
Photovoltaic generation on vertical façades in urban context from open 1 

satellite-derived solar resource data 2 

Jesús Polo 1*, Nuria Martín-Chivelet1, Miguel Alonso-Abella1, Carmen Alonso-García1 3 

 4 

1 Photovoltaic Solar Energy Unit (Renewable Energy Division, CIEMAT), Avda. Complutense 40, 5 
28040 Madrid, Spain 6 

 7 
 8 

 9 
* Corresponding author 10 
Jesús Polo, email: jesus.polo@ciemat.es, Phone: +34 914962513, Fax : +34 913466037 11 
  12 
 Abstract 13 

 14 
Solar radiation incident at building façades and elements in an urban context is essential in 15 
determining the energy production on building rooftops and vertical façades. The proper 16 
determination of solar irradiance incident on a vertical façade needs quality input of the 17 
components of solar radiation and a high resolution digital surface model with the heights of 18 
buildings and other elements in the urban area of study. In this work a thorough methodology 19 
for modeling PV generation, in hourly basis, at building façades with open available data and 20 
methods is presented. Hourly data of satellite-derived solar irradiance is used with high 21 
resolution digital model from LIDAR information to estimate with the Sandia model the PV 22 
generation of five small arrays at west, south and east façades of a building in Madrid. PV 23 
output modeled for west and south arrays are in rather good agreement with the monitored 24 
experimental data of the production. RMSE of 8% and 12% was observed for the monthly 25 
power predicted for west and south facades, respectively.  The east façade case was much 26 
more challenging due to variability of shadows it receives from the nearby large deciduous 27 
trees throughout the year, which results in high uncertainty in the shading influence 28 
estimation. Anyway, the methodology proves the benefits and possibilities of detailed 29 
estimation of PV production in building façades from open available information regarding 30 
both solar resource, open modeling tools and urban topography, even in a very challenging 31 
conditions associated to the variability of trees canopy.  32 

 33 

 34 
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 37 

1. Introduction  38 
 39 
Solar photovoltaics (PV) and solar thermal systems deployments in urban environments are 40 
gaining interest as drivers of decentralization of electricity and heat production. Both are key 41 
elements in the concept of Nearly Zero-Energy Buildings (nZEB) aimed at achieving buildings 42 
almost independent from the external electrical grid through proper designed features and the 43 
use of renewable energy sources (Marszal et al., 2011). In the case of PV, the International 44 
Energy Agency, through the Task 15 of the programme IEA-PVPS (PVPS, 2021), is gathering 45 



