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 Abstract 

 
A Typical Meteorological Year (TMY) is frequently used in solar power for long-term energy 
yield analysis. Different approaches have been reported focusing on concentrating solar power 
or photovoltaic power plants that have established different relative contributions of the 
involved variables (mainly solar irradiance components and temperature) according to the 
application. For PV applications the estimation of the spectral gains and losses requires of on-
site spectral measurements. Long-term analysis of the spectral influence on PV technologies 
has been performed for over seven years of measured spectral global tilted irradiance in 
Madrid. The experimental spectra were measured with an EKO spectroradiometer in the 
wavelength range of 300-1100 nm. The TMY methodology has been used to create a typical 
spectral year of global tilted irradiance that can be used for computing the spectral factor. This 
paper shows the different steps in applying the TMY methodology to spectral irradiance and 
the resulting spectral factors computed for seven different PV technologies. Thus, this 
approach can effectively be used to characterize the long-term spectral influence of PV 
technologies in a selected site.    
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1. Introduction  
 
 
Solar power is a key element in the energy mix for the near future in order to mitigate the 
environmental consequences of fossil fuel consumption. Concentrating solar power (CSP) and 
Photovoltaic (PV) technologies are growing fast and an increase in the global penetration of 
both technologies (particularly PV) is foreseen in the short term. The design, dimensioning and 
financing stages of any solar power project needs prior knowledge and quantification of the 
expected energy at annual basis through a process commonly called yield-performance 
analysis. A yield-performance analysis basically consists of modeling the energy produced by 
the plant during a whole year as a case study to obtain a snapshot of the annual expected 
energy projected in the future and the associated uncertainty. This exercise requires a detailed 
knowledge of the meteorological inputs, mainly solar irradiance, for at least a whole year. 
Since inter-annual variability is expected in the meteorological conditions affecting the plant 
single Typical Meteorological Year (TMY) has been widely used as input to the plant model in 
PV and CSP technologies [1–8]. 
 
A TMY represents the long-term characteristics of a set of meteorological variables in the form 
of a time series (hourly or sub-hourly) for a whole year. The idea of creating an artificial year 
was conceived at Sandia National Laboratory and they proposed a procedure for 
concatenating measured data from 12 months (January to December) selected as typical for 
constructing the artificial year [9]. Despite different methodologies for selecting the typical 
months proposed elsewhere, the Sandia approach is probably the most extensively used [10–
16]. In all the methodologies for TMY the contribution of the involved meteorological variables 
is relatively weighted. However, different choices for the weights of the selected 
meteorological variables can be used and have also been proposed by several authors using 
the basis of the Sandia procedure [3,7,12,17–22]. Moreover, specific TMY focused on the 
technology through the selection of variables and weights have been also proposed and 
discussed recently. Thus Typical Global Year (TGY) and Typical Direct year (TDY) were recently 
proposed by NREL and compared with the general TMY [8]. Similarly, a Typical Yield Year was 
proposed based on the statistical analysis of multi-year modeling energy output data for CSP 
and PV [3,18,23]. 
 
The spectral characteristics of the incoming solar irradiance strongly depend on local factors, 
such as atmospheric aerosol, water vapor content, air mass and others. The study of the 
incoming spectral irradiance is of high interest in all solar technologies [24–26]. The shape of 
the solar spectrum affects the outdoor performance of PV modules due to the selective 
spectral response of PV technologies. The efficiency of PV modules is determined at laboratory 
level under a specific insolation and temperature conditions denoted as standard test 
conditions (STC). STC is represented by an incident solar irradiance of 1000 W m-2, module 
temperature of 25 °C and a reference spectral distribution of irradiance. The reference spectral 
irradiance commonly used is the ASTM G173 for an air mass of 1.5 and very specific conditions 
of the atmospheric attenuants [27–29]. However, the on-site incoming spectral irradiance that 
impinges on PV devices usually differs from the reference spectrum and presents seasonal and 
daily variations. Consequently, energy conversion occurs at spectral distributions that differ 
from the reference resulting in different efficiency values from those corresponding to STC. 
This difference, or spectral-related mismatch, is known as the spectral mismatch error and has 
an influence on the short-circuit current, maximum power, fill factor and efficiency, which can 
vary depending on the PV technology [30,31].  Spectral mismatches can be characterized by 
computing the spectral factor (SF) with experimental spectral irradiance data [30,32,41–43,33–
40]. In absence of experimental spectral data an alternative approach is to estimate the 
incoming spectral irradiance with radiative transfer models [44,45]. However, this alternative 
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approach is limited to clear-sky conditions.  Maps of geographical variation in the annual 
average spectral mismatch were presented recently by several authors using satellite-based 
solar radiation-modeled data [44,46]. The Simple Model of Atmospheric Radiative Transfer of 
Sunshine (SMARTS) [47–49] was used at five locations of the Aerosol Robotic Network 
(AERONET) [50] to assess the influence of the spectrum on the energy output of high 
concentrator PV and conventional PV technology [34]. 
 
