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Abstract 19 

High-accuracy solar radiation data are needed in almost every solar energy project for 20 

bankability. Time series of solar irradiance components that spans decades can be supplied by 21 

satellite-derived irradiance or by reanalysis models, with very various types of uncertainty 22 

associated to the specific approaches taken and quality of boundary conditions information. In 23 

order to improve the reliability of these modeled datasets, comparison with ground 24 

measurements over a short period of time can be used for correcting some aspects, bias 25 

mainly, of the modeled data by using different methodologies; this procedure is known as site 26 

adaptation. Therefore, a benchmarking exercise that uses different site adaptation techniques 27 

was proposed within the Task 16 IEA-PVPS activities. In this work, over ten different site-28 

adaptation techniques have been used for assessing the accuracy improvement, using ten 29 

different datasets covering both satellite-derived and reanalysis solar radiation data. The 30 

effectiveness of these methods is found not universal or spatially homogeneous, but in 31 

general, it can be stated that significant improvements can be achieved eventually in most 32 

sites and datasets.  33 
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1. Introduction 36 

Solar power deployments, such as photovoltaics (PV) or concentrating solar power 37 

(CSP) plants, require high-quality decade-long time series of solar radiation data for 38 

both technical (planning dimensioning and designing stages) and financial aspects of 39 

the project. The long-term variability of solar resources plays a significant role in 40 

estimating the probability of exceedance of the future energy yields of a solar power 41 

plant, and it influences the financial conditions that the project is likely to receive 42 

(Fernández-Peruchena et al., 2018). Notwithstanding, due to the significant intra-day 43 

and inter-annual variability of solar irradiance, the solar resource assessment should 44 

consider time series, instead of only considering the climatological averages. Reliable 45 

and bankable solar radiation data should include at least time series of direct normal 46 

irradiance (DNI) for CSP projects, and global horizontal irradiance (GHI) or plane of 47 

array (POA) global irradiance for the PV ones (Sengupta et al., 2017). Additionally, 48 

high-quality diffuse horizontal irradiance (DHI) data are also desirable and might be 49 

required in specific solar projects and applications. 50 

 51 

Long-term time series of the solar radiation components at the Earth’s surface can be 52 

modelled by many methodologies based on satellite imagery or numerical weather 53 

model reanalysis. The use of satellite-based models is currently most common in 54 

carrying out both solar resource mapping and site-specific solar irradiance data 55 

generation, since this approach has achieved a high degree of maturity and reliability. 56 

Solar engineers’ extensive modeling  experience in producing operational satellite-57 

derived irradiance can be traced back to the late 1980s  (Cano et al., 1986; Polo et al., 58 

2008; Polo and Perez, 2019). The works that aim to validate, improve and apply these 59 

satellite-based methods are still on-going today and are being reported regularly in the 60 

relevant scientific and industry communities (Cros et al., 2019; Merrouni et al., 2017; 61 

Perez et al., 2017; Pfeifroth et al., 2017; Porfirio and Ceballos, 2017; Qu et al., 2017; 62 

Riihelä, 2018; Tang et al., 2016; Thomas et al., 2016; Urraca et al., 2017; Yang, 2019, 63 

2018; Yang and Boland, 2019; Yang and Perez, 2019). High-quality, satellite-derived 64 

irradiance datasets are made freely available by several providers, such as PVGIS 65 

(Amillo et al., 2014), CM-SAF (Kothe et al., 2019; Posselt et al., 2012), or NSRDB 66 

(Sengupta et al., 2018). In addition, the quality of the latest reanalysis data has 67 

improved significantly (Urraca et al., 2018), although the specific validation exercise 68 

was performed using daily data and the hourly results are still unclear. Nevertheless, 69 

large number of recent works highlights the interest on this topic (Feng and Wang, 70 

2019; Huld et al., 2018; Peng et al., 2019; Perdigão et al., 2016; Ramirez Camargo and 71 



Dorner, 2016; Salazar et al., 2020; Tahir et al., 2020; Trolliet et al., 2018; Zib et al., 72 

2012). 73 

 74 

That said, despite the improvements and quality gained in the recent years, various 75 

types of uncertainties are still embedded in modeled solar irradiance datasets, 76 

particularly owing to the uniformity of the data-generating process. Stated differently, 77 

when a model retrieves solar irradiance at a specific site some uncertainties are 78 

involved. Systematic errors in the models, limitations in the spatial and temporal 79 

resolutions, uncertainty in the atmospheric data that affects the radiative transfer 80 

process are, among others, some of the major sources of uncertainty that can result in 81 

biases or deviations in the modeled data.  82 

 83 

Validation results in the literature for GHI and DNI, either satellite-derived or 84 

reanalysis-based, are very difficult to summarize. A huge amount of studies can be 85 

found elsewhere. Many providers and models report uncertainties that can vary a lot 86 

depending on the geographic area, the intrinsic characteristics of the model and on the 87 

quality of ground data used for validation. In order to illustrate this variability, just a 88 

few recent validation results are given next. Uncertainties in the range of -4 to 9% 89 

MBD (Mean Bias deviation) and 17-50% RMSD (Root Mean Square Deviation) for 90 

hourly GHI were reported with the eastern Meteosat satellite (Amillo et al., 2014). In 91 

India, SARAH-E satellite-based estimations resulted in 10-20% overestimation of the 92 

surface incoming solar radiation (Riihelä, 2018). In Chile, nearly unbiased hourly GHI 93 

with 20% RMSD was recently estimated using GOES satellite imagery (Molina et al., 94 

2017). Recent validation of the National Solar Radiation database (NSRBD) reported 95 

RMSD ranges of 9-18% and 15-30% for hourly GHI and DNI, respectively (Yang, 2018).  96 

