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Abstract: Industrial buildings account for very few high peaks of power demand. This situation
forces them to contract a high fixed electricity term to cover it. A more intelligent use of the energy in
industrial buildings, together with an improved efficiency of the transmission and distribution of the
energy along the electric power grid, can be achieved by reducing the peak consumption of industrial
buildings. Energy storage systems, and lithium ion (Li-ion) batteries in particular, are one of the
most promising technologies for reducing this peak consumption. However, selecting a proper Li-ion
battery requires a dimensioning process in terms of energy and power which is not straightforward.
This paper proposes a dimensioning methodology that takes into consideration both technical and
economic implications, and applies it to a case example with real industrial consumption data and a
commercial battery. Results show that implementing batteries for reducing this peak consumption
can lead to a cost–benefit improvement.

Keywords: battery energy storage system; dimensioning methodology; industrial consumption;
electricity fixed term

1. Introduction

The fee that electric energy consumers pay for being able to make use of it, commonly
known as electricity access rate, is split into two terms in the majority of European countries:
a variable term and a fixed term [1]. The variable term is associated with the energy
consumed by the user (kWh), while the fixed term corresponds to the contracted power
(kW), defined as the maximum power that the user can consume before the power-limit
switch is triggered.

Commonly, the fixed term is over-dimensioned, meaning that the usual consumption
along a day is considerably lower than the power consumption limit, the latter being
reached only during a few instants per day. This behaviour is specially representative of
industrial consumption, forcing them to contract a high fixed electricity term due to very
few high power consumption peaks [2].

Modifying this electrical consumption pattern could lead to a more intelligent use of
the energy in industrial buildings, to the fostering of the “prosumer” behaviour among
industrial consumers, and to the improvement of the efficiency of transmission and distri-
bution of the electricity across the power grid. Among the different solutions proposed
in the literature for achieving this goal, the inclusion of photovoltaic panels is presented
as a feasible solution in [3,4], although the vast majority of studies opt for implementing
an energy storage system (ESS) so that the joint consumption profile of the ESS and the
industrial building is modified, as in [5–7] among other studies.
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Battery energy storage systems (BESS) arise as the most promising ESS candidates for
their connection in buildings and infrastructures, both industrial and residential, consider-
ing that this is one of their most prominent and leading uses [8]. The benefits of including
BESS encompass the majority of the electricity value chain, including peak shaving and
continuity of supply for residential and industrial customers, ancillary and power quality
services for transmission and distribution system operators, and flexibility and curtailment
minimization for renewable generation companies [9].

Nevertheless, selecting a BESS for its connection to an industrial consumption for
reducing the peak power consumption is not straightforward. A wide variety of solutions
is offered by battery manufacturers, so a dimensioning process based on a techno-economic
assessment is required in order to help decision makers. This techno-economic assessment
will incorporate the load characteristics, the BESS technical features and its cost.

In this regard, BESS dimensioning for reducing the electricity access fee in industrial
buildings has been studied together with photovoltaic in [10,11], where a dimensioning
process is proposed for a BESS and photovoltaic installation by using a brute force method-
ology, and applied to peak shaving and prosumer purposes, and for working isolated from
the grid. In addition, the authors in [12] analyse the economic viability of BESS integration
under different tariff structures and systems configurations, although a generalized and
simplified ageing for the Li-ion BESS has been assumed for the yearly cost calculations.
Thus, the importance of the BESS charge/discharge profile has not been taken into account
properly. A similar approach is proposed in [13,14] for residential consumption. Both
papers assess the economic viability of integrating BESS at a residential level with and with-
out subsidies. However, these studies lack a detailed analysis of the BESS lifespan, since
they neglect its influence in the overall yearly costs. Further studies, such as [15], analyse
the peak shaving of decentralised residential BESS for load peak shaving. The proposed
BESS model includes the battery efficiency and SoC estimation, but an over-simplified
battery ageing assumption is made, where the payback period of the battery varies linearly
with the battery size.

Regarding alternative dimensioning methodologies, stochastic models for improving
the decision making are developed in [16], where the methodologies are applied to reach
the optimal BESS investment for industrial buildings. As identified in the previously
mentioned papers, there is no detailed battery ageing analysis, so the influence of this
variable is underestimated.

The BESS dimensioning studies mentioned above employ different selection criteria.
Those criteria are based only on technical issues, or on techno-economic issues but using
generic ageing data to calculate the BESS lifespan. Moreover, they analyse the complete
compensation of technical issues under study, e.g., feed an isolated load with a combination
of a BESS together with photovoltaic or eliminate the consumption peaks via smart charging
of electric vehicles, which may not be the most feasible scenario faced by residential or
industrial consumers. As a main contribution and further development, this paper proposes
a BESS dimensioning methodology for diminishing the fixed term of the electricity access
rate in real industrial consumption, employing a techno-economic criterion for selecting the
optimum solution. The proposed methodology includes a detailed evaluation of the BESS
ageing, which is included in the cost–benefit analysis as a key component. This improved
BESS ageing assessment highly influences the time for a BESS replacement and, hence, the
yearly cost (BESS cost and fixed electricity access fee).