efforts in promoting and accelerating the penetration of both BIPV (Building Integrated 46 
PhotoVoltaics) and BAPV (Building Applied PhotoVoltaics), and delivering updated reports on 47 
important aspects as regulation, definition and characterization, user needs and research.  48 
Solar potential studies in urban landscape can include ground, roofs and vertical façades of 49 
buildings.  50 
 51 
Many studies in the literature dealt with solar potential estimation on rooftops using 52 
geographic information systems (GIS) to incorporate the influence of urban obstructions to the 53 
incoming solar radiation (Bódis et al., 2019; Brito et al., 2012; Jakubiec and Reinhart, 2013; 54 
Khan and Arsalan, 2016; Singh and Banerjee, 2015; Verso et al., 2015). However, in the past 55 
recent years additional studies include methodologies for estimating solar potential also in 56 
vertical façades (Catita et al., 2014; Desthieux et al., 2018; Hofierka and Zlocha, 2012; Lindberg 57 
et al., 2015; Lou et al., 2016; Redweik et al., 2013). A thorough review on modeling the solar 58 
potential in urban context can be found in the recent literature (Freitas et al., 2015). Recent 59 
studies combine GIS, physics models and machine learning algorithms at national scale 60 
(Assouline et al., 2018; Walch et al., 2020). Moreover, recent contributions are conducting also 61 
to the availability of open and powerful tools broadening the possibilities of new studies and 62 
analysis. For instance this is the case of SEBE (Solar Energy on Building Envelopes) model which 63 
is incorporated in UMEP (Urban Multi-scale Environmental Predictor), a plugin for QGIS 64 
software (QGIS, 2021). SEBE model estimates solar irradiance on ground surfaces, building 65 
roofs and walls from digital surface model (DSM) and solar position (Lindberg et al., 2015; Ratti 66 
and Richens, 1999). 67 
 68 
The models and tools for estimating solar potential in complex urban environment require also 69 
detailed information of solar resource. Solar radiation data on vertical surfaces are not 70 
generally available from measurements and the procedure involves having data of the three 71 
components of solar irradiance for horizontal surface: Global Horizontal Irradiance (GHI), 72 
Direct Normal Irradiance (DNI) and Diffuse Horizontal Irradiance (DIF). Then,  the subsequent 73 
use of transposition models is needed afterwards to derive the incident solar irradiance at 74 
vertical surfaces. The accuracy and quality of the initial solar radiation data plays a significant 75 
role on the final uncertainty since there are many intermediate steps in the procedure of 76 
estimating solar irradiance incident on façades. Satellite-derived solar irradiance data is 77 
probably the best choice nowadays since there are several high quality products that are freely 78 
available(Polo and Perez, 2019; Sengupta et al., 2017). Time series of GHI, DNI and DIF can be 79 
obtained on an hourly basis from several databases with rather good quality (de Freitas 80 
Moscardini Júnior and Rüther, 2020; Huld et al., 2012; Polo et al., 2020; Psiloglou et al., 2020; 81 
Riihelä et al., 2015; Urraca et al., 2017; Yang, 2018; Yang and Bright, 2020). Afterwards, 82 
transposition models are then needed to estimating solar irradiance at an inclined and 83 
arbitrarily oriented surface using the three components (GHI, DNI, DIF) as input. There is a very 84 
large list of transposition models elsewhere and recent studies contain useful information on 85 
their accuracy and associated difficulties and problems (Gueymard and Ruiz-Arias, 2016; Yang, 86 
2016).  87 
 88 
This work presents a thorough methodology for modeling in detail the PV generation of five 89 
small PV arrays placed at the vertical façades of a building in Madrid using as input open 90 
satellite-derived solar radiation data and LIDAR information. A DSM is built from the LIDAR 91 
data to estimate shading and the corresponding sky view factor (SVF).  Two years of hourly 92 
solar radiation is used as input to derive solar irradiance in high detail for the façades of the 93 
building. Most works in the literature employ GIS for studying the potential mainly on rooftops 94 
and less frequently in facades in terms of yearly values or annual yield, but very few studies 95 
presents estimations at hourly basis and assessment with real monitored PV arrays working on 96 
facades of a building. The results show the benefit of the methodology for modeling the PV 97 



generation of modules at façades and also evidence the potential problems associated to the 98 
presence of large trees near the façade that may affect to the proper shading effect 99 
determination; particularly interesting is the case of deciduous trees, which opacity changes 100 
throughout the year.   101 
 102 

2. Description of the case study and experimental data 103 

 104 

The building under study is the so-called Building 42 of Ciemat headquarters area, 105 

placed in the university campus in Madrid (40.4551° North, -3.73° East). This building 106 

houses five individual small PV arrays (each one connected to a different single 107 

inverter) distributed in the upper part of the east, south and west façades. The 108 

orientation of the building is slightly deviated to the west (about 9°) and thus the 109 

façades azimuth are 351°, 81°, 171° and 262° for façades north, east, south and west, 110 

respectively. Figure 1 shows the domain area used in this work and pictures of the PV 111 

arrays in façades east, south and west. The east façade contains three identical PV 112 

arrays of 7sx2p modules (named East_S, East_C and East_N arrays, respectively), the 113 

south façade has one array of 7sx4p modules, and the west façade includes one 8sx2p 114 

PV array. Table 1 summarizes the module and inverter characteristics of all the arrays. 115 

Additional details on the building structures, PV systems and monitoring can be found 116 

in a previous descriptive work (Martín-Chivelet et al., 2018). 117 

 118 

 119 

 120 

 121 
 122 

Figure 1. a) Area of study of Ciemat headquarters. b) East façade with three PV arrays 123 

highlighted. c) South façade with the corresponding PV array. d) West façade with the 124 