The HelioClim-3 database reported 8% MBD and 20% RMSD for DNI estimations in 97 

Morocco (Merrouni et al., 2017). Version 4 of the SUNY model has improved notably 98 

its performance in both GHI and DNI (Perez et al., 2015). Therefore, quality, availability 99 

and completeness of the ground data, topography and climatology of the site, 100 

accuracy of the boundary conditions and input parameters (atmospheric composition, 101 

cloud properties, etc.) play an important role in the uncertainty characterization of the 102 

models for estimating solar radiation components.      103 

 104 

In virtually every solar power project, and in many other applications, the preliminary 105 

characterization of long-term solar resources is done by evaluating the modeled time 106 

series of solar irradiance against short-term local ground measurements. Setting up a 107 

high-quality, ground-based monitoring station at the project site is always 108 

recommended for projects with significant financial investment. It is also highly 109 

recommended to keep the station instruments properly calibrated and maintained. 110 

The assessment of long-term data by comparing to local measurements could help in 111 

terms of uncertainty quantification and mitigating the financing risk of the project 112 



(Armansperg et al., 2015; Fernández-Peruchena et al., 2018; Fernández Peruchena et 113 

al., 2016; Guerreiro et al., 2016; Hirsch et al., 2017; Meyer and Schwandt, 2017; Polo et 114 

al., 2017, 2016a; Richter et al., 2015). Moreover, a reasonable period of ground 115 

measurements (usually a year) can be used to remove bias, and thus correct and 116 

improve the long-term solar radiation time series by different techniques. These 117 

techniques aim to find a relationship between the ground and modeled data that can 118 

be extrapolated to the past, as a means for minimizing the statistical deviations. This 119 

process of calibration or correction of modeled data by including observational data 120 

has been used in the retrievals of other meteorological variables (wind velocity, 121 

precipitation, etc.). In the field of energy meteorology, such correction procedures 122 

have been frequently termed site adaptation techniques (Polo et al., 2016b). Several 123 

example techniques that have been applied to improve the goodness of solar radiation 124 

time series can be found in the recent literature (Frank et al., 2018; Mazorra Aguiar et 125 

al., 2019; Perez et al., 2010; Polo et al., 2015; Tahir et al., 2020). 126 

 127 

In the framework of the Task 16 of IEA-PVPS (http://www.iea-pvps.org/index.php?id=389) 128 

and Task V of IEA-SolarPACES entitled “Solar Resource for High Penetration and Large 129 

Scale Applications”, several activities are being addressed in benchmarking, models 130 

assessment and improving knowledge of modeling solar radiation components. 131 

Improvement in measuring protocols, gap filling, and quality check of ground data and 132 

benchmarking of models are, among others, activities focused on improving the 133 

bankability of solar radiation products. In this context, benchmarking and reviewing of 134 

site-adaptation techniques for solar resource data are stated as activities of interest 135 

(Remund et al., 2017). Under this framework, several task participants are developing 136 

different techniques and procedures for improving and correcting the modeled 137 

datasets, for various satellite-derived and reanalysis datasets, in order to have a 138 

sample of modeled solar radiation data that can typify the different types of 139 

uncertainties.  140 

 141 

A first benchmarking exercise has been developed by four teams of scientists, and its 142 

methodology and results are reported here. Each team has implemented one or 143 

several site adaptation techniques, according to their previous experience and skills. 144 

All these methodologies have been applied in a blind exercise to 10 different datasets 145 

(consisted of pairs of ground and model sets of data of the solar irradiance 146 

components: GHI, DNI and DHI).  147 

 148 

For the present needs, a blind exercise is justified to protect some of the techniques 149 

that are, or could be become, commercial. This study aims at performing a pure 150 

statistical exercise to explore the capability of a given technique to improve a dataset 151 

using a small part of the observations. Therefore ground and model datasets, and 152 

techniques, are selected following these simple rules: covering quite different climates, 153 

http://www.iea-pvps.org/index.php?id=389


using mostly free and open-source modeled and ground data, and selecting those site 154 

adaptation techniques with enough details in the literature for easy implementation. 155 

This paper acts as a report for those findings. 156 

 157 

2. Description of the methodologies and approaches 158 

 159 

Different methodologies have been tested in this work for site adaptation of solar 160 

radiation data. Some of them originate from other subdomain of meteorology (Piani et 161 

al., 2010; Wilcke et al., 2013). This section provides a general description of the 162 

fundamentals of those methodologies considered in this work. It is emphasized that 163 

more site adaptation techniques do exist, and some of them were described in Polo et 164 

al. 2016; hence, the present contribution should not be considered exhaustive. The 165 

procedures for using these techniques can be applied to either the entire dataset, or 166 

subsets of data that are divided according to solar elevation or sky classification, for 167 

instance. In order to emulate a realistic situation in resource assessment for solar 168 

projects, each site-adaptation procedure has been carried out using data from the 169 

latest year available at each site, and each adapted series has been compared with 170 

measured data spanning the entire history of that site. 171 

 172 

2.1 Linear regression bias removal  173 

 174 

The bias removal using a linear regression model aims at finding a linear relationship 175 

between the measured and modeled data, which often can result in an improved 176 

coefficient of determination of the pair of random variables. This simple methodology 177 

is quite commonly used to correct satellite-derived solar radiation data, showing good 178 

results in presence of large seasonal bias (Mazorra Aguiar et al., 2019; Polo et al., 179 

2016b, 2015). Linear least squares fitting is performed between the modeled data (𝑥𝑚) 180 

and observations (𝑥𝑜) over a selected period of time (e.g., one year) to obtain the 181 

slope (a) and the y-intercept (𝑏). The bias-removal procedure for the fitting data can 182 

be expressed using the following equation: 183 

 184 

𝑦 = 𝑥𝑚 - [(a-1) 𝑥𝑜 + 𝑏].                                                  (1) 185 