Hence, the applicability of this methodology encompasses industrial consumers with
an irregular consumption accounting for several peaks of consumption, as well as BESS
manufacturers aiming for specific developments for industrial consumption. The applica-
bility of the developed methodology is exemplified in this paper for an existing industrial
consumption and on a typical day in summer and in winter, considering a commercial
battery and standard prices for the economic analysis.

The paper is organized as follows: the BESS dimensioning methodology is described
in Section 2, including a series of steps to be followed. The different simulation models used
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along the different steps determined by methodology are detailed in Section 3, including
a power grid model, an industrial consumption model, a power converter model, and a
battery model. At last, a case example with real industrial consumption data, commer-
cial BESS and standard prices is presented in Section 4, while conclusions are drawn in
Section 5.

2. BESS Dimensioning Methodology

The BESS dimensioning methodology described in this section aims at reducing the
fixed term of the electricity access rate by introducing a BESS that deals with the peaks of
the industrial consumption. A few assumptions made by the authors in the development
of the BESS dimensioning methodology are presented in the following.

Firstly, both the BESS (PBESS) and the electrical grid (PGRID) must cover the customers’
demand (PLOAD) and the losses (PLOSS):

PBESS + PGRID = PLOAD + PLOSS (1)

Moreover, the BESS must account for enough energy to cover the energy to fulfill the
extra energy demand not supplied/covered by the grid. Besides, a BESS must be able to
fully recharge the same amount of energy as dispatched in a specific scenario. If not, the
mean SoC will be decaying as the scenario repeats over time, being eventually unable to
fulfil the load power demand.

The methodology comprises a set of steps, as seen in the flow chart of Figure 1.

1. Step 1: Models parameterizations. The different models, which are mathematical
representations of physical systems or devices, account for variables (inputs and
outputs) and parameters. In order to particularize the models (grid, BESS, and
industrial consumption) to a specific system or device, those parameters must be
adjusted to a fixed value.

2. Step 2: Define test cases. The variable that defines the test cases is the maximum fixed
power that the grid can deliver (PLIMIT). Reducing this power limit implies adding
a greater contribution from the BESS, which yields to the different scenarios, which
consequently will result in different BESS configurations and different BESS ageing.

3. Step 3: Simulate test case, calculate BESS requirements, and BESS configuration. Once
the scenarios have been defined, a simulation is performed for every value of PLIMIT .
Each scenario implies different necessities from the BESS, regarding power and energy.
This requirements give different BESS configurations, in terms of number of cells
in series and in parallel. The charge/discharge profile for the BESS is also obtained
from the simulation. If the energy available for charging is unable to match the
amount of energy dispatched by a BESS in a specific scenario, that scenario will not
be considered for the dimensioning process. As previously noted, this situation will
force the BESS to, eventually, not being able to feed the load when the scenario repeats
over time.

4. Step 4: Calculate BESS ageing. Once the minimum BESS configuration that satisfies the
power and energy requirements is selected for each scenario, a BESS ageing analysis is
performed, based on the BESS model and configuration, and on the charge/discharge
profile for each specific scenario. As a result of this step, the number of days until the
BESS loses a 20% of capacity retention is obtained.

5. Step 5: Cost–benefit analysis. Prices and fees for both a BESS (as a function of the kW
and kWh of the system) and the fixed access power are needed for their incorporation
into a cost function. BESS standard prices as well as Spanish fixed access rates are
provided in Section 4, with a case example. The cost can be computed yearly, taking
into account the net present cost, and the capital recovery factor. The base scenario,
i.e., when there is no BESS, is then compared to the rest of scenarios in terms of cost,
and the final solution can be chosen.
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Figure 1. Flow chart of the proposed BESS dimensioning methodology.

3. Industrial Consumption, BESS, and Grid Modelling

The mathematical and simulation models used in Section 4 for performing a case
example of the aforementioned methodology are described in this section. Three main
models are considered: an industrial consumption, a BESS, and a power grid. The BESS is
connected to the same point as the industrial consumption, the point of common coupling
(PCC), and both of them are connected to the grid, as it can be seen in the general model
diagram in Figure 2. The complete model outputs several electrical-variables time series
(P, Q, V, and I) for the three main components. Additional electrical variables such as
frequency or harmonic distortion are also evaluated and calculated by the model, but
the authors decided not to output them since they are not relevant for the purpose of
this paper.

The models are developed with MATLAB Simulink, under the Simscape Electrical
environment. When developing simulation models, a higher complexity and completeness
usually implies a higher accuracy [17,18]. However, complex models tend to require
a substantial computational effort to run them, and a huge amount of information to
parametrize them. Moreover, they are commonly valid only for a specific device, making
them non-generalizable [19,20].