Despite TMY methodologies have extensively been used in different ways, delivering time 
series of broadband solar radiation data for the performance modeling of solar systems, there 
is no prior work on using TMY approaches for characterizing the spectral effects in PV 
performance. Therefore, this paper presents an analysis of the methodology for building TMYs 
applied to generate an artificial year of spectral global tilted irradiance for Madrid, as a novel 
contribution to the solar energy community. The statistical approach to select the monthly 
candidates from the sample (over 6 years of spectral measurements) from the Sandia 
methodology was used. The typical spectral year was used to compute the spectral factor for 
seven PV technologies and compared to the long term spectral factors computed from the 
individual spectra with high agreement evidencing that the TMY methodology can be extended 
to the spectral global tilt irradiance.  
 

2. Data description and preprocessing 
 
 

Spectral global tilt irradiance measurements, south oriented and 30° of inclination angle have 

been collected from 6th May 2012 to 13th March 2019 at a rooftop of a university building in 

Madrid (40.45 N, -3.72 E). Spectral data, in watts per square meter per nanometer, were 

measured with a spectroradiometer (EKO MS-711) working in the spectral range of 300-1100 

nm, with an optical resolution (FWHM) < 7 nm. The acquisition system was programmed to 

continuously store spectral data every 5 minutes. Therefore, a database of around 220,000 

spectra was available for this work.  For all the individual spectra, the average energy per 

photon (APE) index was calculated in order to have a single parameter that might help in 

filtering spectral data and gather the spectral characteristics into one single parameter as well.     

Jardine et al. [51], first proposed the APE as the ratio of the total irradiance of the spectrum to 

the photon flux density and it is written as: 

 

 𝐴𝑃𝐸 (𝑒𝑉) =
∫ 𝐺(𝜆)𝑑𝜆

𝜆2

𝜆1

𝑞 ∫ 𝜙(𝜆)𝑑𝜆
𝜆2

𝜆1

                                                         (1) 

 

where λ1 (nm) and λ2 (nm) are the lower and upper wavelength limits, respectively, of the 

considered waveband, q is the electronic charge (1.602x10-19 eVC), G is the spectral  irradiance   

and 𝜙 the photon spectral flux density defined as: 

𝜙(𝜆) =  
𝐺(𝜆)𝜆

ℎ 𝑐
                                                             (2) 
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where h is the Planck’s constant and c the speed of light in vacuum. The value of APE for the 

AM1.5G reference spectrum equals 1.83 eV for the 300–1100 nm waveband. Therefore, values 

of this index higher or smaller than that calculated under reference conditions indicate a ‘blue’ 

or ‘red shift’ in the spectral distribution under scrutiny, respectively.  APE was conceived as a 

unique parameter representing the spectral tilt irradiance [36] and even though it is clear that 

it represents somewhat the spectral characteristics of solar irradiance there are still doubts in 

the scientific community about the uniqueness of the relationship [38,52].   

 

In addition, hourly clear-sky global tilt spectral irradiance was computed for a whole year at 

hourly basis with SMARTS2 for the site. SMARTS2 has become a reference radiative transfer 

model for computing spectral irradiance components at ground level  [47,49]. Precipitable 

water and aerosol optical depth (AOD) minimum values were taken from CAMS 

(https://atmosphere.copernicus.eu/) retrievals in order to have an estimation of the maximum 

clear-sky tilt spectra along a complete year in Madrid. APE index was also computed for these 

hourly clear-sky spectra obtained with the SMARTS2 model.  