PV array used in this work.   125 

 126 



 127 

Table 1. Main characteristics of the PV arrays 128 

 129 
Array Configuration Module Power (W) Inverter Power (kW) 

East_N 7sx2p SunPower E20-327 327 Fronius IG Plus 50 V-1 4 

East_C 7sx2p SunPower E20-327 327 Fronius IG Plus 50 V-1 4 

East_S 7sx2p SunPower E20-327 327 Fronius IG Plus 50 V-1 4 

South 7sx4p SunPower E18-325 305 Fronius IG Plus 100 V-3 8 

West 8sx2p SunPower E20-327 327 Fronius IG Plus 50 V-1 4 

 130 

Different electrical parameters of each array as well as some local meteorological 131 

variables are being monitored. In particular, voltage, current and power of each 132 

inverter are available. In addition, module temperature of one single module from 133 

each array is measured using T type thermocouples. Global horizontal irradiance (GHI) 134 

is measured in the rooftop of the building with a thermopile pyranometer and vertical 135 

irradiance in east, south and west orientations of the building are also recorded by 136 

several calibrated cells placed at the top of a mast in the building rooftop (Figure 2). 137 

Unfortunately there were not available long and quality measurements of direct 138 

normal irradiance (DNI) and diffuse horizontal irradiance (DHI). Figure 2 shows also 139 

how the modules were integrated and fastened to the façade in the upgrading work of 140 

the building. PV modules are integrated into the upper areas of a new ventilated 141 

façade, built as part of the rehabilitation project for Ciemat building 42, which was 142 

aimed at improving the building’s structural condition and energy efficiency. PV 143 

modules occupy a total surface area of about 176 m2. 144 

 145 

 146 

 147 
 148 

Figure 2. a) Mast placed at the building rooftop with calibrated cells for measuring 149 

vertical irradiance at east, south and west orientations. b) Solar panels integration with 150 

the façade.   151 

 152 

3. Solar resource data 153 

 154 

The basic solar resource data used as input in this work consisted of two years (2017 155 

and 2018) of hourly data of the three solar irradiance components (GHI, DNI and DIF) 156 

delivered by CAMS (Copernicus Atmosphere Monitoring Service) Radiation Service 157 

with a spatial resolution of 3 km at nadir (Schroedter-Homscheidt et al., 2019). CAMS 158 

Radiation Service (Copernicus, 2021) is a high quality database of solar irradiance 159 



based on Heliosat-4 methodology (Qu et al., 2017). The method combined the cloud 160 

properties derived from Meteosat Second Generation (MSG) satellites with fast 161 

radiative transfer model McClear (Lefèvre et al., 2013). CAMS GHI hourly data 162 

compared with the GHI measurements on the building rooftop resulted in mean bias 163 

deviation (MBD) of -0.5 % and root mean square deviation (RMSD) of 17.4 %. Figure 3 164 

shows a scatter plot for the assessment of GHI delivered by CAMS Radiation Service for 165 

the period 2017-2018; the corresponding R2 for this scatter plot is 0.95. Despite there 166 

is no quality measurements of DNI for evaluating the uncertainty of DNI derived by 167 

CAMS Radiation Service it is expected to be higher than the uncertainty for GHI. For 168 

instance, evaluation of CAMS radiation service in several ground stations in Morocco 169 

resulted in RMSD for hourly DNI in the range of 26-39% (Marchand et al., 2018). 170 

Nevertheless, it should be remarked that CAMS Radiation Service is one of the best 171 

and more accurate free and open products for solar radiation data derived from 172 

satellite imagery (Yang and Bright, 2020).  173 

 174 

  175 
 176 

Figure 3. Scatter plot of hourly GHI estimated by CAMS vs. experimental 177 

measurements in Building 42. 178 

 179 

4. Solar irradiance at vertical façades  180 

 181 

 182 

4.1 Sky view factor and Shadow calculation 183 

 184 

The sky view factor (SVF) is a simple parameter describing the part of the sky that is 185 

not obscured by the surroundings for a given point (Lindberg and Grimmond, 2010). It 186 

can be defined as the ratio of the sky hemisphere visible from the ground (Bernard, 187 



2018). The SVF and the shadowing in the façades of a building can be computed from a 188 

high-resolution digital surface model (DSM) derived from LIDAR data. LIDAR data offers 189 

the height of a ground area with very high resolution (including buildings, trees, 190 

structures, etc). In Spain LIDAR data is supplied by the Spanish Geographic Institute 191 

(IGN) through a download service (Centro Nacional de Información Geográfica, 2021).  192 