On the other hand, simplified models, usually composed by combination of resistors,
inductors, and capacitors, are easily parametrized, they require low computational effort,
and are valid for several devices with similar characteristics. Furthermore, even though
they are not as accurate as complex models, they can mimic the behaviour of the device
with sufficient precision, allowing for the extraction of general conclusions [21,22].

Hence, given the objective of this paper, the approach taken by the authors was
to develop simplified models, that are generalizable and easily parametrized, which is
sufficient for obtaining accurate general conclusions when dimensioning BESS.

Industrial 
consumption

BESS

Grid

Load profile

Power Limit

PLIMIT P & Q (Consumption, BESS, and Grid)
Voltages (Consumption, BESS, and Grid)
Currents (Consumption, BESS, and Grid)

PCC

Figure 2. General model diagram.
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3.1. Industrial Consumption Model

The industrial consumption is modelled as a PQ load, i.e., it consumes the desired
active and reactive power independently of the voltage at the PCC. Hence, it needs to be
modelled as a controlled current source, as depicted in Figure 3. The inputs of the model,
named as P and Q in Figure 3, correspond to the 24-hour active and reactive power profile
on a 1-second basis.

The Simulink diagram in Figure 3 shows, from left to right, the inputs of the model P
and Q together with the measured voltage (Vabc). From those inputs, the complex values
of the phase currents are calculated, and then redirected to the corresponding current
controlled source. A resistor with a very high value is also connected in parallel, which acts
as a snubber. At last, the industrial consumption model is linked to the rest of the model
via connectors A, B, C, and N.

Figure 3. Industrial consumption model in MATLAB Simulink.

3.2. BESS Model

The BESS model includes both a battery model and a power electronic converter
model, the latter being necessary to manage the battery behaviour and to connect the
battery to the AC grid.

3.2.1. Electronic Converter Model

For the purpose of this work, there is no need to model the power electronic converter
in detail, since neither efficiency nor power converter ageing are incorporated into the
economic evaluation of the methodology. Thus, an ideal voltage source converter (VSC)
has been selected, with no conduction or switching losses and no power limitations, so
the battery can dispatch as much power as required. As a result, the VSC is modelled as a
controlled three-phase voltage source whose reference voltage is given by the converter
control, which manages the power that flows in and out of the battery.

The control of a VSC can be modelled as explained in [23], consisting of two levels:
a high-level control and a low-level control. The high-level control is in charge of selecting,
based on a specific strategy, the power dispatched or consumed by the battery. Several
strategies have been proposed in the literature, from those based on rules [24] to more
complex strategies [25,26]. For this paper, a simple strategy based on rules has been
selected, which sets the reference power for the battery (PBATT) based on the maximum
power that the industrial consumption can absorb from the grid (PLIMIT), the actual power
that the industrial load is demanding (PLOAD), and the battery state of charge (SoCBATT).
The flow diagram for the high-level control is shown in Figure 4.
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Figure 4. Flow diagram for the VSC high-level control.

The BESS recharge profile has been defined as the minimum current that allows the
BESS to recharge the same amount of energy that it has provided to the load along the day.
Moreover, reactive power reference for the battery has been set to zero, so no contribution
is expected from it.

On the other hand, the low-level control is in charge of setting the voltage at the VSC
terminals so that the power management commanded by the high-level control can be
performed. The low-level control is a dq axis control, shown in Figure 5, which has been
developed building on [27]. The control is duplicated for P and Q, with minor variations.
Each branch accounts for an outer PI loop control, which sets the battery power equal to the
reference power coming from the high-level control, outputting a reference current. Then,
there is an inner PI loop control that adjusts the current flow through the VSC with the
reference current, so a reference voltage is outputted. This voltage is finally regulated so
that it corresponds to the VSC voltage at its terminals. In order to properly control the VSC,
the inner control must be considerably faster than the outer control. Detailed explanation
about the implemented dq axis control for a VSC can be found in [23,27].

Figure 5. VSC low-level control model in MATLAB Simulink.

3.2.2. Battery Model

The battery model controlled by the VSC is represented as an equivalent circuit model
which, as mentioned above, sacrifices accuracy in favour of generality. Nevertheless,
equivalent circuit models account for errors lower than 5% [28], sufficient for obtaining
general conclusions. The battery equivalent circuit is depicted in Figure 6, where u is
the instantaneous battery voltage [V], i is the battery current [A] (i > 0 discharging; i < 0
charging), ISELF is the self-discharge current, ROHM is the ohmic internal resistance [Ω],
RPOL is the polarization internal resistance [Ω], and CPOL is the polarization capacitor [F].
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Figure 6. Battery equivalent circuit model.

The selected battery model has been developed and validated by the authors in [18,29].
The model comprises three parts: a voltage/runtime model, a thermal model, and an
ageing model.