 186 

Such expression of 𝑦 and 𝑥𝑚 results in a linear function f that can be used to transform 187 

all the historical modeled data into new corrected data, 𝑦𝑐. 188 

 189 

𝑦𝑐 = 𝑓(𝑥𝑚),                                                             (2) 190 

 191 

where 𝑓 represents the linear function resulting from fitting the corrected 𝑦𝑐 values 192 

versus the original 𝑦. This procedure has similarities with the Measured-Correlated-193 



Predict (MCP) methods (Carta et al., 2013). In the context of this work this method will 194 

be called LIN-FIT for better comparison with the other methodologies used here.  195 

 196 

2.2 Quantile mapping (QM) 197 

 198 

The quantile mapping (QM) technique has been employed in climate modeling and 199 

meteorology for correcting the distribution of a modeled parameter by comparing it 200 

against the empirical distribution of the observations (Déqué et al., 2007; Ines and 201 

Hansen, 2006). The approach seeks to transform the data to a probability domain 202 

(quantiles) and applies the inverse transformation using the cumulative distribution 203 

function (CDF) of the observational data to obtain the corrected data (Déqué et al., 204 

2007), 205 

 206 

𝑦𝑐 = CDF𝑜
−1[CDF𝑚(𝑥𝑚)],                                                       (3) 207 

 208 

where CDF𝑜 and CDF𝑚 are the cumulative distribution functions of the observed and 209 

modeled data, respectively.  210 

The quantiles of modeled and observed data can be computed by the full empirical 211 

non-parametric distribution or by a fitted theoretical parametric distribution 212 

(Feigenwinter et al., 2018; Piani et al., 2010; Themeßl et al., 2012). 213 

 214 

2.3 Quantile delta mapping (QDM) 215 

 216 

The quantile delta mapping (QDM) bias-correction method is an extension of the 217 

conventional QM technique (Cannon, 2018; Cannon et al., 2015). The algorithm 218 

preserves the model-projected relative changes in quantiles, and additionally, corrects 219 

the systematic quantile biases of the modeled data with respect to the observed 220 

values. The bias-adjustment of the modeled values for the reference period is the 221 

same as the traditional QM technique. With respect to the target variable, two 222 

corrections are applied (additive and multiplicative): 223 

 224 

𝑦𝑐 = 𝑥𝑚 + CDF𝑜
−1[CDF𝑚(𝑥𝑚)] − CDF𝑚

−1[CDF𝑚(𝑥𝑚)],                          (4) 225 

𝑦𝑐 = 𝑥𝑚

CDF𝑜
−1[CDF𝑚(𝑥𝑚)]

CDF𝑚
−1[CDF𝑚(𝑥𝑚)]

  . 226 

 227 



2.4 Cumulative distribution function-transform (CDF-T) 228 

 229 

The CDF-T method performs QM based on the CDFs over the future period, thus, 230 

allowing the CDF to change with respect to the reference period. It provides an 231 

extension of the traditional QM method since the QM technique only transforms the 232 

modeled values of the future period onto the CDF of the reference period 233 

(Michelangeli et al., 2009). 234 

 235 

 236 

2.5 Kernel density distribution mapping (KDM) 237 

 238 

Kernel density distribution mapping (KDM) method uses a similar logic as QM, at least 239 

algorithmically. In general, QM enables the bias-adjustment by transforming the 240 

modeled values into quantiles, and then projecting them into data values in terms of 241 

the quantile function (inverse CDF) of the observations (McGinnis et al., 2015). In KDM 242 

the CDF and the CDF-1 functions are expressed in terms of the kernel density estimator. The 243 

probability density functions (PDF) of the modeled and the observed values are estimated non-244 

parametrically using kernel density estimation assuming a Gaussian kernel (Izenman, 2016). 245 

Two slightly different versions of KDM have been used in this work. KDM-T and KDM-CS refer 246 

to the application of the technique to the whole dataset and to subsets according to sky 247 

conditions (clear or non-clear), respectively. KDMR is just KDM with an optimal bandwidth 248 

algorithm. 249 

 250 

2.6 Site-specific multiple regression (SIM) 251 

This method is based on the multi-model inference (also known as ensemble) of multiple linear 252 

regression models, through computing, comparing, and ranking an exhaustive list of models. 253 

For the local adaptation of GHI, an exhaustive screening of the selected exogenous variables is 254 

carried out, followed by a selection of a best model as per the Akaike information criterion 255 

(AIC). The model is constructed through both the selected variables and their interactions; the 256 

exogenous variables include clearness index of modeled GHI series (Kt, the ratio of GHI to top-257 

of-atmosphere solar irradiance on the same plane); relative air mass (m); modeled clear-sky 258 

index (Kc, the ratio between modeled GHI and its corresponding value under clear-sky 259 

conditions); and solar elevation angle. The clear-sky model used in this method is McClear 260 

(Lefèvre et al., 2013), available through the Copernicus Atmosphere Monitoring Service 261 

