1	https://doi.org/10.1016/j.enggeo.2021.106272
2	
3	Pellets/block bentonite barriers: laboratory study of their evolution upon
4	hydration
5	María Victoria Villar ^a , Rubén Javier Iglesias, Carlos Gutiérrez-Álvarez, Beatriz Carbonell
6	Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avd.
7	Complutense 40, 28040 Madrid, Spain
8	^a corresponding author: <u>mv.villar@ciemat.es</u> , +34 913466391

9 1 Introduction

10 The backfilling and sealing of deposition galleries or holes and access galleries and shafts is an 11 important part of the nuclear waste underground repository design. Openings created during the 12 construction of the repository are potential preferential pathways for water, gas and radionuclides migration, and have to be effectively sealed. Bentonite or bentonite-based mixtures have been 13 proposed as backfill and sealing materials for their low permeability, high swelling capacity and high 14 15 retention capacity. To enhance these properties bentonite has to be compacted, and dry density 16 values of between 1.45 and 1.65 g/cm³ are usually considered appropriate to ensure the main safety 17 functions of the clay barrier (Sellin and Leupin 2013). The design of clay barriers has been mainly 18 based on using blocks of compacted bentonite and for this reason these materials have been widely 19 characterised in the form of high-density pre-compacted blocks, which have also been used in large-20 scale experiments (e.g. Dixon et al. 2002, ENRESA 2006, SKB 2010).

The use of high-density bentonite pellets (combined or not with powdered bentonite) as barrier material was also proposed several decades ago (Salo & Kukkola 1989, Volckaert et al. 1996). The

23 manufacturing of high-density pellets usually involves the pre-heating of bentonite powder so that a 24 drier and more compressible material can be produced and compacted. The advantage of this 25 material is that it is easy to manufacture and install: the bentonite pellets can be emplaced using 26 auger discharge tubes or even pneumatic projection techniques. Thus, the backfilling operation 27 becomes an easier and potentially robotised procedure. The initial works using pellets considered 28 vertical emplacement of the canister. This was the case of the large-scale demonstration experiment 29 RESEAL, where a mixture of high-density bentonite pellets and bentonite powder was used to backfill 30 a vertical shaft at the Hades Underground Research Facility in Mol, Belgium (Volckaert et al. 2000, 31 van Geet et al. 2009). The pellets used in that project were all manufactured in the same size and 32 shape from FoCa bentonite, and the effect of the pellet/powder ratio on the mixture properties was 33 also tested in the laboratory (e.g. Imbert et al. 2002). More recently, the Institut de Radioprotection 34 et de Sûreté Nucléaire (IRSN, France) studied the use of MX-80 bentonite pellets/powder mixtures as 35 backfill material, including both laboratory (Molinero Guerra 2018) and in situ investigations 36 performed at the Tournemire Underground Research Laboratory (URL, France, 37 https://www.irsn.fr/dechets/recherche/programmes/scellement-stockage/Pages/essais-in-

38 <u>situ.aspx</u>), whereas the Full-Scale Seal test (FSS), run by the French nuclear waste agency (ANDRA),39 tested this kind of mixtures in a surface facility as a seal for repository concepts both for high and40 intermediate-level radioactive wastes (Bosgiraud and Foin 2016). The use of regular pellets combined41 with powder is currently being tested in the framework of the VSEAL project to backfill vertical shafts42 at the Tournemire facility (e.g. Alcantara et al. 2020).

However, in the case of horizontal placement, a rigid support for the canister is needed, what can be
achieved by the combined use of a lower bed made of highly compacted bentonite blocks in which
the waste canister rests and an upper buffer made of granular bentonite material (GBM, i.e. pellets).
This disposal concept has been adopted by the Swiss waste management agency, and is described in
detail in NAGRA (2019) and references therein. The pellets/blocks construction concept was initially

48 demonstrated in the large-scale Engineered Barrier Emplacement Experiment (EB), carried out at the 49 Mont Terri URL, which is excavated in Opalinus Clay, using FEBEX bentonite to construct the two-50 component barrier (ENRESA 2005, García-Siñeriz et al. 2015). Afterwards, other large-scale 51 experiments have been launched at the Mont Terri URL (e.g. HE-E and FE, using MX-80 bentonite) to 52 investigate the performance of this type of material under actual operational conditions (Gaus et al. 53 2014, Müller et al. 2017). In all the projects mentioned in this paragraph, the bentonite pellets had 54 irregular shapes and different sizes (15-0.4 mm), and they were combined in granulometric curves 55 optimized to give as high as possible overall dry densities avoiding at the same time excessive 56 segregation.

57 The blocks used to support the containers will be manufactured from the bentonite with hygroscopic 58 water content (or higher than hygroscopic in some disposal concepts) compacted at a high dry 59 density. In contrast, the initial water content of the pellets will be low (because of the drying process 60 prior to manufacturing), and they will be poured by auger conveyors or projected. As a result, the 61 density of the GBM once emplaced will be much lower than that of the compacted blocks. Furthermore, the two materials will also be very different in terms of their pore size distribution, 62 63 with larger pores expected in the GBM part (e.g. Hoffmann et al. 2007). Hence, it is clear that the 64 combined use of pellets and blocks in the same section of the barrier introduces difficulties in the 65 understanding and modelling of the system performance that have to be addressed. So far there is just a large-scale in situ test with a two-component barrier already dismantled (the EB test at Mont 66 67 Terri mentioned above). The more relevant observation obtained in the dismantling of the test was 68 the considerable homogenization of the dry density of blocks and pellets along a vertical section, although differences in dry density persisted, with the blocks still having overall higher dry density 69 70 than the GBM (García-Siñeriz et al. 2015, Gens et al. 2021).

In this context, the overall objective of the BEACON (Bentonite Mechanical Evolution) project was to
 evaluate the consequences of heterogeneities on the performance of bentonite barriers in geological

73 repositories for high-level radioactive waste. Although the bentonite buffer shows a natural tendency 74 towards homogenisation, long-term observations both in large-scale and in laboratory tests revealed 75 that a degree of heterogeneity may persist (e.g. Villar et al. 2020, Bernachy-Barbe et al. 2020). In this 76 respect, CIEMAT carried out in the framework of this project a series of tests in cells to evaluate one 77 of the sources of bentonite heterogeneity: the combination in the same barrier of pellets and blocks 78 of compacted bentonite, whose initial dry densities and structures noticeably differ. The aim of this 79 investigation was to obtain qualitative and quantitative information about the evolution, at 80 laboratory scale, of initially inhomogeneous bentonite samples (pellets/blocks) upon hydration under 81 isothermal conditions. Both in the laboratory and in the real case, this evolution might be affected by 82 the characteristics of the barrier system (the particular dry density and water content of each barrier 83 component as well as their sizes) and by the boundary conditions, such as the existence of gaps, 84 temperature and water salinity and availability. In the present research two factors potentially 85 affecting the mechanical evolution of a two-component barrier were analysed: water availability and barrier configuration. Thus, the tests were performed either under constant pressure conditions, 86 87 simulating a repository excavated in crystalline host rock with plenty of water, such as the 88 underground laboratory of Grimsel (https://www.grimsel.com/), or under low water inflow rate, 89 simulating a repository with scarce water availability, which would be the case of clay host rocks 90 (Grambow 2016), such as the underground laboratory in Mont Terri (https://www.mont-terri.ch/). 91 An additional variable analysed in this work was the influence of hydrating through the pellets or the 92 block part.

To date no tests analysing the hydro-mechanical behaviour of two-component bentonite samples in the laboratory have been published, although Martikainen et al. (2018) performed two similar tests in terms of geometry that were briefly reported and modeled by several groups in Talandier (2019) and Abed and Solowski (2019). Smaller oedometric tests (height 5 cm, diameter 6 cm) in which the two components were blocks of different dry density or pellets and powder were performed by the

98 French Alternative Energies and Atomic Energy Commission (CEA) in the context of the Beacon 99 project (Baryla et al., 2019, Bernachy-Barbe, 2021). Exercises performed to model tests involving 100 saturation of two-component barriers highlighted the fact that the partition between micro and 101 macro porosity was different for the two bentonite materials (Talandier 2019). The conclusion was 102 that double porosity models appear very suitable to simulate the mechanical behaviour of bentonite 103 compacted blocks, bentonite pellets and their combination in a single section of the engineered 104 barrier. More recently, triple porosity models considering inter-pellet pore space, void space 105 between clay aggregates inside pellets and space inside aggregates, have been proposed to model 106 the hydro-mechanical behaviour of pellets/powder mixtures (Navarro et al. 2020).

107 2 Material and methods

108 Isochoric infiltration tests were performed in two-component samples, half of them consisting of a 109 bentonite compacted block and the other half of a pellet mixture. Two types of cells were used: a 110 large-scale oedometer (MGR) and a transparent cell (CW). In most tests the lower half of the cell was 111 filled with bentonite pellets with an average dry density close to 1.30 g/cm^3 and the upper part by a 112 1.60 g/cm³ bentonite block (in two tests the placement was in reverse). In all cases hydration with 113 deionised water took place through the bottom at ambient temperature. These kinds of tests were 114 complementary: whereas MGR tests provided quantitative data, the information provided by the CW 115 test was mostly visual and qualitative.

116 **2.1 Material**

The material used in the laboratory tests was a bentonite extracted from the Cortijo de Archidonaquarry (Almería, Spain) at two different moments. The first batch, known as FEBEX bentonite, was

extracted in 1995 and is a granulate used to obtain the compacted blocks. The second batch wasextracted in 2001 and was used to manufacture the pellets.

The FEBEX bentonite is a 900-t batch of bentonite processed in 1996 for the FEBEX project. The processing consisted in homogenisation, air-drying and manual removing of volcanic pebbles on site and, at the factory, crumbling, drying in a rotary oven at temperatures between 50 and 60°C to a water content of around 13%, and sieving through a 5-mm mesh. The physico-chemical properties of the FEBEX bentonite, as well as its most relevant thermo-hydro-mechanical and geochemical characteristics were reported in ENRESA (2006) and updated in e.g. Villar (2017).

The smectite content of the FEBEX bentonite is close to 90 wt.%. The smectitic phases are actually made up of a montmorillonite-illite mixed layer, with 10-15 wt.% of illite layers. Besides, the bentonite contains variable quantities of quartz, plagioclase, K-felspar, calcite, and cristobalitetrydimite. The cation exchange capacity is 98±2 meq/100g, the main exchangeable cations being calcium (35±2 meq/100g), magnesium (31±3 meq/100g) and sodium (27±1 meq/100g). The predominant soluble ions are chloride, sulphate, bicarbonate and sodium.

The liquid limit of the bentonite is 102 ± 4 %, the plastic limit 53 ± 3 %, the density of the solid particles 2.70±0.04 g/cm³ and 67±3 % of particles are smaller than 2 µm. The hygroscopic water content in equilibrium with the laboratory atmosphere (relative humidity 50 ± 10 %, temperature 21 ± 3 °C) is 13.7±1.3%.