Battery Voltage/Runtime and Thermal Model

The lithium-ion battery model used in this paper is a modification of the MATLAB
Simulink model in [30]. The battery equivalent circuit is based on the Shepherd equa-
tion [31], which was experimentally validated later in [32]. The Shepherd model keeps the
error between 1% and 5% and it can be parametrizable without testing the battery in the lab-
oratory: it suffices with the manufacturer datasheet information. For the work developed
in this paper, both voltage/runtime and thermal models have been parametrized via a least-
square method. Data can be obtained from typical manufacturer’s curves: voltage-capacity
curve as a function of different C rates (with constant temperature), and voltage-capacity
curve at different temperatures (with constant C rate). The detailed parametrization process
is described in [33]. The voltage/runtime equations that govern the model, considering
thermal dependencies, can be written as follows:

E(SoC, T) = E0(T)− K(T) ·QMAX(T) · (
100
SoC
− 1) + A · e(−B·QMAX(T)·(1− SoC

100 )) (2)

RPOL−DISCHARGE(SoC, T) = K(T) · 100
SoC

(3)

RPOL−CHARGE(SoC, T) = K(T) · 1
1.1− SoC

100
(4)

E0(T) = E0(T0)−
dE
dT
· (T − T0) (5)

QMAX(T) = QMAX(T)−
dQ
dT
· (T − T0) (6)

K(T) = K(T0)− eα·( 1
T−

1
T0

) (7)

ROHM(T) = ROHM(T0)− eβ·( 1
T−

1
T0

) (8)

where E is the open-circuit nonlinear voltage (V), E0 is the open-circuit constant voltage
(V), K is the polarization parameter (Ah−1), QMAX is the maximum capacity (Ah), A is
the exponential voltage constant (V), B is the exponential capacity constant (Ah−1), T is
the temperature (K), T0 is the parameter reference temperature (K), and SoC is the state of
charge (%).
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The thermal model comprises two different parts: a heat generation model and a heat
evacuation model. The heat generation model can be expressed as follows [34]:

H = (E0 − E) · i + T · dE
dT
· i + (ROHM + RPOL) · i2 (9)

where H is the generated heat (W), and dE/dT the change of the equilibrium potential
with temperature (V·K−1).

The heat evacuation model occurs due to convection and radiation mechanisms, the
latter being negligible [35]. Assuming that the temperature in the battery is uniform
(reasonable approximation according to [36]), the following expression is obtained [35]:

H = m · cp ·
dT
dt

+
1

ROUT
· (T − T0) (10)

ROUT =
1

h · Ar
(11)

where m is the mass of the battery (kg), cp is the specific heat capacity (J·kg−1·K−1), h is the
convective heat transfer coefficient (W·m−2·K−1), Ar is the external surface area (m2), and
ROUT is the equivalent thermal resistance with the ambient (K·W−1).

Hence, the temperature variation can be calculated as:

T(s) =
H · ROUT + T0

1 + m · cp · ROUT · s
=

H · ROUT + T0

1 + tth · s
(12)

where tth is the thermal time constant (s), and s is the Laplace complex frequency parameter.

Battery Ageing Model

The ageing estimator implemented in the battery model comprises two parts: a cycling
ageing model and a calendar ageing model. In order to parametrize both models, a least-
square method has been applied, so the error between the model output and the real
battery data is minimized. The data for parametrizing the models need to be obtained from
experimental tests. The complete parametrization process is detailed in [33]. A minimum
set of 4 tests at different SoC and temperature are needed for the calendar ageing, and a
minimum of 5 tests with different combinations of C rate, DoD and temperature are needed
for the cycling model. Cycling ageing is related to the capacity fade when the battery is
subject to charging and discharging cycles, i.e., when the current is flowing through the
battery. It depends on several factors, among which Crate, temperature, and DoD are the
most relevant [37]. The cycling ageing model published in [38] for lithium-ion batteries has
been implemented:

Qloss−cyc = (a · T2 + b · T + c) · e(d·T+e)·Crate · Ah (13)

where Qloss−cyc is the cycling loss capacity (Ah), Ah the Ah that have flown through the
battery (in or out), and a, b, c, d, and e are constants depending on the battery chemistry.

On the other hand, calendar ageing is related to the capacity fade in the battery because
of the time passed from the moment it was manufactured. It is dependent on the SoC of the
battery, the temperature, and the time [37]. The calendar ageing model published in [39]
has been implemented:

Qloss−cal = f · eg·SoC · e
h
T · tz (14)

where a, b, and c are constants that depend on the battery chemistry, and z can take values
between 0.5 and 1 and depends on the chemistry as well.