(CAMS, http://www.soda-pro.com/web-services/radiation/cams-mcclear ). 262 

The methodology for the local adaptation of DNI is based on the previous adaptation of the 263 

diffuse horizontal irradiance (DHI), because the ratio DHI to GHI (K, diffuse fraction) is known 264 

to be reliably predictable from the following parameters (and their combinations): m, Kc, solar 265 

elevation, and a fourth-order polynomial of Ktm. Finally, DNI is calculated from both locally 266 

adapted GHI and DHI by the closure equation, assuring the accomplishment of the 267 

fundamental relations between these solar radiation components. Finally, the procedure is 268 

applied separately for clear-sky and non-clear-sky days. 269 



2.7 Sequential regressive-quantile mapping procedure (SIMEQ) 270 

This method is a sequential application of two procedures of different nature. Firstly, the SIM 271 

technique (described in the preceding subsection, 2.6) is applied, which is based on the 272 

multimodel inference of multiple linear regression models. Secondly, a bias correction based 273 

on empirical quantile mapping (eQM) is applied on both GHI and DNI adapted series. This 274 

method consists in calibrating the simulated CDF by adding to the observed quantiles both the 275 

mean delta change and the individual delta changes in the corresponding quantiles. Finally, 276 

DHI is calculated from the locally adapted GHI and DNI, through the closure equation, thus 277 

satisfying the fundamental relations between these solar radiation components. 278 

The first procedure (i.e., the SIM method) can considerably reduce both the dispersion and the 279 

deviation in CDF of the adapted solar irradiance series, with respect to the modeled ones. The 280 

application of the second procedure (eQM) to the mentioned adapted series significantly 281 

reduces the deviation in CDF, while maintaining or reducing the values of the dispersion 282 

statistical indicators. Similar to the case of the SIM technique, this procedure is applied 283 

separately to clear and non-clear-sky days.  284 

 285 

2.8 Regressions using subsets of data  286 

Specific regressions and fitting techniques can be also applied to subsets of data as a 287 

site adaptation procedure. In this paper a methodology is used for correcting only GHI 288 

where subsets of ground and modeled data are first classified into different ranges of 289 

solar zenith angles and clear-sky index, 𝐾𝑐𝑠 (the ratio between the modeled GHI and its 290 

corresponding value under clear-sky conditions). Solar zenith angles are divided into 5 291 

groups in the range of 0-75° with intervals of 15°, whereas 𝐾𝑐𝑠 is divided into two 292 

groups, namely lower and greater than 0.55.  For each combination of groups (10 293 

combinations in total), a pair of third-degree polynomial regressions are applied to the 294 

last year of modeled and ground data - one for GHI and the other one for 𝐾𝑐𝑠. 295 

Moreover, two additional regressions (again one for GHI and one for 𝐾𝑐𝑠) are 296 

calculated from samples of the entire year (solar zenith angle between 0-75° and 𝐾𝑐𝑠 297 

between 0 and 1). This makes a total of 22 regressions. The one that minimizes the 298 

relative bias is picked for this particular subsample. 299 

3. Ground and modeled datasets 300 

In order to benchmark the different site adaptation techniques, sites are selected from 301 

locations under different climates, and covered by different networks of ground stations. In 302 

addition, different types of modeled data (i.e., satellite-derived and reanalysis) are used. Most 303 

of these data belong to different satellite-derived datasets, estimated using different methods, 304 

and issued by various providers. Reanalysis data, on the other hand, cover two high-latitude 305 

sites, where satellite images do not resolve. Table 1 summarizes the metadata of the selected 306 

sites, which are drawn on the world map together with their climatic types in Figure 1. In this 307 

regard, the datasets herein used belong to modeled data with very different uncertainties 308 



corresponding to two different reanalyses, several satellite models with different approaches 309 

regarding the clear-sky transmittance, atmospheric information (aerosol optical depth or 310 

turbidity, water vapor and other components) and satellite imagery (different satellite 311 

platforms). Each dataset contains both the modeled and measured hourly values of the three 312 

basic solar radiation components (GHI, DNI and DHI). In addition, some, but not all, BSRN-313 

recommended quality checks for ground data are performed (Long and Dutton, 2004), for both 314 

ground and model data. The reason is to allow the assessment of site adaptation methods as a 315 

“blind” statistical tool attempting to fit different model data to observational ones.  316 

Table 1. Summary of sites with pair ground-model datasets for benchmarking 317 

Site (code) Latitude 
(°N) 

Longitude 
(°E) 

Elevation 
(m) 

Climate Period Model 
type 

Alice Springs 
(ASP) 

-23.79 133.88 547 Hot desert, arid 2007-2013 Satellite 

Boulder (BOU) 40.12 -105.23 1689 Cold semi-arid 2009-2015 Satellite 

Tateno (TAT) 36.05 140.12 25 humid 
subtropical  

2009-2015 Satellite 

Tamanrasset 
(TAM) 

22.79 5.52 1385 Hot desert, arid 2007-2011 Satellite 

Carpentras (CAR) 44.08 5.05 100 Mediterranean 2007-2013 Satellite 

Burns (BRN) 43.52 -119.02 1271 Cold semi-arid 2007-2013 Satellite 

Kiruna (KIR) 67.48 20.41 424 subarctic  2008-2014 Reanalysis 

Norrköping 
(NRK) 

58.58 16.14 53 humid 
continental 

2008-2014 Reanalysis 

Visby (VIS) 57.67 18.34 49 oceanic  2008-2014 Satellite 

Sede Boqer 30.86 34.77 500 Hot desert, arid 2006-2011 Satellite 

 318 

 319 

4. Deviations of the model datasets 320 

The evaluation approach for the modeled datasets is described before presenting the 321 

results of the different site adaptation techniques. For assessment of model and site 322 

adaptation performance, three metrics are selected: mean bias deviation (MBD), root 323 

mean square deviation (RMSD) and Kolmogorov-Smirnov integral (KSI). The first two 324 

accuracy measures indicate bias and dispersion,  whereas the third informs the 325 

similitude of CDFs of modeled and measured data (Gueymard, 2014). Table 2 shows 326 

the statistical metrics expressed in percent of all the modeled datasets (i.e. the original 327 

uncorrected datasets as delivered by the different models used) for the three 328 

components. Large ranges of bias, dispersion and similitude of distribution functions in 329 

the model dataset can be observed as a consequence of taking both the site 330 

characteristics and the approaches into account in the modeling. This is a good 331 

outcome from the study since the scope of this work is not the performance of models 332 



retrieving solar radiation data but the capability of statistical methods to correct any 333 

model according to short-term observational values. 334 

 335 

Figure 1. Sites selected for benchmarking site adaptation methods. 336 

 337 

5. Site adaptation assessment results 338 

Different procedures for site adaptation (up to 12) based on the previously described 339 

techniques (in Section 2) were used by four different teams in their attempt to 340 

generate corrected or improved values of the 10 datasets. Table 3 summarizes the 341 

characteristics of each procedure and details the team that employed each procedure. 342 