 

Thus, the APE index is used in this work as quality control method to detect wrong 

experimental spectra. The filtering criterion used here was to reject all measured spectra 

whose APE was 1.5 times higher than the maximum APE for clear-sky conditions computed 

from SMARTS, since it was observed that this threshold was enough to reject erroneous 

spectra without altering the apparently good ones. Nevertheless, spectra were properly 

measured and filtering process removed only 9 spectra with APE values far beyond the 

expected variability range (about 1.2 to 2.3 for the spectral range of 300-1100, and mid-

latitudes, according to experimental information found in literature) [53,54]. Thus 9 measured 

spectra with APE values greater than 2.7 were rejected. Figure 1 shows the result of this 

filtering process; on the left individual experimental spectra are plotted showing several errors 

in the measuring process and on the right plot the filtered spectra show the removal of the 

erroneous data; the figure shows also an example of erroneous spectrum with an APE value of 

14.5 and showing also irradiances in the UV range much higher than the expected clear-sky 

values. Figure 2 plots the individual APE index of the filtered spectra.  The APE index of the 

standard spectrum ASTM G173 is 1.83 eV and that for the experimental spectral data varies in 

the range 1.6-2.2 eV showing the differences with respect to the ASTM G173. Figure 2, thus, 

illustrates the range of variability of APE in the database; all APE values are within the 

physically expected range. 

 

 

https://atmosphere.copernicus.eu/
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Fig. 1. Individual measured spectra (left). Filtered measured spectra (right). Example of a single 

wrong spectrum that was filtered (bottom). 

 

 

Fig. 2. The APE index computed for the individual filtered spectra of the measured database 
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3. Methdology 
 

3.1 Spectral Factor determination 

The spectral factor (SF) is a measure of the relative performance of a PV module that is being 

exposed to a spectral irradiance different to the reference spectrum (e.g.  STC conditions). 

Therefore, SF can be considered as an estimator of the relative energy gains or losses 

associated with the spectral characteristics of the incoming solar radiation. According to the 

International Electrochemical Commission (IEC) SF is defined as [55], 

 

𝑆𝐹 =  
∫ 𝐺(𝜆)𝑆𝑅(𝜆)𝑑𝜆  ∫ 𝐺𝑟𝑒𝑓(𝜆)𝑑𝜆

∫ 𝐺𝑟𝑒𝑓(𝜆)𝑆𝑅(𝜆)𝑑𝜆  ∫ 𝐺(𝜆)𝑑𝜆
                                                               (3) 

 

where 𝐺𝑟𝑒𝑓 and 𝐺 refer to the spectral irradiance of the standard reference (ASTM G173) and 

measured spectra, respectively, and SR is the spectral response of the PV module. The spectral 

response is the ratio of the current generated by the solar cell to the power incident on the 

solar cell, as a function of the wavelength. According to this expression spectral gains imply 

values of SF higher than 1, while spectral losses lead to values of SF lower than 1. 

 

Seven different PV technologies have been considered in this work, which were already used in 

other studies and were previously characterized in the CIEMAT PV laboratory [32]. The spectral 

response of each technology used here is shown in Figure 3; these technologies are:  a-Si 

(amorphous silicon), CIS (copper indium diselenide), HIT (heterojunction with intrinsic thin 

layer), p-Si (polycrystalline or multicrystalline silicon), EFG (edge fed growth silicon), CdTe 

(cadmium telluride) and m-Si BCC (back-contact mono- crystalline silicon). The values of the SF 

for each of the seven technologies have been computed with Expression 3 for all individual 

filtered spectra of the measured database.  
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Fig. 3.  Spectral response of seven different technologies measured at CIEMAT 

 

 

3.2 Typical Meteorology Year methodology 
 
One of the most successful and widely used methodologies for constructing a TMY is the 
Sandia Lab method, which is based upon the Finkelstein-Schafer (FS) statistic for selecting the 
individual month candidates [56]. The FS statistic for a meteorological variable X to be 
considered in the TMY is defined as:      
 
 

𝐹𝑆𝑋(𝑦, 𝑚) =  
1

𝑁
 ∑ |𝐶𝐷𝐹𝑚(𝑋𝑖) − 𝐶𝐷𝐹𝑦,𝑚(𝑋𝑖)|𝑁

𝑖=1                                  (4) 

 
 
where 𝐶𝐷𝐹𝑚 is the long-term cumulative distribution function of the daily values of the 
variable X for month m, 𝐶𝐷𝐹𝑦,𝑚 is the short-term (corresponding to year y) cumulative 

distribution function of the daily values of X, and N is the number of bins. The month candidate 
is the corresponding to the minimum value of the weighted sum (WS) of the FS statistics 
corresponding to each meteorological variable considered. 
 

