
Received September 9, 2021, accepted September 19, 2021, date of publication September 22, 2021,
date of current version September 30, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3115038

Port-Hamiltonian Modeling of Thermofluid
Systems and Object-Oriented Implementation
With Modelica I: Thermodynamic Part
FRANCISCO M. MÁRQUEZ 1,2, PEDRO J. ZUFIRIA 2, AND LUIS J. YEBRA 3
1Departamento de Automática, Universidad de Alcalá (UAH), 28801 Alcalá de Henares, Spain
2Information Processing and Telecommunications Center, Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones,
ETSI Telecomunicación, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
3Plataforma Solar de Almería, CIEMAT, 04200 Tabernas, Spain

Corresponding author: Francisco M. Márquez (francisco.marquez@uah.es)

The work of Luis J. Yebra was supported by the Universidad de Alcalá, through the Programa propio Giner de los Ríos Research Grant.

ABSTRACT In this paper, we present the physical foundations and the development of the thermodynamic
part of a Modelica library with the fundamental components for modeling thermofluid systems. We have
chosen Modelica because it is an object-oriented modeling language that allows an elegant design of
the library, with a top-down conception that starts from very general components where we model the
thermodynamic properties common to all simple substances and descend by inheritance to model the
properties of each particular substance. To model the behavior of each component, we have used: classical
thermodynamics to define the equilibrium states, the local equilibrium hypothesis of Classical Irreversible
Thermodynamics to model the changes of state, and the port-Hamiltonian approach to obtain the equations
of the system dynamics. With this formulation, we implement the thermodynamic behavior of ideal gases
(including monatomic gases as a particular case), the 2073 substances defined for the CEA (Chemical
Equilibrium with Applications) NASA Glenn computer program, the IAPWS Formulation 1995 for the
Thermodynamic Properties of Water Substance for General and Scientific Use, and the Syltherm 800 HTF
(Heat Transfer Fluid). We also define graphical symbols for each library component that facilitate modeling
complex systemswith simple drag-and-dropmanipulations, component connection, and parameter selection.
These symbols are a slightly modified version of those used in bond graphs to facilitate their reading and the
representation of the structure of complex systems. We also show the modeling, simulation, and comparison
for accuracy, performance, and scalability of some thermodynamic systems implemented with the Modelica
Standard Library (MSL) and the proposed library.

INDEX TERMS Bond graphs, Modelica language, object oriented modeling, port-Hamiltonian systems,
thermodynamic systems, thermofluid systems.

I. INTRODUCTION
This paper is the first part of a two-part series where we will
implement a library of components to model the storage and
transport phenomena ofmass, momentum, and energy in ther-
mofluid systems from a port-Hamiltonian approach. In [28],
we presented the general theory of port-Hamiltonian systems,
its graphical representation with bond graphs, its object-
oriented implementation with the Modelica language, and its
application to simple mechanical systems and electrical net-
works. In the current paper, we present the port-Hamiltonian
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modeling of thermodynamic systems, we implement in Mod-
elica the main building blocks of these systems, we propose
a graphical representation based on bond graphs adapted for
thermodynamic systems, and we model the thermodynamic
behavior of many substances of scientific and industrial
interest.

A. MOTIVATION
Thermofluid systems play a central role in industries such as
oil and gas extraction and distribution, water processing and
distribution, or solar thermal energy production and storage.
Therefore, it is important to have tools for easy and quick
modeling and simulation of these systems. These models will
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also be helpful to inexpensively test control strategies for an
efficient system management.

A general thermofluid system may be composed of several
subsystems with different substances in motion or at rest,
mixing or chemically reacting and exchanging mass, momen-
tum, and energy with each other and their surroundings.