 193 

In this work a DSM of the area under study is obtained with the use of LASTools (a 194 

powerful library for reading and extracting information from compressed LIDAR files) 195 

and QGIS. The resulting raster DSM of the area of Ciemat including the Building 42 and 196 

surrounding buildings, elements and trees is shown in figure 4. The DSM shown in this 197 

figure covers the same area of that shown in Figure 1 a), so that the identification of 198 

the building under study in figures 4 a) and b) is straightforward. It should be remarked 199 

that north and east façades of the building have many large trees placed close to the 200 

building, while south and west-south façades have mainly other buildings in the 201 

surroundings.       202 

 203 

 204 

Figure 4. a) Geotiff raster of DSM. b) 3-D view of DSM.    205 

 206 

Four artificial façades for the target building have been created by selecting the 207 

corresponding x-utm and y-utm coordinates of the points delimiting each building 208 

façade in the DSM with a resolution of around 25 cm in length and 0.5 m in height. The 209 

total height of each artificial façade is 15 m, so that it is higher than the actual façades 210 

heights of 8 and 10 m, depending on the façade. Thus a façade is a matrix of 31 rows 211 

(denoting points at different heights) by 150-175 columns (defined by x-utm and y-utm 212 

coordinates of the real façades).  213 

 214 

For each point (𝑖, 𝑗) in the façade matrix, the SVF for the façade F is computed by the 215 

following expression (Böhner and Antonić, 2009):   216 

 217 

𝑆𝑉𝐹𝐹(𝑖, 𝑗) =
1

𝑁
 ∑ [𝑐𝑜𝑠𝛽 𝑐𝑜𝑠2∅𝑛(𝑖, 𝑗) +  sin 𝛽 cos (𝑛 − 𝛼𝐹)(90 − ∅𝑛(𝑖, 𝑗) −𝑁

𝑛=1218 

𝑠𝑖𝑛∅𝑛(𝑖, 𝑗)𝑐𝑜𝑠∅𝑛(𝑖, 𝑗) ) ].                                        (1) 219 



 220 

 221 

Where N is 360°,  𝛽 is the tilt angle of the surface (90° for a vertical façade), 𝑛 is a 222 

direction in azimuth (it ranges from 1 to 360 in steps of 1°), 𝛼𝐹 is the azimuth of the 223 

façade F, and ∅𝑛(𝑖, 𝑗) is the horizon angle of point (𝑖, 𝑗) in the azimuth direction 224 

determined by 𝑛. The horizon angle ∅𝑛(𝑖, 𝑗)  is determined by the angle of elevation of 225 

the highest obstacle (point in the DSM) that the point (𝑖, 𝑗) views in the azimuth 226 

determined by 𝑛. 227 

 228 

Figure 5 shows the SVF computed for the four façades of Building 42 taking into 229 

account the obstacles in the area delimited by the DSM. It can be clearly appreciated 230 

the strong influence of the large trees on the North-East corner of the building.  231 

 232 

 233 

 234 

 235 
Figure 5. SVF computed for the four façades of CIEMAT Building 42. 236 

 237 

Shadows are computed in hourly basis for each element of the façade (25 cm wide and 238 

50 cm in height) as a parameter, that can only takes two values, Sh=1 if the element is 239 

illuminated and Sh=0 if the element is shadowed. Thus, for every façade we have a 240 

matrix of shadow for every hour indicating which elements in the façade are 241 

completely shadowed and which ones are completely illuminated every hour. 242 

   243 

 244 

 245 

 246 

 247 



4.2 Solar irradiance at vertical façades 248 

 249 

In order to estimate the incident hourly solar irradiance at each point of the façade F 250 

we have assumed the following approach, 251 

 252 

𝐺𝐹(𝑖, 𝑗) = 𝐷𝑁𝐼 cos(𝐴𝑂𝐼) 𝑆ℎ(𝑖, 𝑗)  +  𝐷𝑖𝑓𝑓𝐹(𝑖, 𝑗)  +   
1

2
𝜌𝐹 𝐺𝐻𝐼  ,                    (2) 253 

 254 

where  𝐴𝑂𝐼 is the angle of incidence which depends on the solar elevation and 255 

azimuth angles and on the surface’s tilt (90° for every façade) and azimuth angles,  256 

𝐷𝑖𝑓𝑓𝐹(𝑖, 𝑗) is the sky diffuse irradiance for the element (𝑖, 𝑗) of façade F, and 𝜌𝐹 is the 257 

effective albedo for façade F, defined here as the average albedo of the ground and 258 

surrounding surfaces that can reflect solar irradiance towards the façade (the values of 259 