The saturated hydraulic conductivity of compacted samples of the FEBEX reference bentonite is exponentially related to their dry density. Two empirical relationships relating hydraulic conductivity $(k_w, m/s)$ to dry density (ρ_d , g/cm³) were obtained for samples permeated with deionised water at room temperature, valid each for a different dry density range (Villar 2002):

141 For
$$\rho_d > 1.47 \text{ g/cm}^3$$
: log $k_w = -2.96 \rho_d - 8.58$ [1]

142 For $\rho_d < 1.47 \text{ g/cm}^3$: log $k_w = -6.00 \rho_d - 4.09$ [2]

143 The swelling pressure (P_s , MPa) of compacted samples is also exponentially related to the bentonite 144 dry density, according to the empirical expression in Eq. 3 (Villar 2002):

145
$$\ln P_{\rm s} = 6.77 \,\rho_{\rm d} - 9.07$$
 [3]

Relationships between suction and water content obtained for different bentonite dry densities under isochoric conditions can be found in e.g. Villar et al. (2019). For a sample compacted at dry density 1.6 g/cm³ with hygroscopic water content the initial suction value would be ~120 MPa.

149 The pellets were prepared for the EB project (ENRESA 2005) using a 100-t batch of bentonite 150 extracted in 2001 also from the Cortijo de Archidona deposit. To manufacture the pellets the 151 bentonite was dried and milled in a multi-step process to produce a fine grade powder with a water 152 content of between 3.0 and 4.5%. Later, a commercial plant with an in-line highly automated briquetting process produced coarse (7-15 mm) and fine (0.05-2 mm) grained materials with dry 153 densities of 2.11 and 2.13 g/cm³, respectively (Kennedy et al. 2004). Preliminary mineralogical 154 analyses suggest that the content of smectite of this batch could be lower than in the FEBEX batch, 155 156 whereas the quartz, calcite and dolomite contents would be higher. The cationic exchange capacity 157 was also checked to be lower (Villar and Gómez-Espina 2012). A detailed hydro-mechanical 158 characterisation of this mixture was performed by Hoffmann (2005).

159 The different grain sizes were kept separated in the laboratory and mixed in the right proportion just 160 before every test, trying to keep a Fuller's curve similar to that used for the EB project, with a 161 maximum diameter of 12.7 mm and a minimum diameter of 0.425 mm, in order to reduce 162 segregation. The precise granulometric distribution used in the laboratory tests is shown in Tab. 1. Except for the two first tests performed (MGR21 and MGR22) no pellets larger than 9.5 mm were 163 164 used (the laboratory run out of them). In tests MGR23 to MGR27 the pellets were softly dried to a 165 water content closer to the fabrication one (3.5%), because the water content of the pellets had 166 increased during storage to a value of \sim 10%. This resulted in a significant different initial suction

167 between the pellets that were dried and those that were not, 380 vs. 114 MPa (measured with a

168 capacitive sensor).

Sieve sizes (mm)	Percentage retained (%)	
Test	MGR21, MGR22	Rest of tests
9.5	17	0
4.75	31	37
2.0	26	31
1.18	11	13
0.59	10	12
0.425	5	6

169 Tab. 1. Granulometric curve of the bentonite pellets used in the tests (MGR and CW)

170

171 2.2 Tests in large-scale oedometer

The large-scale oedometer consists of a cylindrical body with base and an upper piston that may 172 173 move along the cylinder (Fig. 1). The body has an inner diameter of 10.0 cm and the length of the 174 sample inside was 10.0 cm. The top and bottom of the sample were in contact with filter papers and 175 ceramic porous discs connected to outlets. The cell was placed in a rigid frame that guaranteed the 176 constant volume of the sample by hindering the displacement of the piston. An external LVDT 177 measured the potential axial displacements, whereas a 10-t load cell in the upper part of the frame 178 measured the force developed by the specimen with a precision of 0.2% (equivalent to ± 1 kPa for an 179 axial pressure of 0.5 MPa). This cell was used in previous investigations using pellets or compacted 180 powder separately (Imbert and Villar 2006, Villar 2012).

182 Fig. 1. Schematic representation of the oedometer cell

183 The lower half of the cell was filled with bentonite pellets with an average dry density close to 1.30 g/cm³ and the upper part by a bentonite block of nominal dry density 1.60 g/cm³, except in test 184 MGR27, in which the position of block and pellets was inverted. The bentonite was directly 185 186 compacted inside the cell with its hygroscopic water content. The pellets were poured on this block 187 and carefully shaken as necessary to get the target density (Fig. SM1 in Supplementary Material, 188 available online). Then the cell was overturned and mounted in the oedometric frame. The water intake took place thorough the bottom surface, either under a low injection pressure (a 1.5-m water 189 column, 15 kPa) or under a constant low flow (0.05 cm³/h). In the first case the water intake was 190 191 measured with an automatic volume change apparatus and in the second case with a 192 pressure/volume controller. During hydration the top outlet remained open to atmosphere and the 193 pressure exerted by the material, the sample deformation and the water intake were measured and 194 automatically recorded. A summary of the tests performed and of their characteristics is given in Tab. 195 2 and Tab. 3.

196 Tab. 2. Characteristics of the MGR tests

Test	Hydration	Duration (days)	Observations	<i>Т</i> (°С)
MGR21	Constant pressure: 15 kPa	34	Including pellets >9.5 mm	23.1±0.6
MGR22	Constant flow: 0.05 cm ³ /h	266	Including pellets >9.5 mm	22.5±1.3
MGR23	Constant pressure: 15 kPa	210	Pellets dried	22.6±1.5
MGR24	Constant pressure: 15 kPa	14	Pellets dried	22.5±0.6
MGR25	Constant pressure: 15 kPa	76	Pellets dried	22.7±1.1
MGR26	Constant flow: 0.05 cm ³ /h	132	Pellets dried	23.6±1.2
MGR27	Constant pressure: 15 kPa	278	Pellets dried	23.0±1.2

197

198 2.3 Tests in transparent cell

The transparent cell or window cell (CW) is a custom-built square cell consisting of two transparent 199 200 methacrylate faces screwed to a steel frame (Fig. 2). The inner dimensions of the steel frame are 201 121x118x20 mm. A square block of the same dimensions was compacted in a bespoke mould and 202 half sectioned. One of the halves was placed in the cell and the rest of the cell was homogeneously 203 filled with the pellets while the cell was horizontally laid. Photographs of the mounting process are 204 shown in Fig. SM2. During assembly the fine fractions moved towards the bottom. The side of the cell 205 which was at the bottom during assembly was called B-face. Hence, the two faces of the cells, A and 206 B, presented different appearance (Fig. SM3).

Fig. 2. Schematic front and lateral views of the transparent cell (CW1 with pellets at the bottom, as shown in the Figure,
 and CW2 with pellets on top)

Two geotextile layers were placed at the upper and bottom sides of the cell. Hydration took place through the bottom with a 30-cm (3 kPa) water column. In test CW1 the pellets were placed at the bottom, and inversely, in test CW2 the block was at the bottom and consequently was the first part to be hydrated. Photographs of both sides were periodically taken.

The tests were performed at room temperature (23±1°C). Test CW1 lasted 379 days and test CW2
lasted 420 days.

216 **2.4 Postmortem analyses**

207

At the end of the tests the samples were extracted from the cell (by pushing with a piston in the case of cell MGR), measured, weighed, and cut in regular horizontal sections. Each section was subsampled to determine water content, dry density and the pore size distribution. The cylindrical blocks from MGR tests were sliced in 6 horizontal levels (3 for pellets and 3 for block). The CW samples were cut into 15 parts (5 rows and 3 columns). The subsamples were numbered from top to
bottom, i.e. sample #1 was the one farther away from the hydration surface.

The gravimetric water content (*w*) is defined as the ratio between the mass of water and the mass of dry solid expressed as a percentage. The mass of water was determined as the difference between the mass of the sample and its mass after oven drying at 110°C for 48 hours. Dry density (ρ_d) is defined as the ratio between the mass of the dry sample and the volume occupied by it prior to drying. The volume of the specimens was determined by immersing them in a recipient containing mercury and by weighing the mercury displaced, considering a density of mercury of 13.6 g/cm³.

229 The pore size distribution of subsamples was determined by mercury intrusion porosimetry (MIP). 230 The samples were put in the ice condenser of a Telstar LioQuest equipment at -30°C for 3 hours. 231 Subsequently, they were lyophilised for 22 hours at a temperature of -50°C under a vacuum of 0.2 232 mbar, so that to sublimate the water in the pores. Thereafter, they were heated at 25-30°C for 3 233 hours. These samples were kept in a desiccator until the MIP analysis. The porosimeter used was a 234 Micromeritics AutoPore Series IV 9500, which allowed the exploration of pore diameters between 235 0.007 and 600 μ m. Prior to mercury injection the sample was outgassed by applying a vacuum of 50 236 µm-Hg. Afterwards the mercury injection pressure was increased from 2.7 kPa to 220 MPa in 109 237 steps. To determine the extrusion branch of the curve, the pressure was released in 56 steps down to 238 a pressure of 68.6 kPa. A contact angle of mercury of 139° both on advancing and of receding on the 239 clay surface was considered.

The (001) reflection or basal reflection gives the distance along the crystallographic *c*-axis between clay lamellae and for a given clay mineral depends on the exchangeable cations present in the interlayer and their degree of hydration. To determine it, subsamples were preserved in paraffined foil after dismantling of the cells and the X-ray diffraction profile of a plane surface of them was registered at laboratory temperature after removing the foil and without any further treatment. An

245 anode of Cu (CuK α) radiation was used with a Philips model X'Pert-MPD diffractometer at 40 mA, 45 246 kV operating condition. The profiles were obtained with a 0.1-mm entrance slit and a scanning rate 247 of 0.025°20/s. Data were collected between 2 and 10°20. The goniometer settings were: automatic 248 divergence slit and diffracted beam slit 2 mm. In other samples, an anode of Cu (CuK α) radiation was 249 used with a Bruker D8 Advance diffractometer at 40 mA and 40 kV operating conditions. XRD 250 experimental profiles were obtained with a 1-mm entrance slit, $0.05^{\circ}2\theta$ step size and a counting time 251 of 3 s per step. Data were collected between 2 and 30°20. The divergence slit and diffracted beam 252 slit of the goniometer were fixed at 1 mm. In both cases the position of the diffraction peaks was 253 adjusted by using the quartz in the samples as an internal standard. The complete mathematical 254 description of the scan pattern was obtained by combination of a polynomial function that describes 255 the background and a profile function that fits the experimental reflections. The pseudo-Voigt profile 256 function was used to fit the diffraction peaks as well as to deconvolute overlapped reflections.

257 Additionally, in each CW test a cylindrical subsample was obtained by drilling across the block/pellet 258 interface to measure the gas breakthrough pressure as an indicator of the sealing quality of the 259 interface. This subsample was vertically crossed by the interface. The core diameter was fit to 3.8 cm 260 by using a cutting ring and knife. Filter paper and porous stones were placed on top and bottom of 261 the sample and it was laterally wrapped in double latex membranes. Vacuum grease was applied 262 between membranes in order to prevent the loss of gas. The wrapped sample was placed in a triaxial 263 cell which was filled with de-aired water and pressurized to ensure perfect adherence of the 264 membranes to the surface of the sample and avoid gas transport along it. The cell inlet at the upper 265 part of the sample was connected to a nitrogen gas cylinder applying the gas injection. The outlet of 266 the cell connected to the bottom of the sample was open to atmosphere, with a series of different 267 range gas mass flowmeters measuring the gas outflow. More experimental details about the 268 equipment and the equations used to compute permeability are given in Villar et al. (2018, 2021). Gas was applied through face A (that of coarser granulometry, Fig. SM3). The particular test 269

procedure was adapted to the characteristics of the samples. In test CW1 the injection pressure was increased until outflow occurred and in test CW2 the confining pressure was increased until flow stopped.