Apart from the ageing factors previously mentioned, additional ageing factors such as
DoD or mean SoC along a cycle are indirectly considered by the model. The Ah dependency
included in the cycling ageing is indirectly considering the DoD, since the higher the DoD
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the higher the Ah that flow through the battery. Moreover, the mean SoC along a cycle is
considered in the calendar ageing equation, since the latter is constantly computing the
battery SoC contribution.

3.3. Grid Model

The grid is modelled as an infinite power grid, so both the frequency and voltage at
the PCC are kept constant. A Three-Phase Source model has been selected for this purpose,
with a swing generator type, high short-circuit power, and low X/R ratio.

4. Case Example

In order to illustrate how the described methodology could be implemented, a case
example is analysed. The models developed in Section 3 are used for performing the
simulations. The same structure of steps defined in Section 2 is applied:

4.1. Step 1. Parametrize Models

At first, the simulations models need to be parametrized. For the grid model, the
following parameters have been selected, so an almost infinite power grid is implemented
(Table 1).

Table 1. Grid model parameters.

Parameter Value

Reference voltage 400 V
Short-circuit ratio 25

X/R ratio 20

The battery model can be parametrized following the methodology defined in [29,32,33].
A commercial lithium polymer battery cell from Kokam, model SLPB100255255HR2, has
been selected for this case study, which is a standard lithium-ion pouch cell [40]. The ex-
perimental data for calculating the ageing model parameters have been obtained from [40]
and [33], where the complete theoretical and experimental validation for the selected bat-
tery cell has been performed. The battery ageing model performs with an error below 5%,
as detailed in [33]. The selected battery cell main parameters are shown in Table 2.

Table 2. Battery model data and parameters [33,40].

Data Value Remarks

Reference capacity 55 Ah 0.2 C, 23 ºC
Impedance Max. 0.60 mΩ AC 1 kHz

Average voltage 3.7 V
Lower limited voltage 2.7 V
Upper limited voltage 4.2 V

Parameter Value Parameter Value
a 1.3961× 10−7 b −7.7116× 10−5

c 0.0107 d −1.2959× 10−3

e 0.4404 f 164.7155
g 0.6898 h −4.2126× 103

z 0.5

The load needs a power consumption profile as input. For this case example, two 24-h
profile on a 1-second basis have been selected, corresponding to a typical day in summer
and a typical day in winter in an industrial building. The selected building is the CEDEX
facility in Madrid, located at Julián Camarillo 30, 28037 Madrid (Spain). For the analysis
performed in this paper, the load corresponds to a three-phase load with no unbalance
between phases, whose active power profiles are shown in Figure 7 for both summer and
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winter. The cumulative energy consumed by the load for each typical day is also shown in
Figure 8.
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Figure 7. Industrial consumption profiles for summer and winter scenarios.
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Figure 8. Cumulative energy consumed by the load in summer and winter scenarios.

4.2. Step 2. Define Test Cases

Test cases are defined by the BESS control parameter, which is the power limit that
the load is allowed to consume from the grid (PLIMT). Hence, as PLIMIT decreases, the
battery will increase its contribution. Scenarios are divided between summer scenarios (S)
and winter scenarios (W). SB and WB correspond to the base case scenario for each season,
which is the current scenario at the real world facility, with a contracted power of 90 kW.
Steps of 10 kW have been selected, so the different scenarios are defined in Table 3.
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Table 3. Scenarios defined for the case example.

Scenario PLIMIT

SB 70 kW
S6 60 kW
... ...
S2 20 kW
S1 10 kW

WB 90 kW
W8 80 kW
... ...

W2 20 kW
W1 10 kW

4.3. Step 3. Simulate Scenarios and Obtain BESS Requirements and Configuration

As previously explained in Sections 2 and 3, BESSs that are not able to recharge as
much energy as they have delivered along the day, are considered as not valid. Once the
simulations are performed, BESS power profiles for the valid configurations are obtained.
For the case example presented in this paper, valid BESS power profiles are shown in
Figures 9 and 10.
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Figure 9. BESS power profile in summer for different values of PLIM.
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Figure 10. BESS power profile in winter for different values of PLIM.
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As expected, the lower the PLIMIT , the higher the contribution from the BESS. Since
the BESS deals with high demand peaks, it follows a similar distribution as the top part of
the industrial load profile for the corresponding scenario. Scenarios SB and WB, i.e., when
the grid delivers as much power as demanded by the load, implies no contribution from
the BESS.

For PLIMIT values below 30 kW, BESSs are not able to recharge the same amount of
energy delivered during the high-demand period, both for summer and winter scenarios.
It must be noticed that PLIMIT also affects the maximum power available for recharging,
i.e., for a PLIMIT value of 20 kW, the maximum power available for recharging is 20 kW
since that recharging power is coming from the grid, which is not sufficient for the case
with PLIMIT values below 30 kW.

Based on the BESS power profiles, the power and energy requirements (PBESS−req and
EBESS−req) for the valid scenarios are shown in Table 4.