0.2 has been chosen for the effective albedo). Therefore, the incident solar irradiance 260 

on the façade element is the sum of three contributions, the direct irradiance 261 

projected to the surface taking into account the shading, the sky diffuse irradiance and 262 

the reflected irradiance due to ground and other surfaces and elements in the 263 

surrounding. The Diffuse irradiance is computed from the three components of 264 

horizontal irradiance by the Perez model  with modifications to take into account the 265 

sky view factor of each element in the façade (Perez et al., 1990, 1987). The sky diffuse 266 

irradiance is then estimated by, 267 

 268 

 𝐷𝑖𝑓𝑓𝐹(𝑖, 𝑗) = 𝐶𝑖𝑟𝐹𝑆ℎ(𝑖, 𝑗)  +  𝐷𝐼𝐹 𝑆𝑉𝐹𝐹(𝑖, 𝑗) + 𝐻𝑜𝑟𝐹 ,                        (3) 269 

 270 

being  𝐶𝑖𝑟𝐹 and 𝐻𝑜𝑟𝐹 are the circumsolar diffuse component and horizon brightening 271 

diffuse component of the solar radiation estimated by Perez model, respectively. 272 

Therefore, the main modification to the original Perez model for tilt surface consisted 273 

on taking into account the shading in the circumsolar diffuse component and the sky 274 

view factor of every façade element in the isotropic diffuse irradiance instead of the 275 

sky view factor determined only by the tilt angle (0.5 for the case of a vertical surface). 276 

Therefore, using the GHI, DNI and DIF satellite-derived components provided by CAMS 277 

Radiation Service as input and the sky view factor and shading estimated from the 278 

DSM is suitable to estimate the incident solar irradiance at each façade element.   279 

 280 

4.3 Evaluation of solar radiation estimations at façades 281 

 282 

In order to evaluate the uncertainty of the solar irradiance estimations made on the 283 

building façades we have compared them with the measurements of the calibrated 284 

solar cells placed at the top of a mast on the building rooftop (Figure 2). The 285 

corresponding MBE, RMSD and MAD (Mean Absolute Deviation) are shown in table 2. 286 

Figure 6 shows the east, south and west solar irradiance estimated compared with 287 

measurements in hourly basis for a few days and the corresponding scatter plots. The 288 

R2 estimated for these scatter plots were 0.73, 0.89 and 0.90 for the east, south and 289 

west facades, respectively. 290 

 291 

 292 

 293 

 294 



Table 2. Error metrics for solar irradiance estimated at vertical façades 295 

 296 

Façade MBD (%) RMSD (%) MAD (%) 

East 5.7 57.3 32.0 

South 5.6 29.8 18.4 

West -6.2 32.1 18.8 

 297 

As shown in both the table and the scatter plots of figure 6 much higher uncertainty 298 

resulted in the estimations of solar irradiance at the east façade. As a consequence 299 

much higher uncertainties are also expected in modeling those PV arrays placed on 300 

east façade.   301 

 302 

The scatter plot for east façade shows a set of data that are particularly 303 

underestimated (Figure 6). This underestimation is due to the uncertainty associated 304 

to the large deciduous trees in front of the east façade of the building. On the one 305 

hand, DSM information that comes from LIDAR data might not include recent possible 306 

changes in the natural vegetal cover (i.e. tree pruning), or refurbishment works after 307 

LIDAR flights; on the other, during fall and winter seasons the deciduous trees opacity 308 

is much less than in spring and summer, and consequently direct radiation can reach 309 

the wall of the building while the modeling calculates a shadowing. Therefore, the line 310 

of deciduous trees close to the east facade, taller than the building height, is very 311 

challenging for modeling both the solar irradiance and the PV generation at the façade.    312 

 313 

 314 



 315 
 316 

 317 

Figure 6. Solar irradiance estimated for the vertical façades compared with 318 

experimental data. a) Example of several days. b) scatter plot of hourly data.  319 

 320 

5. Modeling the PV generation at the three façades 321 

 322 

The energy generation of the five PV arrays listed in table 1 has been modeled for two 323 

years (2017 and 2018) with the Sandia Array Performance Model (SAPM) using as 324 

input the solar irradiance, in hourly basis, estimated at the façade points, with a 325 



resolution of 50x25 cm, and the module temperature measured at each array. Back 326 

panel temperature was measured with one thermocouple for every array at the rear 327 

side of the modules, and was directly input to the SAPM model. SAPM is available 328 

under the PV Performance Modeling Collaborative initiative  (King et al., 2007, 2004). 329 

SAPM model is included in the PV lib library that can be freely downloaded from the 330 