273 **3 Results**

274 **3.1 Hydration process**

275 3.1.1 Large-scale oedometer: online measurements

276 Water intake, axial pressure and vertical deformation were continuously measured during hydration. Vertical deformation was minimal, since the movement of the piston was blocked by the oedometer 277 278 framework. In fact the changes in overall dry density occurred as a result of the small vertical 279 deformation allowed were in all cases below 0.005 g/cm³. Fig. 3 and Fig. 4 show the evolution of 280 water intake and axial pressure for the seven tests. The tests were stopped and dismantled after 281 different periods of time to get the temporal evolution of the postmortem information detailed in 282 sections 3.2.1, 3.3.1 and 3.4. Tests MGR22 and MGR23 continued until a pressure plateau was reached. 283

Fig. 3 also shows the water intake necessary to reach full saturation (250±12 g), which was not the 284 285 same for all the tests because of the slight differences among them in initial dry density and water 286 content (Tab. 3). Some of the tests reached full saturation. There was a significantly different 287 behaviour between the tests performed under constant injection pressure (MGR21, MGR23, MGR24 288 and MGR25) and the tests performed under constant water inflow rate (MGR22 and MGR26). In the 289 constant-pressure tests the water intake was very quick and more than half of the water volume 290 necessary for full saturation was taken in about 20 days, which was probably caused by the high 291 permeability of the pellets part. In contrast, the water intake was much slower in the two tests in

292 which constant flow was prescribed, and it took more than 100 days to reach overall degrees of 293 saturation close to 50%. The water intake rate in test MGR27, in which hydration took place through 294 the block part of the column (which was placed at the bottom), was initially intermediate between 295 that of tests performed under constant pressure and those performed under constant inflow. 296 However, it showed the slowest water intake rate in the long run, attesting the lower permeability of 297 the higher density block. Some of the differences among the tests, particular concerning the initial 298 water intake, were likely caused by experimental artefacts. In test MGR23 there was a short period 299 (~14 days) during which no water was supplied to the cell because air entered the hydration line. As 300 shown in Fig. 4, this did not affect the swelling pressure evolution.

Fig. 3. Water intake evolution in the large-scale oedometer tests in log and linear temporal scales (constant flow was prescribed in tests MGR22 and MGR26). The thick horizontal lines indicate the water intake necessary to reach full saturation (average and standard deviation). In tests MGR22 and MGR26 the water intake includes partly the intake of the bottom porous stone (6-14 cm³)

Fig. 4 shows the axial pressure development over time and as a function of the overall degree of saturation (Fig. SM4 shows the evolution of axial pressure over time in a linear temporal scale). The degree of saturation shown in Fig. 4 is an overall value for the two-component samples but, at any given time, the actual degrees of saturation at different points along the sample height were verydifferent, as the postmortem determinations presented in section 3.2.1 showed.

311 In terms of temporal evolution, the axial pressure build up was generally steep at the beginning. In 312 the longer tests, after the initial peak there was a smooth decrease in axial pressure that eventually 313 recovered and continued increasing after final stabilisation. The initial pressure peak occurred for 314 overall degrees of saturation close to 80% in tests MGR23 and MGR25. In test MGR23 the period of 315 time during which the axial pressure significantly increased with no change in the overall degree of 316 saturation corresponds to the ~14 days period during which inadvertently no water was supplied to 317 the cell. The fact that pressure continued to build up would indicate that water redistribution inside 318 the bentonite can cause pressure increase. In contrast, in test MGR22, performed under controlled 319 flow conditions, axial pressure peaked for an overall degree of saturation of only ~60%. This would 320 mean that slow saturation was more efficient, in the sense that it allowed a better water 321 redistribution inside the microstructure.

322 In the long test MGR23, after the sharp initial increase (the peak was reached at 30-40 days), there 323 was an intermediate stage of slight pressure decrease, and when the average degree of saturation 324 was ~90% the axial pressure steadily increased again until full saturation was reached, with a stable 325 pressure value of 3 MPa. Test MGR22 also went on until full saturation was reached. Since in this test 326 the inflow was very low and controlled, the pressure development kinetics was very different to the 327 other tests. Axial pressure started to develop slightly later than in the other tests (after 10 days), and 328 when the overall degree of saturation was much lower than in the other tests (37%). The first peak 329 was reached after 80 days and the intermediate stage lasted until 200 days had elapsed. During this 330 time the overall degree of saturation increased from 58 to 96%. In the final stage, the water injection 331 pressure started to increase because the P/V controller was not able to keep a constant low injection 332 flow into a quasi-saturated sample without increasing the injection pressure. As a result, there was a

new steep increase in axial pressure until the final value of 3 MPa. When the water injection pressure had increased to 1.5 MPa, water injection was stopped and the pressure was allowed to dissipate for 38 days. This explains the odd final shape of the curves for test MGR22. During this period of water injection pressure decline, the axial pressure did not change (Fig. 5).

Fig. 4. Axial pressure evolution over time (left) and as a function of the overall degree of saturation (right) in the largescale oedometer tests (constant flow was prescribed in tests MGR22 and MGR26). The thick horizontal lines indicate the expected swelling pressure according to Eq. 3 (average and standard deviation)

342 Fig. 5. Final stage of test MGR22

343 3.1.2 Transparent cell: visual observations

344 Cells CW1 and CW2 were photographed on both sides (A and B faces) periodically during hydration. 345 Fig. 6 shows a comparison of the appearance of face A of the two tests at the same testing times 346 (and Fig. SM5 for face B). Variations in the coloration of the grains, changes in texture and shape, and 347 displacement of the block-pellets interface were observed. As the pellets were hydrated, the grains 348 increased in size, without displacement, and the whole of them lose sharpness. The appearance of the saturated pellets was gel-like. The evolution of hydration was slower in face B, where fine 349 350 particles predominated. The reason could be the absence of large voids where water could quickly 351 and easily penetrate. A downwards movement of the pellets/block interface in cell CW1 was 352 observed, whereas this interface moved upwards in cell CW2.

Fig. 6. Comparison, in face A, of the evolution of the hydration fronts in both cells (CW1: first and third column, and CW2:

355 second and fourth column) for six different moments

356 3.2 Final physical state

357 3.2.1 Large-scale oedometer

358 The tests were dismantled after different running times. The final appearance of the samples once 359 extracted from the cell is shown in Fig. 7 for the tests performed hydrating from the pellets half 360 under constant injection pressure and in Fig. 8 for the rest of tests. The sample from the shorter test 361 (MGR24) showed a quite saturated bottom in which the pellets could not be told apart, but the upper part of the pellets half still showed open voids. The two halves of this sample (pellets and 362 363 block) could easily be detached. In the other cases the two halves were sealed and had to be 364 separated with a knife. Already after 76 days the pellets half looked homogeneous. In contrast, in the 365 tests performed under constant inflow rate, after 132 days (test MGR26) some pellets could still be 366 told apart. In test MGR27 (saturated through the block), although the block looked saturated, the 367 pellets upper part still presented voids from the initial fabric.

MGR24: 14 days

MGR21: 34 days

MGR25: 76 days

MGR23: 210 days

368

369 Fig. 7. Appearance of the MGR samples at the end of the tests performed under constant water injection pressure

MGR26: 132 days MGR22: 266 days MGR27: 278 days

Fig. 8. Appearance of the MGR samples at the end of the tests performed under constant water inflow rate (MGR22,
MGR26) and with saturation through the block (MGR27)

373 Once extracted the blocks were weighed, measured and horizontally sectioned to determine the 374 longitudinal changes in water content, dry density and pore size distribution. Tab. 3 shows a 375 summary of the final characteristics of the samples, along with the initial values. The original height 376 of the halves changed during the tests: the height of the bottom, pellets half decreased whereas the 377 height of the upper, block half increased, indicating the increase in the overall dry density of the 378 pellets and decrease in the dry density of the block. These changes are illustrated in Fig. 9 and were 379 confirmed by the postmortem determination of dry density in the six horizontal sections. The water 380 content of the bottom part (pellets) increased very quickly, but over time tended to decrease. In contrast, the dry density of the pellets half increased in a more continuous way. The behaviour of 381 382 test MGR26 performed under constant flow (lasting 132 days) did not follow the overall trend, since 383 the increase in water content was moderate and similar for both halves, attesting the more 384 homogeneous water redistribution allowed by slow hydration. The two longest tests, which were 385 performed under constant water inflow (MGR22) or with the block at the bottom (MGR27) should be 386 separately considered. When hydration took place through the block, the final water content and dry 387 density of both halves were more homogeneous.

388 Tab. 3. Initial and final characteristics of MGR tests

	Initial				Final			
	w (%)	<i>h</i> (cm)	ρ _d (g/cm³)	Sr (%)	w (%)	ρ₀ (g/cm³)	<i>h</i> (cm)	Sr (%)
Test	MGR21,	34 days						
Pellets	9.5	4.97	1.26	23	35.9	1.31	4.80	91
Block	13.3	5.01	1.60	52	22.9	1.50	5.33	78
Total ^a	11.6	9.98	1.43	35	29.0	1.43	10.00	88
Test	MGR22, 2	266 days						
Pellets	9.9	5.04	1.28	24	35.3	1.35	4.79	95
Block	13.6	4.94	1.61	55	30.7	1.51	5.27	106
Total ^a	11.9	9.98	1.45	37	32.7	1.44	10.01	101
Test	MGR23, 2	210 days						
Pellets	3.5	5.00	1.30	9	35.7	1.34	4.84	95
Block	14.2	4.98	1.60	56	31.1	1.51	5.29	107
Total ^a	9.4	9.98	1.45	29	33.2	1.45	10.01	103
Test	MGR24, 1	14 days						
Pellets	5.7	5.02	1.28	14	31.0	1.30	4.93	78
Block	13.7	4.97	1.62	55	16.2	1.57	5.13	61
Total ^a	10.1	9.99	1.45	32	23.0	1.45	10.00	72
Test	MGR25,	76 days						
Pellets	3.2	4.99	1.30	8	37.0	1.33	4.88	97
Block	14.1	5.00	1.59	54	26.7	1.51	5.24	92
Total ^a	9.2	9.99	1.44	29	31.4	1.44	10.02	97
Test	MGR26,	132 days						
Pellets	3.5	5.01	1.30	9	21.0	1.32	4.92	54
Block	13.9	4.99	1.60	55	20.6	1.49	5.35	69

	Initial				Final			
		h (((3)	Sr	w	((3)	(C (0/)
	W (%)	<i>h</i> (cm)	ρ _d (g/cm³)	(%)	(%)	ρ _d (g/cm³)	<i>h</i> (cm)	S _r (%)
Total ^a	9.2	10.00	1.45	29	20.8	1.44	10.07	64
Test	MGR27,	278 days						
Pellets	3.0	5.00	1.31	8	32.3	1.43	4.55	99
Block	15.3	5.00	1.59	59	30.0	1.45	5.47	94
Total ^a	9.8	10.00	1.45	30	31.7	1.45	10.02	99

^a the initial values are the averages of block and pellets, the final values correspond to online measurements (except in test MGR22)

390

391

Fig. 9: Final average water content and dry density of the block and pellet halves of the samples (the values circled
 correspond to tests performed under constant inflow rate (MGR22, MGR26) or with the block at the bottom (MGR27)

The water content and dry density values measured in subsamples are plotted in Fig. 10 as a function of the distance to the hydration surface. The initial values are indicated with thick horizontal lines. The differences in the initial water content of the pellets were caused because in tests MGR23 to MGR27, prior to mounting, the pellets were dried to the values they had after they were manufactured (Tab. 2). During the tests the water content and degree of saturation decreased from the hydration surface (sample bottom) upwards whereas the dry density increased. These gradients 400 attenuated over time, hence they were smoother as the test duration was longer. The pellets/block 401 interface did not seem to have any effect on the continuous gradients. The final dry density and 402 water content values were similar in tests MGR22 and MGR23, despite the different hydration 403 conditions (constant flow or pressure). Although the bentonite was finally fully saturated, the dry 404 density and water content along the samples did not completely equalise. In contrast, test MGR26, 405 which was far from full saturation, showed a quite homogeneous water content distribution, 406 whereas the difference between the dry density of pellets and block was still significant.

