm, respectively.
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FIG. 8: Standard deviation of the density at one grid cell located in the center computational domain with volume Vc = 34.4nm3

versus the mean density of the system. Results were obtained for argon equation of state at T = 300K, using Lx = 135nm and
∆x = 0.688nm. Solid line indicates the prescribed thermodynamic value.

The sudden increase of σv near the boundaries observed in Fig. 9(top) is due to the reflection of short waves.
As discussed above, in the case of water the width of the reflective boundary layer is quite small (about ∆x). The
distribution of velocity and density fluctuations is flat along most part of the system and, only the first and second
cell adjacent to the boundary deviate from the bulk behavior. As stated before, in the case of argon σv(x) and σρ(x)
converges exponentially to the thermodynamic value at the bulk (see Fig. 7a). The STD at the boundaries are
typically about 1.4 times larger than within the bulk.

B. Periodic forcing

Another set of tests for the open boundary conditions comprise forcing of sound waves inside the channel. We shall
first compare the results obtained using NRBC and periodic boundaries and then calculate the reflection coefficient
in our NRBC formulation.

Forcing of waves inside the channel can be done in several ways. For instance, if the objective is to introduce
harmonic waves from the west boundary (i.e. waves moving right-wise), one can add a sinusoidal term into the A5

amplitude equation (10):

L
(f)
5 = L5 + aL5

cos(ωf t) (31)

where L
(f)
5 is the modified L5, aL5

is proportional to the amplitude of the forced incoming waves and ωf the forcing
(angular) frequency.

Alternatively, it is also possible to add a sinusoidal force (or some mass production term) to the momentum (or
density) equation at some cell in the bulk. Both procedures provide similar results; the following tests were done by
adding an oscillatory mass source production term in the continuity equation at x = xf ,

∂ρ(xf , t)

∂t
= −∂ρu

∂x
+ aρ sin(ωf t) (32)
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FIG. 9: The standard deviation of velocity (top) and density (bottom) versus the cell position in an equilibrium calculation
using the water model. Dashed lines shows the thermodynamic value at the prescribed temperature T = 300K. In the case of
velocity fluctuations, deviations from respect the thermodynamic value are less than 1% for ∆x = 2.249nm and about 2.3% for
∆x = 1.377nm. Density fluctuations are in very good agreement with the theoretical value.

The latter procedure is useful to study the reflection of short waves because they are damped at such a high rate
that their amplitude becomes smaller than thermal noise at relatively short distances from their source. To ensure a
significant signal to noise ratio in the study of reflection, we placed the wave source xf at a distance xf = λf + 5∆x,
where λf is the wavelength of the forced wave.

Figure 10 compares the spatially dependent power-spectra (as a function of the wavelength, Sρ(x, λ)) obtained when
forcing waves inside the channel at a certain frequency wf = 2πc/λf and using either NRBC or PBC. The difference
is clear, while in the NRBC case a well defined peak with similar amplitude at every cell of the system is obtained at
the forcing frequency ωf in the PBC case, one gets a complicated x-dependent pattern at the forcing frequency. This
pattern is essentially determined by a standing wave which interferes with the eigen-waves of the simulation box at
frequencies ωn = 2πnc/L.

C. Reflection coefficient

Figure 11 shows the reflection coefficient obtained using the forcing procedure described above. The reflection
coefficient is obtained from the ratio r = Â1/Â5 between the amplitude of the outgoing (imposed) wave Â5 and

the incoming wave Â1 (resulting from any partial reflection). The amplitude of the waves was calculated from the

magnitude of the maximum peak in their Fourier spectra, measured at some cells near the boundary, i.e., Âi =