Once the requirements are calculated, the most suitable BESS configuration must be
selected for each scenario (number of cells connected in series and in parallel). Commercial
three-phase inverters for 400 V grids demand 48 V in the DC side. Hence, based on the
standard cell parameters, the number of cells in series so the DC side voltage reaches
48 V equals:

48VDC−side−voltage

3.7VNominal−cell−voltage
≈ 13 (15)

The number of cells in parallel depends on the BESS energy requirements. Given that
one branch of 13 cells accounts for:

13 cells · 3.7 V/cell · 55 Ah = 2.64 kWh (16)

The following table can be filled:

Table 4. BESS requirements for the different scenarios.

Scenario PLIMIT PBESS−req EBESS−req Min. BESS Config. EBESS
- [kW] [kW] [kWh] - [kWh]

SB 70 - - -
S6 60 7.13 0.015 13s1p 2.64
S5 50 17.13 0.12 13s1p 2.64
S4 40 27.13 2.07 13s1p 2.64
S3 30 37.13 34.79 13s14p 36.96

WB 90 - - -
W8 80 3.45 0.01 13s1p 2.64
W7 70 13.45 0.05 13s1p 2.64
W6 60 23.45 0.43 13s1p 2.64
W5 50 33.45 11.51 13s5p 13.2
W4 40 43.45 49.78 13s19p 50.16
W3 30 53.45 101.14 13s39p 102.96

Scenarios S6 to S4 and W8 to W6 can satisfy their energy requirements with just one
BESS branch in parallel. It must be noticed that, given the BESS configuration and the
power demand shown in Table 4, the BESS in scenario S4 will be more demanded than
in scenarios S5 and S6, and the BESS in scenario W6 will also be more demanded than
scenarios W7 and W8, i.e., it will work with higher C rates.

4.4. Step 4. Calculate BESS Ageing

BESS ageing is closely related to its C rate and temperature (among other factors),
as previously explained in Section 3. The higher the C rate, the higher the temperature
augmentation in the battery. Hence, the BESS configuration has a huge influence on the
BESS ageing, since batteries with a higher number of cells in parallel work with lower C



Appl. Sci. 2021, 11, 7395 13 of 19

rates, i.e., with less stress. This implies that “bigger” BESSs may last longer than “smaller”
BESSs, which may be beneficial from a cost–benefit point of view.

Four configurations have been tested for each BESS: the minimum number of cells so
that the energy requirements are satisfied, and three more configurations increasing one
extra branch each time, so that the C rate is decreased.

Commonly, a BESS is considered as aged when it loses 20% of its capacity retention.
As seen in Figure 11, Scenario S4 presents a very different behaviour from the mini-

mum configuration to the minimum plus one. This happens because the C rate is dimin-
ished to a half when the branches in parallel are increased by one (from 1 to 2), which is a
big difference according to the ageing model. A higher number of branches in parallel do
not improve that much the behaviour, although the ageing is further reduced, as expected.

Scenario S3, which is the summer scenario with more energetic demand from the
BESS, does not present a high ageing. This happens because the highest C rates are close to
1C, and there are few moments where those C rates are reached, even though the BESS is
dispatching power during longer periods along a day. However, ageing for Scenario S3 is
higher than Scenario S6, the BESS is working with a less intermittent profile, implying that
temperature is higher during a cycle. Scenario S5 presents a higher ageing that Scenario S3
for the minimum BESS configuration, given that the C rate is higher (close to 3C), although
it works for shorter times with that C rate. In any case, a low ageing is expected for every
scenario except for Scenario S4.

For winter scenarios, as seen in Figure 12, Scenarios W8 and W7 present a low ageing
due to the few periods of time under which the BESS is dispatching power, even though
the C rate for W7 and the minimum BESS configuration reaches 5C. Besides, a low ageing
is expected for Scenarios W3 and W4 which, being the most energetic form the point of
view of the BESS, are hugely over-dimensioned in terms of power (very low C rates).

Min Min+1 Min+2 Min+3

BESS config.

2400

2700

3000

3300

3600

3900

4200

4500

D
ay

s S6 = 60 kW

S5 = 50 kW

S4 = 40 kW

S3 = 30 kW

P limit

Figure 11. Days until ∇Q = 20% as a function of the BESS configuration in summer.

Scenario W6 presents a similar behaviour as S4, where increasing the number of
branches in parallel from 1 to 2 prevents from an excessive ageing, which is produced as
a consequence of working with C rates higher than 8C for a few moments along a day.
Scenario W5 steadily improves its ageing as the branches in parallel increase, although it
suffers from the highest ageing except for the minimum BESS configuration.
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Figure 12. Days until ∇Q = 20% as a function of the BESS configuration in winter.

4.5. Step 5. Cost–Benefit Analysis

Once the BESS ageing for different configurations and scenarios has been calculated, a
cost–benefit analysis must be performed, considering both the BESS cost and fixed term
energy cost. Among the different reports found in the literature that analyse energy storage
costs, the one published in [41] has been selected as the most reliable study.