Fig. 10. Final water content and dry density along the samples of MGR tests. The duration of the tests is given in days in
 the legend. The thick horizontal lines mark the initial values

410 3.2.2 Transparent cell

411 Cell CW1, saturated through the pellets, was dismantled after 379 days and cell CW2, saturated 412 through the block, after 420 days of hydration. A detailed characterisation of the final state of the 413 bentonite was carried out in subsamples taken according to the schema shown in Fig. 11. It was not 414 possible to distinctly separate the block and pellet parts. Tab. 4 summarises the initial and final 415 characteristics of the tests. For the global values, the initial and final dimensions and weight of the 416 pellets/block assemblage were considered. Because bentonite swelling caused the compression of

the geotextiles placed on top and bottom of the cell (Fig. 2), the total height of the sample increased 417 418 and hence there was an overall decrease in dry density. Cell CW1 had reached full saturation, but not cell CW2, despite its longer duration. The values shown in the Table for the block and pellets parts 419 420 are the average of the determinations in subsamples. These may be affected by trimming and slight 421 drying during manipulation.

423 Fig. 11. Final subsampling of tests CW and location of samples for gas permeability (circle)

424 Tab. 4. Initial and final characteristics of tests CW1 and CW2

Test		Initial				Final			
		h (cm)	w (%)	ρ _d (g/cm³)	S r (%)	h (cm)	w (%)	ρ _d (g/cm³)	Sr (%)
	Pellets ^a	5.75	10.1	1.30	25	5.69	40.5	1.28	99
CW1	Block ^a	6.03	14.0	1.59	54	6.37	32.8	1.47	105
	Total ^b	11.79	11.9	1.45	37	12.06	35.9	1.38	102
	Pellets ^a	5.60	10.1	1.30	25	5.58	32.4	1.31	82
CW2	Block ^a	5.98	12.4	1.61	50	6.64	32.1	1.45	101
	Total ^b	11.58	11.2	1.46	36	12.22	32.1	1.39	92

425

^a final dry density and degree of saturation affected by subsampling and trimming, ^b final values affected by compression of

426 geotextile during test

428 Fig. 12 shows the final water content and dry density determined in the subsamples of the two tests, 429 along with the initial values. Hydration resulted in an overall water content increase both in the 430 pellets and the block parts, considerably higher for the pellets part of test CW1. As a result of the 431 water content increase, the bentonite swelled and the dry density of the assemblage decreased 432 because of the slight deformation allowed by the geotextile compression (the overall dry density of 433 cell CW decreased from 1.45 to 1.38 g/cm³ and that of cell CW2 from 1.46 to 1.39 g/cm³). In both 434 tests the swelling was higher in the block part, whose dry density significantly decreased. Despite the 435 fact that the sample CW1 was fully saturated at the end of the test (Tab. 4), there were still clear 436 water content and dry density gradients, with higher water contents and lower dry densities in the 437 pellets part, which was earlier saturated. In contrast, cell CW2, which was not completely saturated, 438 showed homogeneous water content but still considerably higher dry densities and degrees of 439 saturation in the block part. In fact, the average degree of saturation of the pellets part was only of 440 82%. The interface between pellets and block did not seem to play any role in the general trend of these variables. 441

However, a small border effect was observed at the bottom of the cells: the water content of the subsamples close to the border (5.1 and 5.3 in Fig. 11) was higher than that of the middle subsample (5.2), whereas the dry density was lower, especially in cell CW1. The cell border effect persisted, although weakened, until the upper part (e.g. samples 1.1 and 1.3 had slightly higher water content and lower dry density than sample 1.2).

Fig. 12. Final water content and dry density along the samples of CW tests. The duration of the tests is given in days. The
thick horizontal lines mark the initial values (discontinuous lines for CW1)

450 **3.3 Pore size distribution**

451 The pore size distribution of the samples was determined by mercury intrusion porosimetry (MIP). In 452 some subsamples duplicates were tested. In the sections below, the intrusion curves obtained in 453 some of the samples are shown. In all of them the usual two pore families of compacted FEBEX bentonite corresponding approximately to pores larger and smaller than 200 nm could be told apart. 454 455 This limit is not the same as that between macropores and mesopores, which according to the 456 classification of Sing et al. (1985) would be at 50 nm. There is also discussion on the criteria that can 457 be followed to select this delimiting value (Yuan et al. 2020). The 'valley' criterion was chosen in this work, consisting of using the lowest point of the valley between the two peaks of a bimodal 458 459 distribution. In several THM models, this pore size represents the limit separating inter-aggregate 460 from intra-aggregate pores, the latter not affected by density changes (e.g. Lloret et al. 2003, 461 Sánchez et al. 2005, Mašín 2013).

462 The mercury intrusion method allows access to be gained only to part of the macroporosity (pores of 463 diameter smaller than ~550 μ m) and to part of the mesopores (those of diameters larger than 7 nm),

464 since mercury does not intrude the microporosity (pores of a size of less than 2 nm, according to the 465 same classification mentioned above). Actually, the percentage of pores intruded by mercury in the 466 samples analysed in this work was between 30 and 76%. Considering that most of the non-intruded 467 porosity corresponds to the pores of a size smaller than the limit of the apparatus (7 nm), an 468 estimation of the percentage of pores actually intruded can be made by comparing the actual void 469 ratio of the samples (e, computed from their dry density and density of solid particles) and the 470 apparent void ratio calculated from mercury intrusion (e^*). There is uncertainty in this approach, 471 since it is possible that pores larger than 7 nm were not intruded because of the bottleneck effect: 472 the pores connected to the external surface by narrow openings will not be intruded until sufficient 473 pressure is applied to intrude the entryways. All of the volume of such pores will be allocated to the 474 threshold radius class of the most restricted part of the entryway, which will result in an 475 overestimation of the smaller pore sizes volume. Likewise, although in compacted clay materials 476 pores larger than those that can be quantified by MIP are not expected, pores of this size could be 477 present in some of the driest pellets samples.

478 The intrusion curves of the subsamples are presented below along with the curves for FEBEX samples 479 of the same characteristics as the initial conditions used in the cells. For the block part, the curve 480 corresponding to a sample compacted at dry density 1.59 g/cm³ with a water content of 14% was 481 used as representative of the initial state. For the pellets, mixtures of pellets having approximately a 482 Fuller's curve grain size distribution, with a resulting dry density of 1.29 g/cm³ and water contents of 483 10 and 3% were used. The initial pellets curves showed a predominant pore size around 300 µm. 484 Despite the low density of the pellets mixtures, the percentage of non-intruded porosity in them was 485 very high (~70%). In this case not all the non-intruded porosity can be ascribed to pores smaller than 486 7 nm, because in the dry, low-density pellets mixture large pores are also to be expected. Hence, an 487 estimation of the volume of pores larger than 550 μm has been made following this approach:

488 At the beginning of a MIP test the calibrated sample holder is filled with mercury under a low 489 injection pressure. Considering the sample mass and the volumes of the sample holder and of 490 mercury intruded, the dry density of the sample is computed by the equipment software. This initial 491 mercury injection is considered by the equipment as the zero value for the rest of the MIP test, which 492 actually starts when injection pressure is increased above this value. Thus, all the large porosity filled 493 during this initial step is disregarded. The comparison between the dry density determined by the 494 equipment at this step and the actual dry density of the sample allows computing the volume of 495 pores larger than 550 μ m: when the sample contains a significant volume of large pores, the dry 496 density determined by the porosimeter is considerably higher than the actual dry density of the 497 sample, whereas if there are not large pores the two values tend to be similar. Hence, in the dry 498 pellets samples this difference was quite large, whereas in the saturated and high-density samples 499 the differences found were not significant. This correction was done to the initial GBM and to those 500 samples whose visual inspection clearly showed that contained large pores, namely samples MGR24-501 4, MGR24-5, MGR21-4 (Fig. 7) and all the pellets samples from tests MGR26 (Fig. 8) and CW2. The 502 subsamples were numbered from top to bottom, i.e. sample #1 was the one farther away from the 503 hydration surface.

Taking all the above into account, the void ratio corresponding to pores larger and smaller than 200 nm ($e_{\rm M}$ and $e_{\rm m}$, macro and micro, respectively) was recalculated, assuming that the non-intruded porosity corresponded to pores smaller than the equipment injection capacity and, in some pellets samples, also to pores larger than 550 μ m.

508 3.3.1 Large-scale oedometer test

As an example, Fig. 13 and Fig. 14 show the incremental curves of mercury intrusion for the subsamples of the tests lasting 14 (MGR24) and 210 days (MGR23). In the shorter test (Fig. 13) the pore size distribution of the subsamples taken from the block half was similar to that of the initial 512 block. Indeed, no relevant changes in the dry density and water content of the block samples took 513 place during the oedometer test (only noticeable for the sample closest to the interface, 3b), 514 because it was too short. This similarity proves the reliability of the technique. In contrast, the pore 515 size distribution of the pellet half significantly changed. The size of pores larger than 200 nm and 516 their volume decreased with respect to the initial pellets mixture. A similar pattern was found in test 517 MGR21 (34 days). Overall, for the pellets subsamples of all the tests, the volume of pores larger than 518 200 nm significantly decreased, and the mean size of these macropores decreased from the initial 519 \sim 300 μ m to values mostly between 10 and 100 μ m. This can also be observed in Fig. 14 for the 520 subsamples from the pellets half of the longer test (MGR23). In contrast, the mean size of the pores 521 smaller than 200 nm increased with respect to the original values for all the pellets subsamples, as 522 well as for the block subsamples (Fig. 14 and Fig. SM6 for a summary of all the tests). Furthermore, in 523 the block subsamples the volume and size of the macropores also increased, except in the shorter, 524 less saturated tests. This overall increase in the pore volume of all the size ranges for the block 525 subsamples is related to the decrease in the global dry density of the block parts during the tests (Fig. 526 9).