In all cases, the most recent year of ground data was used to train the model whereas 343 

the adaptation was applied to the whole period of the modeled dataset under 344 

scrutiny. It should be noted that eQM-CS and KDM-CS methods differ from other 345 

quantile mapping methodologies, since they are applied separately to the two subsets 346 



of modeled data that had been obtained for each sky condition (clear or non clear-347 

sky). Therefore, prior to the use of those methods a selection of model data was done 348 

using an algorithm for automatic detection of clear-sky instants. In the case of eQM-CS 349 

and KDM-CS, the clear-sky detection is done using a method proposed by Gueymard 350 

2013. The procedure requires DNI observations and concomitant DNI estimations 351 

under clear-sky conditions based on reliable aerosol optical depth (AOD) data. There is 352 

no perfect algorithm for a posteriori clear-sky identification in solar irradiance time 353 

series since any method may be affected by various sources of error, including 354 

inaccuracies in the input required. For instance, the computation of clear-sky 355 

components need of very accurate information of AOD and Precipitable water at least) 356 

(Gueymard, 2013; Gueymard et al., 2019). A very promising new model has been 357 

recently proposed in the literature for 1-min data (Bright et al., 2020). However the 358 

specific algorithm used in this work points the potential benefits of an accurate 359 

separation of clear and non clear-sky instants in site adaptation methodologies.  360 

 361 

 362 

Table 2. Statistical metrics for the performance of uncorrected modeled datasets. 363 

 364 

Site GHI (%) DNI (%) DHI (%) 

MBD RMSD KSI MBD RMSD KSI MBD RMSD KSI 
Alice Springs 0.0 12.2 49.1 -1.1 20.1 203.7 3.2 47.1 127.1 
Boulder 0.1 25.8 92.3 -6.1 49.9 102.6 9.7 50.6 99.3 
Tateno -3.3 18.3 46.9 -5.5 32.8 81.6 -1.3 31.2 117.6 
Tamanrasset -5.9 16.8 75.4 -12.7 38.8 223.7 9.8 51.7 206.8 
Carpentras 2.6 17.4 50.1 3.6 31.5 64.7 3.7 42.0 144.9 
Burns -1.0 26.9 78.6 5.8 37.7 109.8 -9.6 60.1 247.6 
Kiruna 106.9 258.3 31.1 39.4 179.7 23.3 26.8 141.6 37.7 
Norrkoping 36.6 172.2 21.6 -18.6 118.5 18.7 33.9 141.7 43.4 
Visby 33.1 170.2 28.6 -11.3 123.3 21.2 25.5 138.0 52.5 
Sede Boqer -3.9 33.7 75.1 -15.3 42.4 207.7 19.2 59.6 334.1 

 365 

 366 

 367 

Table 3. Summary of site adaptation techniques and procedures. 368 

  369 

Name Type Components Observations Team 
eQM-T Quantile Mapping GHI,DNI,DHI Empirical CDF Team 1 
eQM-CS Quantile Mapping GHI,DNI,DHI Empirical CDF, separately to clear and 

non-clear-sky data 
Team 1 

KDM-T Quantile Mapping GHI,DNI,DHI Kernel Density Distribution Mapping, 
limiting the maximum irradiance in the 
CDF to 5% over maximun observed 

Team 1 

KDM-CS Quantile Mapping GHI,DNI,DHI Same as before but separately to clear 
and non-clear-sky data 

Team 1 

LIN-FIT Regression GHI,DNI,DHI Simple linear fit Team 2 
CDF-T Quantile Mapping GHI,DNI,DHI As described in section 2.4 Team 2 



KDMR Quantile Mapping GHI,DNI,DHI Kernel Density Distribution Mapping 
with optimal bandwidth 

Team 2 

QDM Quantile Mapping GHI,DNI,DHI As described in section 2.3 Team 2 
SIM Multiple Regression GHI,DNI,DHI As described in section 2.6 Team 3 
SIMEQ Sequential  GHI,DNI,DHI As described in section 2.7 Team 3 
REG Regression GHI As described in section 2.8 Team 4 

 370 

 371 

Figures 2, 3 and 4 show the statistical metrics of the performance of the eight site 372 

adaptation methods for the GHI, DNI and DHI components, respectively. The first 373 

entry, referred to as model, indicates the original uncorrected modeled data in order 374 

to allow proper comparison and to illustrate the relative improvement in performance 375 

generated by each site adaptation method.  376 

 377 

 378 

Figure 2. Statistical metrics for benchmarking of site adaptation applied to GHI. 379 

 380 



 381 

Figure 3. Statistical metrics for benchmarking of site adaptation applied to DNI. 382 

 383 

 384 

Figure 4. Statistical metrics for benchmarking of site adaptation applied to DHI. 385 