S
(max)
Ai

(xb), where the “test” position xb is placed between the open boundary and the forcing cell xf .
Values of the reflection coefficient are shown in Fig. 11. We note that the values of r obtained from deterministic

hydrodynamics (i.e., switching off fluctuations) were found to be similar to those obtained from the fluctuating case. In
fact, results for r reported by Polifke et al. [29] for large eddy simulations of turbulent flow (also included in Fig. 11a)
are consistent with our laminar flow calculations indicating that the behaviour of r with f does not greatly depends
on fluctuations, flow or fluid conditions, but rather on the numerical resolution used. In particular, as shown in Fig.
11a, waves with short enought wavelength are partially reflected: we find that irrespective of the fluid properties or
flow (fluctuations) conditions, r ≃ 0.5 for λ < λr with λr ∼ 10∆x. This threshold for partial reflection agrees with
the estimation done in Sec. IVA and it can be clearly seen in the NRBC case of Fig. 6. Larger wavelengths present
a rapid decrease of their reflection coefficient. Our results fit with the trend r ∼ 10−3(f∆x)1.5, shown in dashed line
in Fig. 11b. However, the behaviour of r at low frequencies obtained by Polifke et al. for turbulent flow scales with
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FIG. 10: Contour plot showing the power spectral density (PSD) of the density (in dB) at each cell, under an sinusoidal forcing
with wavelength λf = 496.32 nm (λf/∆x = 135), induced at cell #75. Wavelength λ and cell positions are given in units of
∆x = 0.688nm. The sound frequency (in Hz) is f = c/λ, where c = 942.16 m/s is the sound velocity. Results were obtained for
argon at ρ = 1.34gr/cm3 and T = 300K. Comparison is made between non-reflecting boundaries (NRB) and periodic boundary
conditions (PBC).

a smaller slope r ∼ f0.95, suggesting that the type of flow might have some effect on r at low frequencies. We note
that the energy of the reflected wave decreases like r2 so values of r ∼ 0.1 can be already sought as non-reflecting.
In this sense, the trend r ≃ 10−3(f∆x)1.5 is useful to estimate the spatial resolution (∆x) ensuring evacuation of a
given frequency: f∆x ≃ 20 m/s for r ≃ 0.1.
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FIG. 11: The reflecion coefficient r calculated as the ratio between maximum amplitudes of the reflected and forced wave
r = Âmax

1 /Âmax
5 . Results correspond to liquid argon at ρ = 1.0gr/cm3 and water (both at T = 300K), whose sound velocities

are cargon = 577.7m/s and cwater = 1480 m/s. Results obtained by Polikfke et al. [29] from large eddy simulation of turbulent
flow have also been included. (a) The reflection coefficient versus the non-dimensional wavelength λ/∆x and (b) versus the
group f∆x, where f = λ/c is the frequency in Hz. The dashed line corresponds to the best fit to our results r ≃ 10−3(f ∆x)1.5.



VI. CONCLUSIONS

We have presented a formalism for non-reflecting boundary conditions (NRBC) which allows to evacuate sound
waves out of an open fluid domain described by fluctuating hydrodynamics. This set of open boundary conditions,
originally derived for standard CFD, consists on solving the linearized Navier-Stokes equations at the open boundary,
in the normal-to-boundary direction. A key difference, when dealing with fluctuating hydrodynamics, is the fact
that we are considering very small volumes of fluid where mass fluctuations are significant. Therefore, the NRBC
formalism should enable the exchange of mass between the computational domain and its surroundings, arising from
longitudinal stress fluctuations. These fluctuations are reflected in the variance of the total mass and momentum
of the system whose values at equilibrium are prescribed by the grand canonical ensemble thermodynamics. Thus,
the purpose of the NRBC in fluctuating hydrodynamics is two fold: first, to evacuate large amplitude sound waves
and second, to drive the system to the proper thermodynamical equilibrium. These two requirements are met by a
stochastic equation for the amplitude of the incoming waves, which needs to be postulated in the NRBC formalism.
On one hand, the deterministic part of this boundary equation ensures the so-called “plane-wave masking” [29] which
avoids the reflection of sound waves with amplitudes larger than the thermal noise. On the other hand, the random
stress near the boundary acts as a source of random waves into the system. By including the longitudinal stress
fluctuations into the boundary equation analysis, we could derive a fluctuation-dissipation balance for the incoming
waves amplitude which takes into account the thermodynamic equilibrium conditions to fit the only free parameter
of the system: the relaxation rate of the incoming waves, K. We obtained, K = νL/(δr∆x)2, where νL is the
longitudinal kinematic viscosity of the fluid, ∆x the computational cell size and δR a non-dimensional length. We
show that δR = 0.4 provides the correct total mass variance regardless of the fluid properties and mesh resolution. An
interesting outcome is that the relaxation rate K actually controls the power spectra of density and momentum inside
the entire system; this might be useful to tune the sound power spectra in other type of scenarios, such as turbulence.