Fig. 13. Pore size distribution expressed as incremental mercury intrusion of samples from test MGR24 (lasting 14 days), corresponding to the block (left) and pellets (right) halves. The curves for the initial materials (blocks and pellets) are included

Fig. 14. Pore size distribution expressed as incremental mercury intrusion of samples from test MGR23 (lasting 210 days),
 corresponding to the block (left) and pellets (right) halves. The curves for the initial materials (blocks and pellets) are
 included

The void ratio corresponding to pores larger and smaller than 200 nm was recalculated as explained at the beginning of section 3.3. The ratio between the void ratio corresponding to pores smaller (e_m)

and larger ($e_{\rm M}$) than 200 nm increased in all samples with respect to the reference values, which reflects the increase in the volume of micropores as a result of hydration (Fig. 15). This increase was much more significant for the pellets subsamples, except in the driest ones. In the block samples the largest proportion of void ratio corresponded to the pores of diameter smaller than 200 nm, and in fact for each test the largest $e_{\rm m}/e_{\rm M}$ values tended to be in the block samples. The highest homogeneity in terms of $e_{\rm m}/e_{\rm M}$ was reached in test MGR27, saturated through the block, which also had the most homogeneous dry density.

544

Fig. 15. Ratio between void ratio corresponding to pores smaller and larger than 200 nm (e_m and e_M) obtained by MIP in subsamples from the MGR tests (the thick horizontal lines indicate the initial conditions for all the tests except MGR27, in which the position of pellets and block was inverted)

548 3.3.2 Transparent cell

Fig. 16 shows the incremental curves of mercury intrusion as a function of the mean pore diameter of the diameter size intervals corresponding to each pressure increase step. In both tests the macroporosity of the pellets shifted to smaller pore sizes, more as the water content was higher. In particular, for the pellets part in test CW1 the mean size of the macropores considerably decreased, from ~300 μ m to values between 6 and 40 μ m. However, in some cases, pores larger than ~70 μ m remained, particularly in CW2, where the pellets part was not completely saturated. The pore size distribution of the block parts did not change much as a result of hydration, particularly in test CW1. In the block part of test CW2 the size and volume of the macropores increased. All the samples had mean pore diameters for the pores smaller than 200 nm in a narrow range between 6 and 26 nm, and in test CW1 tended to decrease away from the hydration surface. In general the mean size of this pore family was higher than that for the initial block.

562 Fig. 16. Incremental mercury intrusion in tests CW1 and CW2 (the curves corresponding to the initial conditions are also

563 included)

564 The ratio e_m/e_M obtained by MIP for the different subsamples is shown in Fig. 17 as a function of the distance to the hydration surface. For the pellets part in test CW1 the void ratio corresponding to 565 566 pores larger than 200 nm considerably decreased, particularly away from the hydration surface. As a 567 result, the e_m/e_M ratio increased in the same direction. In the pellets part of test CW2, the volume of 568 large pores decreased only in some samples (except close to the pellets/block interface, where it 569 significantly decreased), but the volume of pores smaller than 200 nm tended to increase, resulting 570 in an increase of the e_m/e_M ratio in this area. In the block samples of both tests the largest proportion 571 of void ratio corresponded to the pores of diameter smaller than 200 nm ($e_m/e_M>1$), but both e_m and 572 $e_{\rm M}$ increased with respect to the initial values, reflecting the overall decrease in dry density allowed 573 by the compression of the geotextiles as a result of bentonite swelling (Tab. 4). Hence the e_m/e_M ratio 574 did not change much in the block parts of any of the tests, except for the samples closest to the 575 hydration surface of test CW2, where it decreased.

576

Fig. 17. Void ratio corresponding to different pore sizes obtained by MIP in samples from tests CW (the thick horizontal
lines indicate the distribution for the reference block and pellets)

579 **3.4 Interlayer space**

The basal reflection of the subsamples after some MGR tests was determined by XRD. Fragments of the samples were X-rayed the same day in which the cells were dismantled, trying to keep the final 582 water content unchanged by avoiding any accidental drying. The results obtained showed that the (001)-reflection was a double one that could be decomposed into two diffraction peaks by profile 583 584 fitting of the XRD patterns. In the case of the block samples the main diffraction peak corresponded 585 to the full development of the 2-layer hydrate (~1.5-1.7 nm) and the secondary one to the 3-layer hydrate (~1.8-1.9 nm), whereas in the pellets samples the main diffraction peak corresponded to the 586 587 full development of the 3-layer hydrate and the secondary peak was higher (2.0-2.1 nm). However, 588 the samples from test MGR24, the shortest one, showed a single diffraction peak for the (001)-589 reflection at much lower values.

Fig. 18 shows the values corresponding to the main reflections. The initial basal reflection for the pellets samples would be ~1.3 nm, and for the compacted block ~1.5 nm. For a given test, no matter its duration, the final values were higher in the pellets part. For the pellets samples with water content higher than 30% the values were all above 1.8 nm, practically corresponding to the 3 water layer hydration state of the smectite. In contrast, block samples of similar water content had lower basal spacings.

Fig. 18: Main diffraction peak of the basal reflection of subsamples of MGR and CW tests (total length of 10 cm in tests
 MGR and 12 cm in CW). Hydration took place through the pellets except in tests MGR27 and CW2. The duration of the
 tests is indicated in days

600 3.5 Healing of block/pellets interface: gas testing

At the end of the tests in transparent cell, a cylindrical subsample was obtained by drilling across the pellets/block interface to measure the gas breakthrough pressure as an indicator of the healing of the interface. These subsamples were vertically crossed by the interface (Fig. 11) and had a nominal diameter of 3.8 cm. The initial and final characteristics of the samples as well as those of the tests are shown in Tab. 5.

Test	CW1-gas		CW2-gas	5
	Initial	Final	Initial	Final
ρ _d (g/cm ³)	1.33	1.43	1.36	1.40
<i>h</i> (cm)	2.16	2.13	2.15	2.15
φ (cm)	3.78	3.68	3.79	3.73
w (%)	34.8	32.2	30.3	29.3
Sr (%)	92	99	83	85
Confining P (MPa)	3.0		1.1-2.3	
Injection P (MPa)	0.2-2.9		0.2-0.3	
Duration (days)	32		4	

606 Tab. 5. Characteristics of the samples before and after gas testing and characteristics of the tests

607

In test CW1-gas a confining pressure of 3 MPa was applied, corresponding to the swelling pressure of the bentonite with a dry density of 1.45 g/cm³ (the global value for test CW1) according to Equation 3. This value was selected to keep approximately the same stress state as the bentonite likely had at the end of the test, when almost full saturation was reached, and prevent the interface from mechanically splitting. The injection pressure was increased 0.1 MPa every two hours, from 0.2 to 2.95 MPa. There was no flow until the injection pressure reached 2.00 MPa. For injection pressures from 2.00 to 2.24 MPa there were barely measurable flow pulses. There was again no flow until 2.85 MPa of injection pressure. For gas injection pressure of 2.90 MPa unsteady flow pulses close to the turndown value of the flowmeters were detected. At the end of the test the sample had consolidated as a result of the confining and gas pressure applied and its water content had slightly decreased, which would indicate that some water movement took place during the test.

619 It can be considered that the gas breakthrough pressure was ~2.2 MPa, although no steady, correctly 620 measurable flow was measured at any moment. This breakthrough pressure would be in the order of 621 the values expected for FEBEX samples compacted to dry densities between 1.35 and 1.45 g/cm³, 622 which would be between 1.5 and 3.5 MPa (Gutiérrez-Rodrigo 2018, Gutiérrez-Rodrigo et al. 2021).

623 Because the sample from test CW2 was not saturated, the confining pressure applied during gas 624 testing was initially lower, 1.1 MPa. In this case the outflow was high from the first step of injection 625 pressure (0.2 MPa), and the confining pressure had to be increased to reduce it. Outflow continued 626 until the confining pressure was 2.3 MPa, for which pressure no flow occurred. Then the injection 627 pressure was increased to 0.3 MPa, flow resumed and the test was dismantled. The permeability values obtained for each pressure step are shown in Fig. 19. They are expressed as $k_{rg} \cdot k_{ig}$, where k_{rg} is 628 629 the relative gas permeability and k_{ig} is the intrinsic permeability measured with gas flow. The 630 duration of the steps had some influence on the values obtained, because the sample consolidated 631 as a result of the confining pressure application, which resulted in a decrease of gas permeability. 632 This would explain the significantly lower value obtained in the last step, after the sample had been 633 submitted to a confining pressure of 2.3 MPa for one day. Indeed the sample dry density increased during the test, even though the total duration of the test was of only 4 days. In particular, the 634 permeability value obtained for a confining pressure of 0.1 MPa was 8.10⁻¹⁷ m². These values are 635 636 lower than those expected for the FEBEX bentonite compacted with similar accessible void ratio (i.e. 637 void ratio accessible for gas flow, $e(1-S_r)$, in this sample 0.165). According to the correlation 638 presented in Villar et al. (2013), for a sample of FEBEX bentonite compacted at the same accessible void ratio, with no interface in it and tested under the same confining pressure, the intrinsic permeability should be $\sim 2 \cdot 10^{-15}$ m², i.e. considerably higher. This would indicate that the pellets/block interface was not a preferential gas pathway and flow took place through the bentonite whole porosity. Hence, the interface was perfectly healed and sealed, even though full saturation had not been reached in this area.

Fig. 19. Gas permeability measured in a sample from test CW2 including the interface between block and pellets. Theduration of the steps is indicated in hours

647 **4 Discussion**

The tests presented allowed to follow the hydro-mechanical evolution of a two-component buffer material upon hydration under isochoric conditions at ambient temperature. The two components (bentonite pellets –GBM– and bentonite block) had different initial water contents and dry densities. Except in tests MGR27 and CW2, hydration took place through the pellets part, which had a higher intrinsic permeability than the block because of its lower dry density, higher macroporosity and lower water content (Villar and Lloret 2001, Romero 2013). During the MGR tests the axial pressure
was measured on the sample surface opposite to hydration.

655 The pressure development was not mainly related to the quantity of water taken (i.e. to the overall 656 degree of saturation), but to the water intake rate. Thus, when hydration took place under very low 657 water inflow rate (MGR22, MGR26), the axial pressure for a given overall degree of saturation was 658 much higher than for the tests in which hydration took place more quickly (Fig. 4, right). Similarly, in 659 test MGR27, in which hydration under constant injection pressure was slower because it took place 660 through the higher-density block part, the pressure reached for a given overall degree of saturation 661 was initially (namely until the overall degree of saturation reached \sim 60%) higher than for the tests in 662 which saturation took place through the pellets. This suggests that it was the redistribution of water 663 in the microstructure the mechanism that triggered most of the swelling. This is supported by the 664 fact that in test MGR23 the axial pressure considerably increased during the 14-day period during 665 which inadvertently no water was supplied to the cell, showing that water redistribution inside the 666 bentonite can cause pressure increase. X-ray tomography scans of oedometer tests and image post-667 processing, allowed Massat et al. (2016) to correlate the evolution of swelling pressure and inter-668 aggregate porosity in compacted bentonite and conclude that water redistribution inside the 669 structure led to reaching a stable swelling pressure. In the EB in situ test performed at the Mont Terri 670 URL, where a large-scale two-component barrier (FEBEX GBM and blocks) was tested for 10.5 years, 671 most of the sensors installed in the bentonite recorded relative humidity values of 100% only one 672 year after the beginning of the test, whereas it took four years for the total pressure sensors to 673 record stable values that kept approximately constant until the end of the test (García-Siñeriz et al. 674 2015).