Moreover, electricity access fees for industrial consumption for the regulated market in
Spain can be found in [42]. The fixed term of the access fee considers three time periods of
time-discrimination (P1, P2, and P3). For further information about the Spanish regulated
market, and time discrimination periods, the authors recommend the work published
in [42].

The variable term of energy is kept constant for every scenario, i.e., the BESS is re-
charged from the grid, and the BESS energy recharged form the grid plus the industrial
load demand matches the total energy consumed by the industrial load in scenarios SB
and WB, so the overall energy consumption remains constant. Hence, it is not included in
the cost. Costs are summarized in Table 5 [42].

Table 5. Summarized costs.

Item Cost
- [€/kW and Year]

P1 59.1734
P2 39.4906
P3 8.3677

Considering this, the cost equation can be written as:

Cost(
euro
year

) = (P1 + P2 + P3) · PLIMIT + BESSproject−cost (17)

The contracted power (PLIMIT) is considered constant for the three time-discrimination
periods (as is requested to industrial consumption).

The yearly BESS project cost has been calculated based on [43–45]. The annualized
cost of the BESS project has been defined as:

Cann = CRF(i, Rproj) · CNPC (18)

where Cann is the annualized cost, CNPC is the net present cost, and CRF is the capital
recovery factor, which depends on the annual real discount rate (i) and on the project
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lifetime (Rproj). CNPC is calculated as the present value of all the costs of installing and
operating the battery over the project lifetime, minus the present value of all the revenues
earned over the project lifetime.

Hence, the total yearly cost is calculated as follows:

Cost(
euro
year

) = (P1 + P2 + P3) · PLIMIT + Cann = (P1 + P2 + P3) · PLIMIT + CRF(i, Rproj) · CNPC (19)

The constants for calculating the BESS project cost are listed in Table 6 [41,43],

Table 6. Summarized costs for the BESS project.

Item Value [Unit]

BESS cost (€/kW) 1876 €/kW
BESS cost (€/kWh) 469 €/kWh

COM 10 €/kW and year
i 3.41%

Nproj 25 years

where COM is the operation and maintenance cost, and Nproj is the number of years over which
the cost is annualized. The total cost for each scenario is shown in Tables 7 and 8, where:

Total(
euro
year

) = Fixed− access− f ee + BESS− project (20)

Table 7. Costs for the summer scenarios.

Scenario PLIMIT BESS Config. Fixed Access Fee BESS
Project Total Cost

- [kW] - [€/Year] [€/Year] [€/Year]
SB 90 - 7492.2 - 7492.2
S6 60 13s1p 6421.9 940.3 7362.2

+1p 989.8 7411.7
+2p 1039.7 7461.6
+3p 1089.6 7511.5

S5 50 13s1p 5351.6 2074 7425.6
+1p 2118.3 7469.9
+2p 2167.5 7519.1
+3p 2217.1 7568.7

S4 40 13s1p 4281.3 3291 7572.3
+1p 3265.5 7546.8
+2p 3305.5 7586.8
+3p 3351.6 7632.9

S3 30 13s14p 3211 6098.5 9309.5
+1p 6141.6 9352.6
+2p 6185.9 9396.9
+3p 6231.1 9442.1
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Table 8. Costs for the winter scenarios.

Scenario PLIMIT BESS Config. Fixed Access Fee BESS Project Total
- [kW] - [€/Year] [€/Year] [€/Year]

WB 90 - 9632.9 - 9632.9
W8 80 13s1p 8562.5 525.1 9087.6

+1p 574.9 9137.4
+2p 624.8 9187.3
+3p 674.7 9234.2

W7 70 13s1p 7492.2 1654.6 9146.8
+1p 1702.6 9194.8
+2p 1752.2 9244.4
+3p 1802 9294.2

W6 60 13s1p 6421.9 2802.5 9224.4
+1p 2833.4 9255.3
+2p 2881.3 9303.2
+3p 2930.5 9352.4

W5 50 13s5p 5351.6 4487.7 9839.3
+1p 4523.9 9875.5
+2p 4565 9916.6
+3p 4609.1 9960.7

W4 40 13s19p 4281.3 7460 11,741.3
+1p 7509 11,790.3
+2p 7554.7 11,836
+3p 7601.4 11,882.7

W3 30 13s39p 3211 11,224 14,435
+1p 11,271 14,482
+2p 11,319 14,530
+3p 11,367 14,578

As it can be seen in Tables 7 and 8, results indicate that introducing a BESS into an
industrial consumption for diminishing the fixed term of the electricity fee, can reduce the
overall yearly cost. Moreover, this reduction can enhance an intelligent use of the energy in
industrial buildings, as well as the improvement of the energy efficiency along the electric
power grid, since consumption peaks are eliminated.