The modeling of these systems is necessarily multidisci-
plinary and relies on disciplines such as fluid dynamics to
model the movement of thermofluids, chemistry to model the
reactions between them, thermodynamics to model energy
exchanges, electromechanics to model fluid pumping devices
and their control, etc. Added to this complexity is the fact
that a complete description of the behavior of a continuous
substance requires describing its time evolution at each point
in space, i.e., each magnitude x that provides information
about a thermofluid system will depend on the time variable
t ∈ R and the spatial variable r ∈ � ⊂ R3.
To tackle a problem of this complexity and to be able to

draw engineering applicable conclusions, it is necessary to
make some simplifications that make it intellectually and
computationally tractable. The main simplification of this
work is to consider thermofluid systems composed of con-
nected subsystems that can be described by a set of easily
characterized lumped parameters. With this simplification,
we can describe the system behavior with a differential-
algebraic system of equations (DAE) which allows using the
tools for modeling lumped parameter multiphysics systems
described in [28]: the port-Hamiltonian formalism, the bond
graph representation, and the object-oriented implementation
with the Modelica language. We can summarize the rationale
for this choice as follows:
• The port-Hamiltonian formalism starts from the Hamil-
tonian formalism of classical mechanics and extends it
to include non-conservative systems (i.e, systems with
energy dissipation) [50]. It provides a framework for
modeling physical systems based on the storage and
exchange of energy through power ports that intercon-
nect the parts of a system with each other and with
their surroundings. The connection of systemswith port-
Hamiltonian structure forms a new system that preserves
this structure, so this formalism is suitable for modeling
complex systems by connecting simpler ones. The port-
Hamiltonian approach has proved to be also suitable for
controller designing [50, Chap.7].

• The bond graph methodology proposed by H. Paynter in
the 1960s arises from modeling ideas used in electrical
networks and it is based on principles similar to the port-
Hamiltonian formalism, but is not formulated with the
rigor of differential geometry as the latter [4], [40]. How-
ever, bond graphs define a symbology to represent the
structure of complex systems and the routes of energy
exchange between their components, so that they are
commonly used to represent port-Hamiltonian systems.

• The Modelica language is also used to describe the
behavior of complex systems by connecting simple
components (composition mechanism) [35]. As an

object-oriented language, it is designed to model the
behavior of general systems and to extend those models
to particular systems derived from the previous ones
(inheritance mechanism). Tools such as OpenModel-
ica [19] or Dymola R© process symbolically these models
to obtain the differential equations for simulating the
system behavior.

In this article, we study the modeling of phenomena related
to energy storage in thermofluid systems without mass trans-
fer (fluids at rest). For this purpose, we employ Equilibrium
Thermodynamics [7], [48], which allows us to identify states
in a thermodynamic system, and also employ Classical Irre-
versible Thermodynamics [12] to study the time evolution of
these states.

We also show the implementation in Modelica language
and the graphical representation of components necessary to
model these phenomena, thus extending the library pHlib for
modeling multiphysics systems started in [28].

We exemplify the applicability of the procedure by show-
ing how to model the thermodynamic behavior of some sub-
stances of industrial interest: we started with the model of
general simple substances, continue with the model of ideal
gases, add the models of 2073 substances described in [30]
for the CEA NASA Glenn computer program, implement
the model for water and steam described by the Interna-
tional Association for the Properties of Water and Steam
(IAPWS-95 [22]), and finish with the model of the commer-
cial Syltherm 800 HTF [15].

Finally, we also implement models of simple systems with
MSL and with pHlib in order to compare the results of both
simulations. The new library components have been imple-
mented and simulated with the Dymola tool.

B. LITERATURE REVIEW
The development of the bond graph methodology for mod-
eling multiphysics systems began in the 1960s with the
work of H. Paynter [40] and, since then, this methodol-
ogy has been used to model multidisciplinary engineering
systems [4], [5], [24].

The theory of port-Hamiltonian systems began in the late
1990s [49]. It is an evolution of Hamiltonian mechanics
[1, Chap.3] to which it adds the concepts of power ports
(inspired by bond graph modeling) and Dirac structures [11]
to formalize with the language of differential geometry a
framework for modeling complex systems by connecting
simple systems that exchange energy [16].

In [20], [28], we can find a discussion of the relationship
between bond graphs and port-Hamiltonian systems,
and [14], [42] have presented the derivation of port-
Hamiltonian models from bond graphs.