𝑊𝑆(𝑦, 𝑚) = ∑ 𝑊𝑗
𝑀
𝑗=1  𝐹𝑆𝑗(𝑦, 𝑚)                                                    (5) 

 
 
where Wj is the relative weight of the variable j and M is the number of variables involved. 
Seven different TMYs have been constructed in this work by selecting different combinations 
of weights and variables according to the purpose of the TMY and the literature review.  
 
In this work two variables have been considered, with the same relative weight, to determine 
the typical global tilt spectral irradiance: the integral of the spectral irradiance limited to the 
experimental wavelength range (300-1100 nm), denoted here as GTI, and the APE index. The 
first variable was intended to account for the inter-annual variability associated with cloud 
transmission.  The APE index would represent, thus, the inter-annual variability due to other 
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main atmospheric components or attenuants that affect the spectral distribution (aerosols and 
precipitable water mainly). Therefore, the typical spectral year results from the concatenation 
of the months that fulfill the condition of minimum WS: 
 
 

𝑊𝑆(𝑦, 𝑚) = 0.5 𝐹𝑆𝐺𝑇𝐼(𝑦, 𝑚) + 0.5 𝐹𝑆𝐴𝑃𝐸(𝑦, 𝑚)                                        (6) 
 
 

4. Results and Discussion 
 

The initial database for this study consisted of over 200,000 5-minute values of four main 
variables: GTI, APE index and SF for 7 different technologies and global tilt spectral irradiance, 
covering the period from 2012 to 2019. In the whole measuring period there were gaps in the 
data due to system shutdown, failures in the acquisition and so on, as well as some other 
conditions associated with the rejected data considered as wrong measurements. The data of 
these four main variables, considered as valid data, were aggregated to hourly means.  
 
Since the statistical analysis for computing the FS statistic is performed on daily basis, daily 
means of the main variables used in this study were estimated from the hourly mean values. 
The cumulative distribution functions (CDFs) of the two involved variables (GTI and APE) were 
estimated by using the kernel density estimation (KDE) with the daily values. The KDE is a non-
parametric way to estimate the probability density function of a random variable that is widely 
used and offers some advantages in computing the distribution function [57]. Figure 4 shows 
the CDF daily values of GTI and APE for each month of the year. 
 
 
 
 

 
 
Fig. 4. CDF of daily GTI and APE for each month of the year 
 
 
The Sandia Lab methodology was applied to the daily means data of the selected variables to 
determine the month candidate to be part of the typical meteorological or reference year.  
Table 1 shows the resulting month candidates.  
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Table 1. List of the candidate months to be part of the TMY for spectral irradiance  
 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Year 2013 2013 2014 2014 2014 2017 2012 2012 2012 2012 2014 2016 

 
 
The TMY for spectral tilted irradiance is then formed by concatenating the hourly spectral 
irradiance measured data according to the monthly distribution listed in Table 1. In other 
words the TMY data for January are the spectral data of January 2013, for February are the 
spectral data of February 2013, for March are the spectral data of March 2014 and so on. As a 
result we have 8760 spectra covering each hour of the TMY.  Figure 5 shows the hourly mean 
values of the spectral TMY of global tilted irradiance. Likewise, since the work is particularly 
focused on PV applications, the same procedure was followed to create 8760 values of the SF 
for each of the seven technologies included in this work, which constitutes a representative 
year of hourly SFs for each technology, which we have denominated a TMY of spectral factors.  
Figure 6 illustrates, using intensity plots, the TMY of the SF for each technology. 
 
 

 
 
Fig.5. TMY for spectral global tilt irradiance (8760 spectra) 
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Fig.6. Intensity plots of the typical SF for seven PV technologies 
 