The present method avoids some of the finite size effects induced by periodic boundaries in fluid-particle simulations
and more importantly it provides an useful tool for the simulation of problems involving the propagation of sound
waves, such as the design of ultrasound devices or the study of nanoparticle-ultrasound interaction.
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ADD UNED Y EUROPE !!!

APPENDIX A: FLUCTUATING HYDRODYNAMICS IN A STAGGERED GRID

The finite volume method is used to solve the fluctuating Navier-Stokes equations. Spatial gradients are discretized
using centered differences and time integration is done by a fully explicit Euler scheme (time step was set to ∆t ≃ 10fs
(Courant number c∆t/∆x ∼ 0.01). The Euler scheme requires relatively small time steps to keep thermodynamic
consistency for density fluctuations. As shown in Ref. [31] more elaborate time integration schemes enable to increase
∆t in a factor 10.) Most of the previous works on fluctuating hydrodynamics [17] have implemented their numerical
scheme in a collocated grid, whereby all the set of flow variables are resolved at the same position of each volume
cell: its center. In this work we have implemented a staggered grid for fluctuating hydrodynamics. The staggered
arrangement is illustrated on Fig. 12. Each scalar variable (density and pressure in our case) is computed at the
cell centers while the velocity components are resolved at the cell faces. A previous work by Garcia et al. [32] made
use of a staggered grid-arrangement wherein velocity and temperature were resolved at the integration cell faces and
density at the integration cell centers in the aim to well-define the boundary condition on the mass flux.

Compared to a collocated grid, the staggered grid used here provides a much better coupling between the pressure
and velocity field. This results in several advantages: first, it avoids the formation of numerical pressure and velocity
oscillations (see Patankar [33]) and second, the boundary conditions are well defined. In the staggered arrangement
one requires explicit boundary condition for the velocity and density but there is no need of defining an extra boundary
condition for the pressure.

We briefly describe the discrete operators involved in a finite volume formulation applied to a staggered grid
arrangement, details can be found in Ref. [33]. Conservation equations can be casted in the general form

∂ρΦ

∂t
= −∇ (ρuΦ− JΦ) (A1)



where Φ = 1 for mass and Φ = u for momentum conservation equations. In the mass equation J1 = 0 while
Ju = (p1 + Π) is the pressure tensor appearing in the momentum equation. The conservation equations (A1) are
integrated over control cells of volume V . By integrating (A1) and applying the Gauss theorem to the convection and
gradient terms, one gets

V
(ρcΦc)

k − (ρcΦc)
k−1

∆t
= −

∑

f

(ρfuf · SfΦf − [JΦ]f · Sf )
k−1

. (A2)

The cell center of the integration volume in the above equations is noted by the subscript c, while f stands for the
face of the integration domain. Superscript “k” in Eq.(A2) refers to the integration time tk = k∆t and the face area
(normal) vector is Sf .
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FIG. 12: Staggered grid scheme near the east boundary.

As stated, in the staggered grid arrangement the scalar variables (density and pressure) are resolved at the volume
cell center while the velocity vector components are defined at the cell faces, see Fig. 12. To be consistent with
this choice, as shown in Fig. 12, the centers of the control cells for the mass equation are placed at the volume cell
centers, i.e. c → xi in Eq. (A2). In the momentum equation the center of the integration volume is located at
the cell faces; i.e. c → xi + ∆x/2 in Eq. (A2). As an example, in one dimension, mass equation is integrated over
xi − ∆x/2 ≤ x ≤ xi + ∆x/2, while momentum equation is integrated over xi ≤ x ≤ xi+1. Whenever necessary,
variables are interpolated, for instance, the computation in the mass equation of the flux at the face located at
xi + ∆x/2, is calculated as ρfuf = 0.5(ρi + ρi+1)uf .