The different strength of the materials involved also played a role on the axial pressure development kinetics at the first stages of saturation. When the water intake was very slow, the block part was able to swell relatively quickly (see the dry density and water content distribution at the end of test

MGR26 in Fig. 10), and because the pellet part was comparatively dry (drier than at the end of any other test) and consequently rigid, the stress was more effectively transmitted towards the top and hence recorded by the load cell. In contrast, when hydration was quicker, the pellet part soon collapsed and was easily compressed by the downwards swelling of the block, resulting in a lower axial load measured on top. In fact, a downwards movement of the pellets/block interface in cell CW1 was observed, indicating the compression (or collapse) of the pellets part. In contrast this interface moved upwards in cell CW2, saturated through the block.

685 The final axial pressure measured in the tests is plotted against the final degree of saturation in Fig. 686 20. Overall the pressure consistently increased with the average degree of saturation, but in test 687 MGR26, saturated under low water inflow, a pressure higher than expected according to the trend 688 marked by the other tests was reached, consistent with the description of the initial stages of 689 saturation given in the previous paragraph. Once full saturation was reached the swelling pressure 690 was the same irrespective of the way of saturation, and thus tests MGR22 and MGR23 showed the 691 same final pressure (3 MPa). This value is higher than the swelling pressure expected for a FEBEX 692 bentonite sample compacted to the average dry density value of the MGR tests (1.45 g/cm³). The 693 theoretical value would be 2.0±0.5 MPa, according to the empirical correlation between dry density 694 and swelling pressure obtained in small standard oedometers (Eq. 3). Previous researches suggested 695 that there is a scale effect on the swelling pressure measured in the laboratory, which tends to be 696 higher as the testing cell is larger (Imbert & Villar 2006).

698 Fig. 20. Final axial pressures measured as a function of the final degree of saturation of MGR tests (average ρ_d =1.45 699 g/cm³)

700 Even though full saturation had not been reached in test MGR27 (final S_r =99%), the final pressure 701 measured in this test was much lower than could be expected according to the general trend for 702 tests in which saturation took place through the pellets shown in Fig. 20. Hydration tests performed 703 in large-scale cells where radial and axial pressures were measured at different heights along the 704 sample length showed that during saturation, the transient pressure values were related to the local 705 dry density (Dueck et al. 2016, Baryla et al. 2019, Bian et al. 2019, Bernachy-Barbe et al. 2020, 706 Harrington et al. 2020). In the case of test MGR27, the pellets part, on top of the sample, had the 707 final lowest dry density (Fig. 10) and lower degree of saturation (Fig. 21). It is likely that the axial load 708 measured reflected mainly the local pressure at the upper part of the sample, which would be lower 709 than the pressure that would have been measured at the bottom (in the block part) if there had been 710 a pressure sensor in the area. In other words, the axial pressure measured on top would not be fully 711 representative of the average pressure developed by the sample, because it would also be affected 712 by the local conditions on top of the sample (lower density and degree of saturation). Similarly, the 713 axial top pressure measured in the rest of the tests would also be conditioned by the higher dry 714 densities in this area, where the block was placed (Fig. 10). Hence, in addition to the scale effect commented in the previous paragraph, a further reason for the higher than expected pressures
observed would be the influence of the higher density close to the measuring area on top.

717 As a further corroboration of that hypothesis, the final swelling pressure reached in a test performed 718 in the same oedometer with a mixture of regular-shaped FEBEX bentonite pellets and powder in a 719 70/30 ratio has also been included in the Figure (test MGR3). The average dry density of this mixture 720 was 1.45 g/cm³ (as in the MGR tests presented here) and the initial water content 13.6% (Villar 721 1999). In this case the swelling pressure of the saturated sample had an intermediate value between 722 the trend for tests having the pellets on top and the test with the block on top (MGR27). This would 723 reflect the intermediate value of dry density on the top part of the sample, which was 1.43 g/cm^3 at 724 the end of test MG3, 1.46 g/cm³ at the end of tests MGR22 and MGR23 and 1.42 g/cm³ at the end of 725 test MGR27, which in addition was less saturated.

726 The tests performed by Martikainen et al. 2018 (reported in Talandier, 2019) were very similar in 727 design and dimensions to the tests presented here, with hydration under an injection pressure of 10 728 kPa taking place through the pellets (hence comparable to tests MGR21, MGR23 to MGR25). 729 Hydration took place through the top surface, where the pellets were placed. In these tests MX-80 730 bentonite was used and the radial pressure developed by the block and the pellets parts were 731 measured in addition to the axial ones. The axial and radial pressure development in the areas 732 farther away from hydration (i.e. around the block part) displayed the initial peak followed by a 733 decrease and a smooth eventual increase observed in some MGR tests (Fig. 4). These measurements 734 also showed significantly lower pressures in the pellets than in the block part. The modelling groups 735 involved in a benchmark where these tests were analysed, concluded that this difference was due to 736 the initial contrast of density between the top and bottom of the sample but also to the friction 737 between the bentonite and the steel cell wall (Talandier, 2019).

738 Indeed none of the tests reached a final complete homogeneity in terms of dry density or water 739 content: the water content decreased from the hydration surface upwards whereas the dry density 740 increased (Fig. 10). These heterogeneities resulted from the initial swelling and resulting density 741 decrease of the bentonite that became first saturated (those parts closest to the bottom hydration 742 surface), and the consequent compression of the bentonite located upwards. In contrast, a final 743 homogeneous degree of saturation close to 100% was reached in the longer tests saturated through 744 the pellets, i.e. MGR22, MGR23 and CW1 (Fig. 21). Once overall full saturation was reached, no 745 further water content or dry density changes are to be expected, which would mean that part of the 746 initial volume changes were irreversible. Also in the large-scale EB test mentioned above, no spatial 747 trends were found for the degree of saturation, despite the fact that density and water content 748 gradients remained (García-Siñeriz et al. 2015). In all cases the pellets/block interface did not seem to 749 have any effect on the continuous gradients observed, i.e. there were no sudden changes across the interface. 750

Fig. 21. Final degree of saturation along the samples of MGR and CW tests (total length of 10 cm in tests MGR and 12 cm
 in CW). Hydration took place through the pellets except in tests MGR27 and CW2. The duration of the tests is indicated in
 days

755 The two tests in which hydration took place through the block (MGR27 and CW2) were far from full 756 saturation, despite the fact that they were the longest ones performed in each kind of cell. It is 757 remarkable that in all the tests the area closest to the hydration surface was fully saturated, except in 758 test MGR26. This test, performed under constant flow and lasting 132 days, did not follow the overall 759 trend, since the increase in water content was moderate and similar for both halves, attesting the 760 more homogeneous water redistribution allowed by slow hydration. Vapour diffusion in the pore 761 spaces would be the water transfer mechanism away from the hydration surface, as postulated by 762 Kröhn (2005), who described the time-dependent water content distribution during the saturation of 763 compacted bentonite under laboratory conditions by Fick's second law. Eventually, when full 764 saturation was reached, the differences in the physical state of samples saturated under constant 765 pressure or flow obliterated, resulting in the similar water content and dry density distribution 766 patterns of tests MGR22 and MGR23.

767 Concerning the microstructural modifications during hydration, the GBM and the block parts 768 behaved quite differently and in fact most parameters inferred by MIP (volume and size of each pore 769 range, ratio between them), were different for the two components of the samples. Unlike the 770 physical variables discussed in the previous paragraphs, in most tests there was not a smooth change 771 between the microstructural parameters of pellets and block. The most notable change in the pellets 772 parts was the disappearance of the pores larger than 550 µm and the overall drastic decrease in size 773 and volume of macropores. In contrast, the mean size of the pores smaller than 200 nm increased 774 with respect to the original values for all the pellets subsamples. This was also the case for the block 775 samples. Furthermore, in the block subsamples the volume and size of the macropores tended to 776 increase, except in the shorter, less saturated tests. The increase of both e_m and e_M in the blocks 777 subsamples resulted from the overall decrease in dry density experienced by the block upon 778 hydration. Nevertheless, the e_m/e_M ratio increased from the initial ~0.3 to values higher than 0.7 in all 779 samples, but much more significantly in the pellets samples. Only the driest pellets samples

780 (corresponding to the shorter tests, test MGR26 performed under constant flow, and test CW2 saturated through the block) had e_m/e_M ratios close to the initial one. These samples kept also pores 781 782 larger than 550 µm that cannot be detected by MIP (because of the technique limitations) but were 783 inferred as explained at the beginning of section 3.3. Pores larger than \sim 70 μ m were actually observed by MIP in some pellets samples of test CW2 (Fig. 16), where the pellets part was not 784 785 completely saturated. Closing of large voids (or very low density areas filled by powder) between 786 regular-shaped bentonite pellets upon hydration was observed by X-ray computed tomography by 787 van Geet et al. (2005), Molinero et al. (2018) and Reijonen et al. (2020), among others.

The only sample that kept quite homogeneous values across the pellets/block interface, in terms of e_m , e_M and mean pore sizes, was that from test MGR27. This was also the test reaching a highest homogeneity concerning dry density and water content, which suggests that the microstructural changes were related to the changes in dry density and water content and thus to temporal evolution.

793 Hence, as a result of hydration the volume of micropores increased in all the bentonite with respect 794 to the initial one, particularly in the case of the pellets. The increase in the volume of micropores was 795 likely related to the increase in the smectite basal spacing as a result of the hydration of the 796 interlayer cations (Fig. 18), which is the driving mechanism for crystalline swelling, predominant in 797 compacted bentonite saturated under isochoric conditions (e.g. Pusch et al. 1990, Devineau et al. 798 2006). Holmboe et al. (2012) determined by XRD profile fitting that in bentonite samples saturated 799 under confined conditions the interlayer porosity dominated total porosity and for dry densities 1.4-800 1.8 g/cm³ the interparticle porosity was \leq 3%. As it happened with the pore size distribution obtained 801 by MIP, the basal spacings were clearly distinct for pellets and block samples. In contrast, the basal 802 spacings determined in wet samples from the in situ EB experiments (using the same procedure and 803 methodology as in this work) did not show clear differences between block and pellets (Villar et al. 804 2014). Since the samples from the in situ test were matured for 10.5 years, it could be expected that

in the long term, also the microstructure of the two components of the much shorter MGR tests would become homogenised. In samples from the in situ test –which were fully saturated– the basal spacings indicated that 3 water layers were completely developed in the interlayer (values around 1.85 nm). For water contents below ~38%, the basal spacing increased with the water content, but for higher values the basal spacing was quite constant, irrespective of the water content, which was also observed in the samples from the MGR tests.

811 **5** Conclusions

The hydro-mechanical evolution of a two-component bentonite buffer material –low density pellets mixtures and higher density compacted blocks– was studied by means of a series of laboratory hydration tests performed under isochoric conditions. The tests were performed in a large-scale oedometer (10x10 cm) and in a transparent cell (12x12x2 cm). In the first case the axial pressure was measured on the sample surface opposite to hydration. In most tests hydration took place through the pellets part, but the effect of hydrating through the block was also checked. As well, tests were performed either under a low water injection pressure or under a low water inflow rate.

819 The analysis of the results obtained allowed to draw the following conclusions:

Because of their low density and large macroporosity, hydration through the pellets was initially
 quick, even though the water injection pressure was very low.