PVPCM site (PVPCM, 2021) and has shown to be very flexible and accurate (Gurupira 331 

and Rix, 2017; Polo et al., 2016; Stein and Farnung, 2017).  332 

 333 

Since the irradiance incident at each array varies along the surface due to shading, the 334 

DC part of the PV generation has been modeled individually for every single module in 335 

the array and then the array configuration has been taken into account for estimating 336 

the DC generation of the whole array. Thus, SAPM model is used to model the DC 337 

power of every single module in the array using as input the average incoming solar 338 

irradiance over the module area and the module temperature measured (we have only 339 

one measuring point for the module temperature for each array). Modeling partial 340 

shading in PV arrays is complex and can involve to deal module by module, or cell by 341 

cell, with the whole I-V curve (Alonso-García et al., 2006; Alqaisi and Mahmoud, 2019; 342 

Galeano et al., 2018; Seyedmahmoudian et al., 2013). Shading losses depend on the 343 

series-parallel configuration of the array, the number and distribution of by-pass and 344 

blocking diodes and on the shading profile (Alonso-García et al., 1997). Due to the 345 

complexity of the problem and the uncertainties in determining accurately the shading 346 

and the limitations of the SAPM model it was required the adoption of approximations 347 

to explore the capabilities of simple and fast models in modeling these arrays at the 348 

different façades.  349 

 350 

Two different approaches have been explored to model the array power generation 351 

under complex and irregular shading effects. The first one, denoted as Model 1, 352 

assumes that each string in the array is working with the maximum current as it would 353 

not be affected by shading, and the AC power is finally multiplied by the fraction of the 354 

area that is shaded to account for the reduction of power due to shading. The 355 

approach of assuming that the power reduction is equal to the shaded array fraction is 356 

the most optimistic and represent the minimum limit for power reduction (Martínez-357 

Moreno et al., 2010; Masa-Bote and Caamaño-Martín, 2014). The second approach, 358 

denoted as Model 2, assumes that the string working current is limited by the shaded 359 

modules and then the minimum current of module is assumed for the whole string, 360 

and consequently the AC power of the array is not multiplied by any shading factor at 361 

all.  362 

 363 

Figure 7 shows the daily generation of each array during for the two years modeled. 364 

Arrays at west and south façades are generally better modeled than those at east 365 

façade. The power output in west and south arrays was predicted with a RMSE of 15% 366 

and 21%, respectively, in daily basis, and in monthly basis the RMSE was 8% and 12%, 367 

respectively. In addition, it can be observed that the uncertainty in estimating the daily 368 

production varies along the length of the east façade. The highest differences between 369 

experimental and modeled energy production are found in the north part of the east 370 

façade (the so called East_N array). Figure 8 shows the box plot of the differences 371 



between hourly experimental power and hourly modeled power with model 2 for each 372 

array.  373 

 374 

 375 

  376 
 377 

Figure 7. Daily energy production of PV arrays at façades compared to the monitored 378 

data.  379 

 380 

 381 



 382 
 383 

Figure 8. Box plot of differences between experimental and modeled power in hourly 384 

basis. 385 

 386 

In the case of the three arrays placed at the east façade the modeling results with the 387 

Model 1 show a general overestimation of the energy throughout the whole year, 388 



excepting the case of array East_N (placed at the north part of the façade), where the 389 

trend is a general and significant underestimation. However, the results of the Model 2 390 

show higher agreement with the experimental data in arrays East_S and East_Mid, but 391 

larger underestimations of the output power in array East_N during spring and 392 

summer. The Model 2 approach has more physical meaning since the shaded modules 393 

limit the final current in the string they form part of, and thus a better performance 394 

was expected. However, the large uncertainties in these arrays at the east façade 395 

evidence the uncertainties in the shading determination due to irregular and changing 396 

shading conditions produced by the surrounding trees.   397 

 398 

Therefore, this apparently opposite behavior in the predictions of arrays placed at the 399 

same façade can be only explained by the different shading modeled along the year, its 400 

dynamics and variability, and the impact on the challenging conditions imposed to the 401 

array. Thus, the irregular and dynamic conditions of the shading caused by the 402 

deciduous trees in front of the east façade make it quite difficult to model accurately 403 

the arrays generation by using simple performance models as SAPM. In addition to the 404 

propagation of the initial uncertainty of solar radiation components derived from a 405 

satellite model, one even most important contributor to the uncertainty is the impact 406 