The benchmarking results for GHI show that bias is not successfully removed in all 386 

cases. In particular, modeled datasets having an originally low bias (< 1%) site do not 387 

benefit from any improvement, with the exception of some QM-based (CDF-T, KDMR, 388 

QDM) and multiple regression based (SIM, SIMEQ) methods. However, in the case of 389 

modeled data with significant bias (> 30%), most techniques generally result in MBD 390 

improvement compared to unprocessed model data resulting in a much lower MBD 391 

(<10%) for most of them, and even in negligible bias (<1%) in the case of KDMR.  392 

 393 



RMSD is very slightly improved by most techniques, except in the case of modeled 394 

datasets corresponding to the three sites (Kiruna, Norrkoping, and Visby) at very high 395 

latitude (>55°), where the original modeled data are affected by substantial 396 

uncertainty (Table 2), and where the site adaptation techniques induce a significant 397 

decrease in random errors. At those sites with the lowest RMSD values (< 20%), only 398 

those methods based on multiple regression (SIM, SIMEQ) achieved RMSD reduction 399 

(from 16.2% to 14.5%). 400 

 401 

In the case of DNI, most of the methods are able to achieve significant improvement 402 

over the highly negatively biased modeled data (with typical MBD of ~15%), even 403 

bringing down the MBD to below 3% with some of them (eQM-CS, KDM-T, SIM and 404 

SIMEQ). The highly positively biased site (Kiruna, MBD = 39.5%) is satisfactorily 405 

corrected by some methods, among which eQM-T and eQM-CS should be highlighted. 406 

On the other hand, sites with moderate MBD (BOU and TAT, negatively bias at ~5.8%, 407 

and CAR and BRN, positively bias at ~4.8%) are satisfactorily corrected by most 408 

methods. Conversely, RMSD is more significantly improved by only some techniques. 409 

In particular, sites with high RMSD (KIR, NRK and VIS, with RMSD ~140%) are on 410 

average improved by all methods, among which SIM and SIMEQ should be highlighted 411 

because they reduce RMSD by half. At all other sites (typical RMSD ~36%), only some 412 

methods based both on QM (eQM-CS, KDM-T, KDM-CS) and multiple regression (SIM 413 

and SIMEQ) achieve improvements. 414 

 415 

For the case of DHI, the situation at high-bias sites (MBD > 20%) is generally improved 416 

by the site adaptation techniques, whereas very different results are obtained at low-417 

bias sites. Performance improvement in terms of RMSD is mainly observed for a few 418 

datasets wherever the initial bias is large. 419 

 420 

On the other hand, there are some methods that eventually show a characteristic bad 421 

performance not observed at other sites. Thus, LIN-FIT, CDF-T, KDMR and QDM 422 

showed slightly or remarkable improvement in GHI and DHI except at Tamanrasset 423 

site. This particular behavior cannot be attributed to a particular site adaptation 424 

method, so that other potential causes would need to be investigated, such as 425 

subjective user interventions or impacts of the specific training year selected for those 426 

methods. 427 

 428 

KSI is a metric difficult to evaluate in general. Nevertheless, a general better 429 

performance can be observed in the three components by all QM-based methods as 430 

well as in SIMEQ (which uses an eQM procedure). Exceptions to this observation for 431 

some methods (CDF-T, KDM-R and QDM) may be found for Tamanrasset (due probably 432 

to unknown reasons beyond the methodology) and at very high-latitude sites. 433 

Obtaining any improvement at the three high-latitude sites is very challenging because 434 



their measured global irradiance can be positive at zero or negative sun elevation 435 

angles, and because the models selected for these sites where apparently highly 436 

uncertain. 437 

 438 

Condensing the benchmarking and comparisons results in one unique and proper 439 

parameter might be questionable; however, in order to illustrate the results a unique 440 

metric called combined performance Index (CPI) can be used here (Gueymard, 2014). 441 

CPI is defined as a weighted sum of several metrics to combine information on the 442 

dispersion and on the distribution function similitude as well. That is, 443 

 444 

𝐶𝑃𝐼 = (𝐾𝑆𝐼 + 𝑂𝑉𝐸𝑅 + 2 𝑅𝑀𝑆𝐸)/4.                                         (5) 445 

 446 

Tables 4, 5 and 6 show the performance of the different site adaptation techniques for 447 

GHI, DNI and DHI, respectively, in terms of CPI (in percentage). In these tables, the row 448 

denoted as Raw Model and highlighted in bold refers to the original uncorrected 449 

model dataset. According to these results most methods resulted in improvement of 450 

the model datasets. There are, nevertheless, exceptions, such as the LIN-FIT method, 451 

that performs worse at Burns and at high-latitude sites. Despite the absence of any 452 

universal rule in the results, in several situations benefits can be obtained by 453 

separating the data into two subsets (clear and non-clear sky). In addition, the 454 

sequential use of methods, as occurs in the SIMEQ methodology, produces better 455 

performance. Quantile mapping based methodologies, in general, tend also to reduce 456 