The way of hydration conditioned the water intake and the pressure development kinetics. Slow
 hydration (e.g. under a controlled low flow of through the block) delayed the start of pressure
 development, but allowed higher pressures to be reached for lower overall degrees of
 saturation. The reason could be the longer time available for water redistribution from the
 macropores to the microstructure (particularly the montmorillonite interlayer), which would be
 the responsible for swelling. The interplay between the different strengths of the two

828 components may also be a relevant factor on the axial load measured at the first stages of 829 saturation.

Irrespective of the way of saturation (constant flow or pressure), the pressure development was
 not continuous. After a first sharp increase (which was quicker under constant pressure), there
 was an intermediate period of pressure stabilisation. Only when the overall degree of saturation
 was very high, the pressure increased again until its final equilibrium value. This pressure
 development pattern had been previously observed also in samples of compacted bentonite and
 of pellets.

836 The stress measuring devices (in this case an external load cell on top of the oedometer cover) reflect local stresses which are conditioned by the local dry density. Hence, when the block part 837 was on top, the final pressure value of the saturated sample was higher than the value expected 838 for smaller samples of bentonite compacted at the same average dry density. When the pellet 839 840 part was on top, the contrary happened. Friction between the bentonite and the cell steel wall 841 could also contribute to these differences. This research has put forward the necessity of using testing devices in which pressure can be measured at different locations to correctly assess the 842 843 stress state of inhomogeneous samples.

Bentonite water content and dry density gradients were observed at the end of the tests. For a
 given hydration rate they were dependent on the hydration time and, although they attenuated
 over time, they persisted even after full saturation was reached. Saturation under very low water
 inflow rate (either imposed or resulting from the low permeability of the block part when
 saturation took place through it) resulted in more uniform water contents and smoother
 gradients, also in terms of pore sizes.

850 – In contrast, the microstructure of the bentonite in the two components was very different even 851 after full saturation. Despite of the drastic reduction in the volume and size of macropores in the 852 pellets parts, they continued to be higher than in the block part and consequently the e_m/e_M was

lower in the pellets part. The basal spacing of the smectite, which is an indication of the number
of water layers in the interlayer, was higher in pellets samples than in block samples. However,

an overall trend to pore size homogenisation towards smaller sizes over time was observed.

The water content and dry density gradients were not affected by the pellets/block interface.
After full saturation the pellets/block interface was impervious to gas.

The behaviour of a two-component barrier can be affected by the particular dry density and water content of each barrier component as well as their size and geometry, and by the boundary conditions, such as the existence of gaps, temperature and water salinity and availability. This research has just analysed the effect of geometry and water availability, but there are not systematic published researches having analysed all the other aspects yet.

The evidence provided by these experimental results along with the outcomes of the large-scale EB test, in which a similar two-component barrier was tested for 10.5 years, suggests that, although the initial heterogeneity of the barrier system and the deformations induced in the first stages of saturation tend to attenuate over time, residual inhomogeneities will persist and remain even after full saturation. The kind and extent of these heterogeneities will depend on the initial and boundary conditions of the barrier.

869

855

870 Acknowledgements

The research leading to these results was financed by the Beacon project, which receives funding from the Euratom Research and Training Programme 2014–2018 under grant agreement number 745942. Part of the laboratory work was carried out by J. Aroz. Dr. Pedro Luis Martín of CIEMAT contributed to the design of the tests in transparent cell. The mercury intrusion porosimetry tests were performed at the Petrophysical laboratory of CIEMAT by N. Brea. The XRD measurements were performed at the High-Level Radioactive Waste Unit of CIEMAT and at the Unidad de Técnicas

877	Geológicas del CAI de Ciencias de la Tierra y Arqueometría of the Universidad Complutense de
878	Madrid. L. Gutiérrez-Nebot (CIEMAT) performed the XRD interpretation. Beatriz Carbonell was hired
879	in the framework of the Spanish National System of Youth Guarantee in R+D 2014, with financing of
880	the European Social Fund and the Youth Employment Initiative.

882 CRediT statements

- 883 M.V. Villar: conceptualization, formal analysis, investigation, writing, editing, supervision
- 884 R.J. Iglesias: investigation, formal analysis, resources, visualization, review
- 885 **C. Gutiérrez-Álvarez**: investigation, formal analysis, resources, visualization, review

886 B. Carbonell: investigation, formal analysis, resources, visualization, review

887

888 6 References

- Abed, A., Solowski, W.T. 2019. Simulation of swelling pressure evolution during infiltration in a
 bentonite block-pellet laboratory scale test. Japanese Geotechnical Society Special
 Publication 7(2): 323-330. DOI: 10.3208/jgssp.v07.052
- Alcantara A, Romero E., Mokni N., Olivella S. 2020. Microstructural and hydro-mechanical behaviour
 of bentonite pellets and powder mixtures. E-UNSAT 2020. E3S Web of Conferences 195,
 04003. https://doi.org/10.1051/e3sconf/202019504003
- Baryla, P., Bernachy-Barbe, F., Bosch, J.A., Campos, G., Carbonell, B., Daniels, K.A., Ferrari, A., Guillot,
 W., Gutiérrez-Álvarez, C., Harrington, J.F., Iglesias, R.J., Kataja, M., Mašín, D., Najser, J.,
 Rinderknecht, F., Schäfer, T., Sun, H., Tanttu, J., Villar, M.V., Wieczorek, K. 2019. Bentonite

- 898 mechanical evolution experimental work for the support of model development and 899 validation. DELIVERABLE (D4.1/2). Report. 132 pp.
- Bernachy-Barbe, F., Conil, N., Guillot, W., Talandier, J. 2020. Observed heterogeneities after
 hydration of MX-80 bentonite under pellet/powder form. Applied Clay Sience 189: 105542.
- 902 https://doi.org/10.1016/j.clay.2020.105542
- Bernachy-Barbe, F. 2021. Homogenization of bentonite upon saturation: Density and pressure fields.
 Applied Clay Sience 209: 106122. <u>https://doi.org/10.1016/j.clay.2021.106122</u>
- Bian, X., Cui, Y.J., Zeng, L.L., Li, X.Z. 2019. Swelling behavior of compacted bentonite with the
 presence of rock fracture. Engineering Geology 254: 25-33.
 <u>https://doi.org/10.1016/j.enggeo.2019.04.004</u>
- Bosgiraud, J.M., Foin, R. 2016. Test report on FSS metric clayish material emplacement tests with
 clayish material definition and laboratory work on its performance. Project DOPAS Work
 Package 3 Deliverable 3.7. European Commission Grant Agreement No. 323273. 35 pp.
 https://igdtp.eu/documents/
- Devineau, K., Bihannic, I., Michot, L., Villiéras, F., Masrouri, F., Cuisinier, O., Fragneto, G., Michau, N.,
 2006. In situ neutron diffraction analysis of the influence of geometric confinement of
 crystalline swelling of montmorillonite. Applied Clay Science 31 (1–2): 76–84.
 <u>https://doi.org/10.1016/j.clay.2005.08.006</u>
- Dixon, D., Chandler, N., Graham, J., Gray, M.N., 2002. Two large-scale sealing tests conducted at
 atomic energy of Canada's underground research laboratory: the buffer-container
 experiment and the isothermal test. Canadian Geotechnical Journal 39: 503–518.
 <u>https://doi.org/10.1139/t02-012</u>

- Dueck, A., Goudarzi, R., Börgesson, L. 2016. Buffer homogenisation. Status report 3. Technical Report
 SKB TR-16-04. Svensk Kärnbränslehantering, Stockholm, 104 pp.
- 922 ENRESA 2005. Engineered barrier emplacement experiment in Opalinus Clay for the disposal of
 923 radioactive waste in underground repositories. Final Report. Publicación Técnica ENRESA
 924 02/05. Madrid, 101 pp.
- 925 ENRESA 2006. FEBEX Full-scale Engineered Barriers Experiment, Updated Final Report 1994–2004.
 926 Publicación Técnica ENRESA 05-0/2006, Madrid, 590 pp.
- 927 Gaus, I., Garitte, B., Senger, R., Gens, A., Vasconcelos, R., García-Sineriz, J.L., Trick, T., Wieczorek, K.,

Czaikowski, O., Schuster, K., Mayor, J.C., Velasco, M., Kuhlmann, U., Villar, M.V. 2014. The HE-

- 929 E Experiment: Lay-out, Interpretation and THM Modelling. Nagra Arbeitsbericht NAB 14-53. 930 Wettingen, 140 pp.
- Gens, A., Alcoverro, J., Blaheta, R., Hasal, M., Michalec, Z., Takayama, Y., Lee, C., Lee, J., Kim, G.Y.,
 Kuo, W.J., Lin, C.Y. 2021. HM and THM interactions in bentonite engineered barriers for
 nuclear waste disposal. International Journal of Rock Mechanics and Mining Sciences 137:
- 934 104572. <u>https://doi.org/10.1016/j.ijrmms.2020.104572</u>

- Gutiérrez-Rodrigo, V. 2018. Transporte de gas en materiales de barrera. Tesis Doctoral. Universidad
 Complutense de Madrid. Colección Documentos CIEMAT. ISBN: 978-84-7834-802-2. Madrid,
 303 pp.
- Gutiérrez-Rodrigo, V., Martín, P.L., Villar, M.V. 2021. Effect of interfaces on gas breaktrough pressure
 in compacted bentonite used as engineered barrier for radioactive waste disposal. Process
 Safety and Environmental Protection 149: 244-257.
 <u>https://doi.org/10.1016/j.psep.2020.10.053</u>.

- Grambow, B. 2016. Geological disposal of radioactive waste in clay. Elements 12: 239-245. DOI:
 10.2113/gselements.12.4.239
- Harrington, J.F., Daniels, K.A., Wiseall, A.C., Sellin, P., 2020. Bentonite homogenisation within
 engineered cavities: the evolution of swelling pressure during bentonite hydration.
 International Journal of Rock Mechanics and Mining Sciences 136, 104535.
 doi:10.1016/j.ijrmms.2020.104535.
- Hoffmann, C. 2005. Caracterización hidromecánica de mezclas de pellets de bentonita. Estudio
 experimental y constitutivo. (PhD Thesis), Universitat Politècnica de Catalunya, Barcelona,
 387 pp.
- Hoffmann, C., Alonso, E.E. and Romero, E. 2007. Hydro-mechanical behaviour of bentonite pellet
 mixtures. Physics and Chemistry of the Earth 32: 832-849.
 <u>https://doi.org/10.1016/j.pce.2006.04.037</u>
- Holmboe, M., Wold, S., Jonsson, M. 2012. Porosity investigation of compacted bentonite using XRD
 profile modeling. Journal of Contaminant Hydrology 128: 19-32.
 doi:10.1016/j.jconhyd.2011.10.005
- Imbert, C., Villar, M.V. 2006. Hydro-mechanical response of a bentonite pellets/powder mixture upon
 infiltration. Applied Clay Science 32: 197-209. <u>https://doi.org/10.1016/j.clay.2006.01.005</u>
- Imbert, C., Gatabin, C., Maugis, P., Leboulch, D., Mouche, E. 2002. Hydro-mechanical behaviour of a
 heterogeneous swelling clay material. In: Auriault, J.L., Block, J.F., Geindreau, C., Royer, P.
- 961 Bloch, J.F., Boutin, C., Lewandowska, J. (Eds.) Poromechanics II: Proceedings of the Second
- 962 Biot Conference on Poromechanics, Grenoble. Swets & Zeitlinger, Balkema, Lisse. 225-230.