of the limitations in the DSM obtained from LIDAR information. Thus, the information 407 

in the digital model corresponds to a steady picture of the heights of surrounding 408 

objects. Figure 9 shows a picture of the whole east façade in a summer morning where 409 

irregular characteristics of the shading can be clearly observed. As can be seen in the 410 

picture in front of the east-north façade there is a dry tree without leaves that would 411 

explain the underestimation of the energy generated by the array East_N. Thus, 412 

according to the DSM there is a large tree there, which implies a tall obstacle to the 413 

incoming solar irradiance while the actual situation is different. That tree is actually 414 

rather transparent to the incoming solar irradiance and the underestimation observed 415 

in the calculation is due to erroneous computation of the shading in that part of the 416 

building. In addition, in the DSM it can be observed two additional trees at the north-417 

east corner of the building that no longer exist (see and compare figure 4 and the 418 

picture in figure 9).  Indeed, the trees shown in the east-north corner of the building 419 

were removed before the installation of the PV modules in the building façades, 420 

indicating that the LIDAR information available for the area of study is not updated to 421 

the show the refurbishment works performed in the building in 2016. In addition, 422 

figure 10 illustrates the shadow induced by the trees, modeled from the DSM data, for 423 

three different hours in a single day, where it can be appreciated the irregular shapes 424 

of the shadows.  425 

 426 



 427 
 428 

  Figure 9. Irregular shading on the east facade caused by trees in a summer morning.   429 

 430 

 431 

 432 

 433 

 434 
 435 

 436 

Figure 10. Computed shadows on east façade for three different hours (12:00, 15:00 437 

and 18:00) on a 15th may 2018.  438 

 439 



 440 

 441 

5. Conclusions  442 

 443 
Detailed modeling of PV generation at the façades of a building in urban environment requires 444 

of both time series of solar irradiance components with good quality and high resolution 445 

information on the morphology of the environment to allow shadow casting estimates. There 446 

are several open databases of solar radiation data derived from satellite imagery that can be 447 

effectively used for that purpose. In addition, the urban morphology can be obtained from 448 

LIDAR data to create DSM at high resolution with the heights of buildings, canopies, trees and 449 

other structures. This work presents a methodology for modeling PV generation on building 450 

façades based entirely on open and free data and methods available. Solar resource basic 451 

input consisted of time series of the solar radiation components, in hourly basis, supplied by 452 

CAMS Radiation Service for two years (2017 and 2018). Open GIS tools and LIDAR data have 453 

been used to create a DSM of a selected area in the university campus of Madrid. Shading and 454 

sky view factor have been then computed, from the DSM, for the façades of a selected building 455 

in the area of study, where five small PV arrays are installed in façades west, south and east,  456 

and monitored. Thus, detailed estimations of incident solar irradiance at each point of every 457 

façade are performed by combining shading and SVF parameters with Perez transposition 458 

model. Finally, modeling of PV generation of each array was performed by using the SAPM 459 

model implemented in PV lib open tool. The methodology presented here thus is aimed at 460 

proving that by using free public data and models it is possible to perform a thorough analysis 461 

of the PV generation at a building façade in Madrid City. Notwithstanding the study did not 462 

need a priori of satellite derived irradiance, since we has measurements of incident irradiance 463 

at three directions, the use of open satellite data allows to remark the potentiality of the 464 

methodology for future extension at large scale.    465 

 466 

The results of PV modeling at façades shown in this work have proven the benefit of this 467 

methodology for façades in buildings. The west and south arrays were modeled with good 468 

results. However, challenging boundary conditions regarding large deciduous trees close to the 469 

east façade have evidenced large uncertainties and difficulties in proper modeling the PV 470 

arrays due to the changes throughout the year of trees opacity. On the other hand, recent 471 

changes of removing some trees are not contemplated in the DSM since LIDAR data provides 472 

information before 2016 (year of refurbishment of the building and surroundings). In other 473 

words the static feature of the DSM limits somehow its use in modeling those facades that 474 

might be affected by dynamic changes in the surrounding tress and vegetation. The impact of 475 

this dynamic partial shading on the arrays at east façade requires a more detailed analysis and 476 

the use of complex models that account better for partial shading effects. Future work 477 

motivated from these results will be focused on better modeling the performance of these 478 

arrays at east façade under the challenging conditions imposed by the presence of large trees 479 

in the surroundings. 480 

 481 

 482 

 483 

 484 
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