Tables 7 and 8 show that the minimum reduction in the fixed power limit is the best
solution for this particular case example, both for summer and winter, from the point of
view of the industrial consumer. Every configuration in scenario S6, and two of them in
Scenario S5, reduce the yearly price of having a higher contracted power in summer. A
similar behaviour is obtained in Table 8 for Scenarios W8, W7 and W6. The rest of the
scenarios do not improve the yearly cost for this case example, although some interesting
conclusions can be drawn.

Scenario S4 shows that the minimum configuration might not be the optimal solu-
tion, since configuration 13s2p provides a higher cost reduction than the minimum BESS
configuration. A higher number of branches in parallel allows for a reduced C-rate, DoD,
and temperature in each scenario. Hence, the BESS lifespan is extended and a higher cost
reduction is achieved. A similar result would be expected for Scenario W6, given the ageing
behaviour shown in Figure 12. However, in this case, the ageing is sufficiently low with
the minimum BESS configuration, so the extra benefit of the further reduction in ageing
does not improve that much the yearly cost.

Costs are not reduced in scenarios S4, S3, W5, W4, and W3 with respect to the base
case scenario, since the BESS is dedicated not only to reducing the peak consumption, but
to dealing with an important part of the load demand. This forces an over-dimensioning
in the BESS’s number of cells in parallel (given that the number of cells in series is fixed),
and indicates that those BESS configurations may not be the best option for feeding an
industrial infrastructure by themselves since, even though technically viable, it is costly.
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5. Conclusions

This paper presents a BESS dimensioning methodology for reducing the fixed term of
the electricity access fee for industrial consumption, considering battery ageing and the cost
of the BESS and electricity access fees. By connecting a BESS together with a consumption,
the power demand peaks can be reduced, so there is no need for contracting a high fixed
term power to cover the high demand peaks.

A five-step dimensioning methodology is described, finishing with a cost–benefit
analysis to facilitate the final decision making. The methodology is easily implemented
and can be adapted to different electricity market conditions, as well as particularized to
different BESS or load conditions. The parameter that defines the different scenarios of
the methodology is the power contracted from the grid, being the decision variable the
combined cost of the BESS and the fixed electricity fee.

Results drawn from the two case examples show that implementing a small battery
to limit the consumption peaks can lead to considerable cost reduction for the industrial
consumer. In fact, the best techno-economical solution corresponds to a small BESS that
limits the peak consumption. The low C rate, DoD, and steady temperature experienced
by a BESS that only limits the top part of the peak consumption, guarantees a long lifespan
that highly reduces the overall yearly costs. Given that BESS are over-dimensioned in
energy in several scenarios (S6, S5, W8, W7, and W6), a higher contribution from the BESS
could be imposed in order to reduce the fixed power contracted from the grid, achieving a
higher peak reduction. However, this leads to an increased ageing (higher C rate, DoD,
and temperature profile) that has an impact on the techno-economical decision, turning
those solutions into non-optimum.

Apart from the previous conclusion, depending on the case example and scenario
under study, it could be beneficial from the economical point of view to increase the size of
the BESS with more cells in parallel. This situation occurs when the BESS energy is suited
to the BESS energy requirements (scenario S4). This forces the BESS to work with a high
DoD and high C rates, deriving in a premature ageing. Thus, increasing the BESS size will
allow it to work under less stress, extending the time needed to a BESS replacement and
reducing the overall yearly costs.

One important conclusion drawn form the case examples results is that the optimum
BESS is over-dimensioned in both power and energy. This may indicate that other energy
storage technologies different than Li-ion batteries could be more beneficial from the
techno-economic point of view. Supercapacitors, which can last millions of cycles until
they need a replacement, or flow batteries, which can dissociate energy and power, may be
suitable for their inclusion in a further study. In addition, if the industrial consumption is
facing a scenario with low consumption peaks, the optimum solution could be discarding
the usage of an energy storage system at all. As previously stated, the presence of high
consumption peaks is the reason that justifies the inclusion of a BESS together with the
industrial consumption.

Consequently, the proposed methodology is of potential interest for industrial con-
sumers, since the cost-benefit analysis may reduce the yearly cost of their infrastructure,
and also for TSOs and DSOs, since the peak reduction improves the efficiency of the
transmission and distribution of the energy along the electric power grid. Moreover, BESS
manufacturers could also find benefits in this methodology for the development of specific
products related to this industrial demand peak and fixed term fee reduction.

Suggested future works include the parametrizations of the grid with frequency and
voltage variations, so that further analysis considering BESS contributions to the grid in
terms of frequency and voltage regulation can be performed. Moreover, time discrimination
pricing can be added to electricity energy prices, so that the BESS can recharge during low
price periods, providing an even higher reduction than the one shown in this work. At
last, a techno-economic evaluation considering other energy storage technologies such as
supercapacitors or flow batteries may result in interesting conclusions.
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