the uncertainty.  457 

 458 

 459 

Table 4. CPI (%) for GHI benchmarking results.  460 

 461 

 462 

 ASP BOU TAT TAM CAR BRN KIR NRK VIS SBO P50* 

Raw Model 25.5 54.0 23.7 39.7 25.2 46.0 138.1 91.5 92.3 45.6 45.8 

eQM-T 18.6 21.4 17.5 20.7 45.0 52.6 77.7 70.1 71.6 30.6 37.8 

eQM-CS 19.3 20.4 17.7 20.3 46.3 52.9 72.3 54.4 57.4 22.7 34.5 

KDM-T 24.5 23.4 21.2 20.9 48.2 36.7 78.1 70.8 72.6 36.6 36.7 

KDM-CS 22.0 20.0 20.6 17.6 40.3 37.5 73.8 56.7 59.5 39.6 38.6 

LIN-FIT 20.5 42.7 20.5 163.7 24.5 67.8 190.3 122.7 141.5 53.3 60.6 

CDF-T 14.7 19.6 13.9 158.3 21.4 27.3 60.2 72.5 46.6 32.7 30.0 

KDMR 20.6 19.2 12.5 155.4 16.7 33.8 51.6 43.3 49.2 29.5 31.7 

QDM 12.9 21.2 15.8 177.8 17.6 30.1 48.4 51.2 63.8 34.9 32.5 

SIM 9.8 55.2 27.3 25.1 17.8 70.2 109.6 75.9 49.4 12.1 38.4 

SIMEQ 12.9 34.1 15.8 16.8 15.9 33.8 51.1 46.0 42.8 8.4 25.3 

REG 71.5 37.6 21.0 76.8 109.4 59.2 97.5 71.5 79.1 101.5 74.2 

*Median of CPI for all sites 463 



 464 

 465 

Table 5. CPI (%) for DNI benchmarking results.  466 

 467 

 ASP BOU TAT TAM CAR BRN KIR NRK VIS SBO P50* 

Raw Model 109.3 70.3 53.5 129.0 37.8 69.0 97.4 64.0 67.0 121.2 81.9 

eQM-T 58.3 36.4 28.3 32.8 42.3 62.5 90.8 67.1 68.5 33.6 52.1 

eQM-CS 43.1 30.5 27.3 29.4 24.5 63.6 73.6 42.4 49.2 24.7 40.8 

KDM-T 64.0 56.7 26.1 57.9 44.1 58.2 95.8 61.7 68.9 44.8 57.8 

KDM-CS 56.7 30.7 22.0 34.8 40.2 53.4 71.1 39.6 49.7 36.1 43.4 

LIN-FIT 80.7 118.9 31.2 54.5 50.2 131.5 93.8 129.0 123.4 94.6 90.8 

CDF-T 40.0 40.0 26.9 76.5 47.1 49.6 65.9 56.6 153.5 48.1 60.4 

KDMR 56.7 35.7 28.6 76.9 43.8 63.2 66.1 69.7 163.0 60.9 66.5 

QDM 39.1 40.0 28.0 121.8 39.8 57.2 93.5 61.0 370.4 37.4 88.8 

SIM 31.5 103.1 43.8 82.1 106.2 157.3 193.1 147.7 88.3 53.0 100.6 

SIMEQ 21.4 54.5 35.5 30.6 31.0 41.0 78.7 53.5 49.5 18.5 41.4 

*Median of CPI for all sites 468 

 469 

 470 

 471 

 472 

Table 6. CPI for DHI benchmarking results.  473 

 474 

 ASP BOU TAT TAM CAR BRN KIR NRK VIS SBO P50* 

Raw Model 83.0 68.2 69.1 123.8 89.7 150.8 83.4 84.8 86.2 193.8 103.3 

eQM-T 43.1 37.9 27.6 41.9 62.1 99.4 71.2 67.5 67.9 54.2 57.3 

eQM-CS 29.4 36.0 27.1 34.4 55.5 94.9 71.0 64.6 64.4 43.4 52.1 

KDM-T 39.3 41.3 22.8 42.6 68.8 82.5 70.3 66.5 67.9 52.1 55.4 

KDM-CS 31.4 38.0 20.8 40.8 53.0 77.8 69.5 65.2 63.4 52.7 51.3 

LIN-FIT 71.8 49.8 70.5 155.2 93.9 138.3 170.6 153.7 167.9 162.2 123.4 

CDF-T 34.8 34.3 23.7 226.0 36.0 75.1 56.6 71.0 160.4 46.3 76.4 

KDMR 36.5 37.4 28.3 133.2 43.3 74.4 58.0 51.5 142.7 43.0 64.8 

QDM 31.5 37.4 26.5 415.9 40.7 81.3 63.3 59.0 214.9 45.5 101.6 

SIM 63.4 103.8 53.6 96.8 141.6 119.4 144.3 110.7 144.1 77.3 105.5 

SIMEQ 49.3 64.3 32.1 83.8 75.6 171.2 83.6 55.5 52.5 69.1 73.7 

*Median of CPI for all sites 475 

 476 

 477 

6. Sensitivity analysis 478 

In addition to the benchmarking exercise, where the last complete year of ground 479 

measurements was used for training the improvement method, a sensitivity analysis 480 



on the training period was performed. This analysis was intended to determining the 481 

minimum period of time that should be used in the ground database for proper 482 

training. The sensitivity analysis has consisted in performing site adaptation to the 10 483 

datasets of table 2 using the eQM-CS method with training periods of 3 months, 6 484 

months, 1 year, 1.5 year and 2 years.  485 

 486 

Figures 5 and 6 show the main statistical performance metrics for GHI and DNI (very 487 

similar results were found for DHI) compared to the uncorrected dataset referred to as 488 

model. It can be observed that a period of 3 months is insufficient to obtain significant 489 

improvement in most cases. Remarkably, such a short period tends to increase the KSI 490 

significantly, indicating that corrected data resulted in a worse similitude with the 491 

distribution function than the uncorrected data. For most of the cases, the sensitivity 492 

analysis indicates that 1-2 years of quality ground measurements are necessary to 493 

result in a general improvement of the solar radiation adapted data. 494 

 495 

 496 

 497 
 498 

Figure 5. Sensitivity of GHI performance to the training period duration.  499 

 500 



 501 
 502 

Figure 6. Sensitivity of DNI performance to the training period duration.  503 

 504 

The sensitivity to a very large uncertainty in aerosol data (AOD, most importantly) or in 505 

the abundance of other atmospheric constituents in general can be also of interest, 506 

particularly for modeling DNI, which is the component strongly influenced by 507 

atmospheric aerosols and water vapor content in the atmosphere (Gueymard, 2012; 508 