APPENDIX B: NON-REFLECTING BOUNDARY CONDITIONS

For completeness we first describe the implementation of periodic boundaries and rigid walls. At the west boundary,
periodic boundary conditions imply ρ0 = ρn and uf0

= ufn
while at the east boundary, ρn+1 = ρ1 and un+1 = u1. rigid

wall boundary conditions are implemented as ρ0 = ρ1 and uf0
= 0 at the west boundary and ρn+1 = ρn and ufn

= 0
at the east boundary. A benefit of the staggered grid arrangement is that boundary conditions on the pressure are
not required.

Let us now focus on the implementation of the non-reflecting boundaries. We first deal with the east outflow
boundary. The relations giving the time variation amplitude L5 [see Eq. (11)] is discretized at the first face cell
located upward of the outflow boundary i.e at xn−1 + ∆x/2 (see Fig. 12). So that the discretized relations take the
form

L5 = λ5

(
pn − pn−1

∆x
+ ρec

un − un−1

∆x

)
, λ5 = ufn−1

+ c (B1)

where ρn, ρn−1, pn, pn−1, un and un−1 are the values taken at the cell centers located at xn and xn−1, for the density,
pressure and velocity, respectively. Due to the staggered grid arrangement, the velocities un and un−1 have to be
interpolated, this is done by a simple linear interpolation.

un =
1

2
(uBC + ufn−1

) and un−1 =
1

2
(ufn−1

+ ufn−2
) (B2)



The time amplitude variation, L1 (see Eq. (20)), is also computed at the first face, upwards the outflow boundary
condition, so that

L1 = KρecA1 (B3)

where

A1 =
1

2

(
pfn−1

− pe

ρec
− ufn−1

)
(B4)

where pfn−1
is the pressure interpolated at the face cell n− 1 given by pfn−1

= (pn + pn−1)/2.
The velocity at the border uBC is solved from numerical integration of Eq. (14), using an Euler scheme,

ut+∆t
BC = ut

BC −
∆t

2ρec

(
Lt

5 + Lt
1

)
(B5)

The density at the boundary ρBC could be in principle obtained from time integration of Eq.(15). However, we
found that the solution of Eq.(15) leads to numerical instability. Instead, we used an equivalent formulation of the
LODI equations based on the spatial gradient at the border (see Ref. [24]),

(
∂ρ

∂x

)

BC

=
1

2c2

(
L5

λ5
− L1

λ1

)
(B6)

where λ1 is given in Eq. (B9).
By defining ρn+1 as the density at the ghost cell n + 1 (required to define ρBC and (∂ρ/∂x)BC), the density value

at the east frontier of the domain is given as following

ρn+1 = ρn +

(
∂ρ

∂x

)

BC

∆x (B7)

At equilibrium and low Reynolds number calculations considered here, the density gradient at the boundary was
found to be negligible small. In practice, the zero mass flux condition,

ρn+1 = ρn (ρBC = ρn) (B8)

was found to provide similar results to Eq. (B7).
For the derivation of the open boundary condition at the west border of the computational domain, one needs to

note that the outgoing waves now correspond to the amplitudes A5 and incoming wave to A1. Also, one needs to take
into account that the x−axis is reversed. The variation of the outgoing wave is thus computed from

L1 = −λ1

(
p2 − p1

∆x
− ρec

u2 − u1

∆x

)
, λ1 = uf1

− c (B9)

while the incoming wave variation is approximated by

L5 = −KρecA5 (B10)

with

A5 =
1

2

(
pf1
− pe

ρec
+ uf1

)
(B11)

u1, u2 and pf1
are estimated by linear interpolation.
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