Therefore, the Sandia methodology to build TMY can be used effectively for creating the long-
term year of SF for PV technologies by concatenating the individual hourly SFs of the candidate 
months. In order to explore the robustness and coherence of the methodology for computing 
the long-term year of SF a different approach could also be used. Since a TMY of spectral 
global tilt irradiance has been built from experimental data, the associated SFs can also be 
computed from the spectral TMY using Equation 3, where G spectral data used are the spectral 
TMY of global tilt. Figure 7 shows the scatter plots of the SFs computed with the spectral 
irradiance TMY (in the x-axis) compared to the SFs resulted from the concatenation of 
individual hourly SFs for the whole period of measurements (in the y-axis). These scatter plots 
show that both methodologies are practically equivalent. The mean bias deviation between 
both procedures was in all the PV technologies below 0.4 % and the root mean square 
deviations were below 1.5 % in all the cases except for the a-Si SF which was 4%. In order to 
quantify the differences of the long-term SF computed from spectral TMY and from statistical 
long-term of all the individual SFs, in addition to the scatter plots of Figure 7, in the Table 2 
several statistical performance parameters are listed for each technology used in this work 
showing a rather good performance in most technologies (the largest differences were found 
in the a-Si technology). The statistical metrics selected  were computed according to a recent 
review of statistical performance indicators by Gueymard [58]. The computed metrics are: 
Mean Bias difference (MBD), Root Mean Squared Difference (RMSD), Mean Absolute 
Difference (MAD) and Coefficient of Determination (R2).  
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In order to quantify the spectral gains or losses of the spectral TMY the cumulative annual 
estimation of the SF is calculated for each of the seven PV technologies analyzed here. The SF 
for a period of time, a year in this case, is estimated using the following expression [32,44]:   
 
 

𝑆𝐹𝑦𝑒𝑎𝑟 =  
𝐺∗  ∑ ∫ 𝐺ℎ(𝜆)𝑆𝑅(𝜆)𝑑𝜆8760

ℎ=1

𝐼𝑆𝐶
 ∗  ∑ ∫ 𝐺ℎ(𝜆)𝑑𝜆8760

ℎ=1

                                                           (7) 

 
 
 
Table 2. Statistical Metrics for the SF in percentage 
 

Technology MBD RMSD MAD R2 

a-Si -0.12 4.04 0.83 0.78 

CIS 0.327 1.38 0.52 0.88 

HIT 0.35 1.43 0.54 0.88 

m-Si BCC 0.31 1.12 0.43 0.90 

p-Si 0.31 1.12 0.43 0.91 

EFG 0.14 0.79 0.23 0.94 

CdTe 0.27 1.04 0.38 0.89 

  
 
 
where 𝐺∗ is the integral of the standard global tilt spectrum from the ASTM G 173 within the 
wavelength range of this study (300-1100 nm) and 𝐼𝑆𝐶

 ∗   is: 
 
 

𝐼𝑆𝐶
 ∗ = ∫ 𝐺𝑟𝑒𝑓(𝜆)𝑆𝑅(𝜆)𝑑𝜆

1100

300
                                                          (8) 

 
Table 3 shows the annual values of the SF for each PV technology showing a very balanced SF 
long-term annual value, as it was also illustrated in Figure 6. These results showing an annual 
spectral factor below 2% in mid-latitude European sites like Madrid are in good agreement to 
other recent studies [39,46]. 
 
 
Table 3. Annual SF associated with the spectral TMY 
 

Technology a-Si CIS HIT m-Si BCC p-Si EFG CdTe 

SF 1.02 0.99 1.00 1.01 1.01 1.02 1.00 
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Fig.7. Scatter plots for the SF computed from TMY and from individual data. 
 
 
 

5. Conclusions 
 
The long-term characterization of the global tilted spectral irradiance results of interest for 
determining the expected spectral gains or losses of PV technologies in the performance for 
the plant operational life. Typical meteorological year methodologies, such as the Sandia one, 
have been used extensively to create TMYs for the main meteorological variables involved in 
solar energy systems performance. In several cases the methodology has been used on the 
broadband solar irradiance components and temperature only, also focusing on the use of 
TMY in solar power plant long term performance. Aimed at PV applications and at determining 
the long-term spectral effects on the PV technologies in this work the TMY methodology was 
used to generate a typical year of spectral global tilted irradiance. Two simple variables that 
can be computed directly from the spectrum have been used: the integral that represents the 
broadband global tilted irradiance in the spectral range and is associated to cloud induced 
variability, and the average photon energy which would represent the variability associated 
with other atmospheric attenuants like aerosols, ozone and water vapor.  
 
An artificial year of 8760 hourly spectra of global tilted irradiance, denoted as spectral TMY, 
has been created by concatenating statistical representative months of experimental spectra 
in Madrid according to the Sandia methodology. This year would represent the long term 
spectral characteristics of solar irradiance at the site. The spectral factor for seven different PV 
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technologies was computed with both the TMY and all the individual measured spectra for the 
sampling period. The statistical comparison showed that the methodology for creating TMY 
can be applied to global tilted spectral irradiance for PV applications resulting in coherent 
estimations of the spectral gains and losses. 
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