Polo and Estalayo, 2015). The sensitivity analysis has been done by firstly generating 509 

satellite-derived DNI datasets for Carpentras, assuming different values (in terms of 510 

uncertainty in the atmospheric input) for the corresponding Linke turbidity factor. The 511 

latter's original estimated value at that site was adjusted in the range -30% to 30%. 512 

Assuming that the original TL value is perfectly true then the deviations can be 513 

considered as errors in the TL determination. Thus, regardless of the uncertainty in the 514 

original Linke turbidity factor, this sensitivity offers an assessment of the capability of 515 

site adaptation methods to correct situations with large overestimations or 516 

underestimations in atmospheric attenuating constituents. Here, the eQM-CS 517 

methodology was used for adapting or improving all the sensitivity cases. Figure 7 518 

shows the sensitivity analysis results in terms of MBD, RMSD and KSI as a function of 519 

the assumed error in the TL value used as input to the satellite model. In this case a 520 

significant reduction in bias, dispersion and KSI is achieved by the correction method, 521 

even for very large over- and under-estimation of the atmospheric turbidity. Likewise, 522 

removal of substantial part of bias observed in DNI datasets with inaccurate aerosol 523 

information has been also reported in studies with other correction techniques 524 

(Gueymard, 2011; Gueymard et al., 2012). 525 

 526 

 527 



 528 
 529 

Figure 6. Sensitivity to the Linke turbidity uncertainty. Performance metrics of DNI for 530 

both the raw model and after correction with the eQM-CS method are shown.   531 

7. Conclusion 532 

Site adaptation of model-derived solar radiation time series is a general name for the 533 

procedure of correcting and improving long-term modeled datasets by comparing 534 

them to short-term overlapping ground measurements. Different methodologies can 535 

be used for adapting a dataset of solar irradiance components to a specific site. Some 536 

solar data suppliers have even developed their own methods. Many methodologies are 537 

also inspired by bias removal techniques used in other fields of meteorology and 538 

climatology. Two main families of methodologies can be identified according to the 539 

purpose of the correction: regression-like methods and quantile mapping, from which 540 

emerges also the combination of both as a third family. The former method focuses on 541 

fitting by linear or multiple regressions the modeled data with ground data to an 542 

equation able to be applied to the whole dataset. The quantile mapping techniques 543 

work on the probability domain and correct the solar radiation data by fitting the 544 

distribution function of modeled data to the distribution function of observational 545 

data. 546 

 547 

Under the framework of IEA-PVPS Task 16 a benchmarking exercise of site adaptation 548 

techniques has been conducted by several participants in a blind exercise. Ten sites 549 

and ten different measured and modeled pairs of datasets were prepared to test ten 550 

different methods for site adaptation. Satellite-derived and reanalysis-based solar 551 

irradiance data were included in the tested datasets to expand the variety of modeled 552 

data as much as possible.  553 

 554 



The results of this assessment of techniques have shown that most techniques are able 555 

to produce improvement and some degree of correction of modeled data. There are, 556 

however, situations where the quality of modeled data is already very high, so that it is 557 

hard to get noticeable improvement in the site-adapted data. Nevertheless, quantile 558 

mapping techniques have shown the potential of removing the bias observed in 559 

modeled data. In addition, specific strategies that disaggregate the datasets according 560 

to the state of the sky (clear, non-clear, ranges of clear-sky index, etc.) may offer better 561 

performance. Likewise, the proper combination of techniques, such as sequential use 562 

of multiple regression and quantile mapping, also resulted in significant improvement 563 

in most situations. 564 

 565 

In addition, a sensitivity analysis has been performed to study the proper training 566 

period of ground data and the impact of very high bias in atmospheric input (AOD is 567 

frequently overestimated or underestimated in some regions with a potential 568 

detrimental impact on modeled solar radiation). Thus, it can be observed than ground-569 

based data time series covering periods of at least about one year seems to be 570 

appropriate for proper training of adaptation methodologies at most sites. Moreover, 571 

for the case of high bias in AOD-related quantities, quantile mapping based methods 572 

have shown very good performance regardless of the uncertainty in the atmospheric 573 

information used as input. 574 

 575 

Finally, it is worth mentioning that it is difficult to establish a universal method or 576 

procedure that works with the same efficacy in all possible combinations of sites and 577 

modeled datasets. Good-quality ground data are always highly recommended for 578 

proper training. Statistical methodologies can be very efficient in adapting modeled 579 

data to a reference one, but in real conditions the better the quality of the reference 580 

(ground data) the higher the potential improvement. Moreover, bad-quality 581 

measurements could actually result in biased site adaptations, possibly more biased 582 

than the original modeled dataset. In addition, a preliminary analysis of the 583 

uncertainty at the site under scrutiny could be recommended before selecting one 584 

method or another and before designing the proper subsets of data onto which the 585 

site adaptation methodologies would be applied. It must be also remarked that even 586 

though in this work we have shown mostly a pure statistical procedure it is 587 

recommended to adapt only GHI and DNI and to compute DHI in a way that ensures 588 

the consistency among the three components and the closure relation. In fact, this was 589 

the procedure followed by Team 3 with two of the methods. Besides, it should be 590 

pointed out that not all the correction methods have been tested in this work and, in 591 

this sense, more methodologies, as model output statistics (MOS) and others, should 592 

be investigated in future studies. The number and climatic diversity of sites used for 593 

testing should also be increased to obtain results as universal as possible. 594 

   595 
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