- Kennedy, K., Verfuss, F., Plötze, M. 2004. Engineered Barrier Emplacement (EB) Experiment in
 Opalinus Clay: Granular material backfill product documentation. EC contract FIKW-CT-2000 00017. Project Deliverable D3c. Mont Terri Technical Note 2004-17, 61 pp.
- Kröhn, K.P. 2005. New evidence for the dominance of vapour diffusion during the re-saturation of
 compacted bentonite. Engineering Geology 82: 127132. https://doi.org/10.1016/j.enggeo.2005.09.015
- Lloret A., Villar M.V., Sánchez M., Gens A., Pintado X., Alonso E.E. 2003. Mechanical behaviour of
 heavily compacted bentonite under high suction changes. Géotechnique 53 (1): 27-40.
 https://doi.org/10.1680/geot.53.1.27.37258
- 972 Martikainen, J., Pintado, X., Mamunul, H. 2018. Laboratory tests to evaluate bentonite
 973 homogenization. Internal memorandum POS-026579. Eurajoki, Finland: Posiva Oy.
- 974 Mašín, D. 2013. Double structure hydromechanical coupling formalism and a model for unsaturated
 975 expansive clays. Engineering Geology 165: 73-88.
 976 <u>https://doi.org/10.1016/j.enggeo.2013.05.026</u>
- Massat, L., Cuisinier, O., Bihannic, I., Claret, F., Pelletier, M., Masrouri, F., Gaboreau, S. 2016. Swelling
 pressure development and inter-aggregate porosity evolution upon hydration of a
 compacted swelling clay. Applied Clay Science 124–125: 197-210.
 <u>https://doi.org/10.1016/j.clay.2016.01.002</u>
- Molinero Guerra, A. 2018. Caractérisations expérimentale et numérique du comportement hydro mécanique d'un matériau hétérogène : mélange de poudre/pellets de bentonite. Ph. Thesis,
 Université Paris-Est. 190 pp.
- Molinero Guerra, A., Cui, Y.-J., Mokni, N., Delage, P., Bornert, M., Aimedieu, P., Tang, A.M., Bernier F.
 2018. Investigation of the hydro-mechanical behaviour of a pellet/powder MX80 bentonite

- 986 mixture using an infiltration column. Engineering Geology 243: 18-25.
 987 10.1016/j.enggeo.2018.06.006
- Müller, H.R., Garitte, B., Vogt, T., Köhler, S., Sakaki, T., Weber, H., Spillmann, T., Hertrich, M., Becker,
 J.K., Giroud, N., Veerle, C., Diomidis, N. Vietor, T. 2017. Implementation of the full-scale
 emplacement (FE) experiment at the Mont Terri rock laboratory. Swiss Journal of
 Geosciences 110: 287–306. DOI 10.1007/s00015-016-0251-2
- 992 NAGRA 2019. Implementation of the Full-scale Emplacement Experiment at Mont Terri: Design,
 993 Construction and Preliminary Results. NAGRA Technical Report NTB 15-02. Wettingen, 147
 994 pp.
- Navarro, V., Asensio, L., Morena, G. de la, Gharbieh, H., Alonso, J., Pulkkanen, V.M. 2020. From
 double to triple porosity modelling of bentonite pellet mixtures. Engineering Geology 274:
 105714. <u>https://doi.org/10.1016/j.enggeo.2020.105714</u>
- Pusch, R., Karnland, O., Hökmark, H. 1990. GMM -A general microstructural model for qualitative and
 quantitative studies on smectite clays. SKB Technical Report TR 90-43. Stockholm, 94 pp.
- Reijonen, H.M., Kuva, J., Heikkilä, P. 2020. Benefits of applying X-ray computed tomography in
 bentonite based material research focussed on geological disposal of radioactive waste.
 Environmental Science and Pollution Research 27: 38407–38421.
 https://doi.org/10.1007/s11356-020-08151-2
- Romero, E. 2013. A microstructural insight into compacted clayey soils and their hydraulic properties.
 Eng. Geol. 165: 3-19. http://dx.doi.org/10.1016/j.enggeo.2013.05.024
- Salo, J.P., Kukkola, T. 1989. Bentonite pellets, an alternative buffer material for spent fuel canister
 deposition holes. Workshop "Sealing of Radioactive Waste Repositories". Braunschweig.

- Sánchez M, Gens A, Guimarães L, Olivella, S, 2005. A double structure generalized plasticity model for
 expansive materials. International Journal for Numerical and Analytical Methods in
 Geomechanics 29: 751–787. DOI:10.1002/nag.434.
- 1011 Sellin, P., Leupin, O., 2013. The use of clays as an engineered barrier in radioactive-waste 1012 Clay Minerals 61 management _ а review. Clays and (6): 477-498. 1013 https://doi.org/10.1346/CCMN.2013.0610601
- Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquérol, J., Siemieniewska, T.
 1985. Reporting physisorption data for gas/solid systems with special reference to the
 determination of surface area and porosity. Pure and Applied Chemistry 57(4): 603-619.
 IUPAC.
- SKB. 2010. Buffer, Backfill and Closure Process Report for the Safety Assessment SR-Site. TR-10-47.
 Swedish Nuclear Fuel and Waste Management Co (SKB), Stockholm, 360 pp.
- 1020 Talandier, J. (Ed.) 2019. Synthesis of results from task 5.1. BEACON Deliverable D5.1.2. 334 pp.
- 1021 Van Geet, M., Volckaert, G., Roels, S. 2005. The use of microfocus X-ray computed tomography in
 1022 characterising the hydration of a clay pellet/powder mixture. Applied Clay Science 29 (2): 73-
- 1023 87. <u>https://doi.org/10.1016/j.clay.2004.12.007</u>
- Van Geet, M., Bastiaens, W., Volckaert, G., Weetjens, E., Sillen, X., Maes, N., Imbert, C., Billaud, P.,
 Touzé, G., Filippi, M., Plas, F., Villar, M. V., García-Gutiérrez, M., Mingarro, M., Gens, A.,
 Vallejan, B. 2009. RESEAL II. A large-scale in situ demonstration test for repository sealing in
 an argillaceous host rock Phase II. Final report.: EUR 24161, Nuclear Science and
 Technology, European Commission, Luxembourg, 288 pp.
- 1029 Villar, M.V. 1999. RESEAL Project. Topical Report on Laboratory Tests. Version 1. Informe Técnico
 1030 CIEMAT/DIAE/54121/2/99. Madrid, 33 pp.

- 1031 Villar, M.V. 2002. Thermo-hydro-mechanical characterisation of a bentonite from Cabo de Gata. A
 1032 study applied to the use of bentonite as sealing material in high level radioactive waste
 1033 repositories. Publicación Técnica ENRESA 01/2002, Madrid, 258 pp.
- 1034 Villar, M.V. 2012. EB experiment. Laboratory infiltration tests report. PEBS Deliverable D2.1-5.
- 1035 CIEMAT Technical Report CIEMAT/DMA/2G210/03/2012. 33 pp. <u>https://www.pebs-</u> 1036 eu.de/PEBS/EN/Downloads/D2 1 5 pdf.pdf? blob=publicationFile&v=1
- 1037 Villar, M.V.(Ed). 2017. FEBEX-DP Postmortem THM/THC Analysis Report. NAB 16-017. 143 pp.
- 1038 Villar, M.V., Lloret, A. 2001. Variation of the intrinsic permeability of expansive clays upon saturation.
- 1039 In: Adachi, K., Fukue, M. (Eds.): Clay Science for Engineering. A.A. Balkema, Rotterdam, pp.
 1040 259–266.
- 1041 Villar, M.V., Gómez-Espina, R. 2012. Long-term Performance of Engineered Barrier Systems PEBS.
 1042 Permeability tests in samples from the EB experiment at Mont Terri (Borehole EB-B1).
 1043 Technical Note CIEMAT/DMA/2G210/06/12. Madrid, 15 pp.
- 1044 Villar, M.V.; Gutiérrez-Rodrigo, V.; Martín, P.L.; Romero, F.J. & Barcala, J.M. 2013. Gas transport in
 1045 bentonite. Informes Técnicos CIEMAT 1301. Madrid, 63 pp. DOI:
 10.13140/RG.2.2.14334.28489
- 1047 Villar, M.V., Campos, R., Gutiérrez-Nebot, L. 2014. EB experiment. Laboratory post-mortem analyses
 1048 report. PEBS Project Deliverable D2.1-7. CIEMAT Technical Report
 1049 CIEMAT/DMA/2G210/01/2014. Madrid, 34 pp.
- Villar, M.V., Iglesias, R.J., Gutiérrez-Álvarez, C., Carbonell, B., Campos, R., Campos, G., Martín, P.L.,
 Castro, B. 2018. FEBEX-DP: Thermo-hydro-mechanical postmortem analysis of bentonite
 performed at CIEMAT. Technical report CIEMAT/DMA/2G216/2/16. NAB16-024. Madrid, 134
 pp.

- 1054 Villar, M.V., Campos, G., Gutiérrez-Nebot, L., Arroyo, X. 2019. Effect of prolonged drying at high
 1055 temperature on the water retention capacity of bentonite (FEBEX-DP samples). Applied Clay
 1056 Science 182: 105290. https://doi.org/10.1016/j.clay.2019.105290
- 1057 Villar, M.V., Iglesias, R.J., García-Siñeriz, J.L., Lloret, A., Huertas, F. 2020. Physical evolution of a
- bentonite buffer during 18 years of heating and hydration. Engineering Geology 264: 105408.
 <u>https://doi.org/10.1016/j.enggeo.2019.105408</u>
- 1060 Villar, M.V., Carbonell, B., Martín, P.L., Gutiérrez-Álvarez, C. 2021. The role of interfaces in the
 1061 bentonite barrier of a nuclear waste repository on gas transport. Engineering Geology 286:
 1062 106087. <u>https://doi.org/10.1016/j.enggeo.2021.106087</u>
- Volckaert, G., Bernier, F., Alonso, E., Gens, A., Samper, J., Villar, M.V., Martín, P.L., Cuevas, J.,
 Campos, R., Thomas, H.R., Imbert, C., Zingarelli, V. 1996. Thermal-hydraulic-mechanical and
 geochemical behaviour of the clay barrier in radioactive waste repositories (model
 development and validation). Nuclear science and technology. EUR 16744. Commission of
 the European Communities, Luxembourg, 722 pp.
- Volckaert, G., Dereeper, B., Put, M., Ortiz, L., Gens, A., Vaunat, J., Villar, M.V., Martín, P.L., Imbert, C.,
 Lassabatère, T., Mouche, E., Cany, F. 2000. A large-scale in situ demonstration test for
 repository sealing in an argillaceous host rock. Reseal project Phase I. EUR 19612.
 Commission of the European Communities, Luxembourg, 273 pp.
- Yuan, S., Liu, X., Romero, E., Delage, P., Buzzi, O. 2020. Discussion on the separation of macropores
 and micropores in a compacted expansive clay. Géotechnique Letters 10: 1–7.
 https://doi.org/10.1680/jgele.20.00056