We can find the Modelica language specification in [35],
and [18] is a comprehensive guide showing the use of the lan-
guage for modeling multidomain systems. References [10],
[13], [54] show examples of the development of a Modelica
library to model systems using the bond graph methodology.
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Two standard references in Equilibrium Thermodynamics
and Classical Irreversible Thermodynamics are [7] and [12],
respectively. The extension of the Hamiltonian formalism
to include the phenomena of dissipation that appear in irre-
versible thermodynamics can be found in [25], [32]. In [29],
[33] this formalism is expressed in terms of metriplectic
geometry where the phase space of a system with dissipa-
tion is modeled with a metriplectic manifold. This geometric
object is a manifold with a double structure: simplectic and
metric. The conservative part of the behavior (Hamiltonian
dynamics) is modeled with the simplectic structure, and the
dissipative behavior (irreversible thermodynamics) with the
metric structure. In Section III, we show the relationship
between the metriplectic and port-hamiltonian formalisms.
We will focus in this article on the modeling of lumped
parameter systems, as discussed in the previous section. For
a review of the literature on port-Hamiltonian modeling of
distributed systems, we refer to [44].

The use of bond graphs for modeling thermodynamic sys-
tems can be found in [8, Chap.8], [45], [16, Chap.3]. The
description of the MSL implementation for modeling ther-
mofluid systems is in [17], and [9] describes the Modelica
implementation of a bond graph library for modeling ther-
mofluid systems.

C. CONTRIBUTIONS
In this paper, we develop an object-oriented implementation,
with theModelica language, of library (pHlib) which provides
components for modeling thermofluid systems. As this objec-
tive is quite ambitious, we start modeling the thermodynamic
properties (fluid at rest). In a later article, we will include the
transport phenomena (fluid in motion). The implementation
is based on a port-Hamiltonian approach to the concepts
of Equilibrium Thermodynamics and Classical Irreversible
Thermodynamics and is complemented by a new set of sym-
bols derived from the traditional bond graph representation,
modified for expressiveness and readability.

This approach brings together three traditions for mod-
eling physical systems whose communities have had little
connection with each other: port-based modeling with bond
graphs, Hamiltonian modeling, and object-oriented modeling
with Modelica. For this purpose, we have taken advantage of
the fact that these three approaches share concepts such as
power ports (Modelica generalizes this concept with the class
connector) or the hierarchical organization (class inheritance
and composition in Modelica). Although there are references
that combine some of these modeling approaches (e.g., [13],
[16], [20], and [42]), they do not address all three together.
Moreover, our approach has an additional advantage: it is
not necessary to perform a causality analysis when building
the models (as required by traditional bond graph modeling)
because neither the port-Hamiltonian modeling nor the tools
that process theModelica language need causality indications
to automatically generate the computational equations of the
models and simulate them.

Most developments based on the ISO representa-
tion of port-Hamiltonian systems rely on coordinate-
dependent matrix representations [50, Chap.6]. In Section III,
we propose a coordinate-free definition based on dif-
ferential geometry that allows us to compare the port-
Hamiltonian formalism with the metriplectic one [29] and to
demonstrate in a general way its ability to model dissipative
systems.

The object-oriented approach of the library allows to:

(i) Implement a generic component to model the thermo-
dynamic behavior of any substance defined by its fun-
damental equation.

(ii) Particularize, from the previous generic component,
other components to model less general substances such
as ideal gases, perfect gases, and monatomic gases (in
this phase of the implementation, we have used the
inheritance mechanism of the Modelica language and
the possibility of adding new behavioral equations in
each refinement step).

(iii) Implement the substance library defined for the CEA
NASA Glenn computer program. Our implementation
takes into account the different coefficients defined for
each temperature range (from one-range substances up
to five-range substances). The MSL implementation
takes into account only two intervals.

(iv) Implement the version for scientific use (known as
IAPWS-95) of the behavioral model and thermody-
namic properties of water defined by the International
Association for the Properties ofWater and Steam.MSL
implements the industrial formulation IAPWS-IF97.

(v) Implement the thermodynamic behavior of substances
whose fundamental equation is unknown, but some
thermodynamic properties (e.g., specific heat, density,
etc.) are available (we have chosen the commercial
Syltherm 800 HTF as an example).

We have always worked with the variables that Thermody-
namics, the port-Hamiltonian formalism, and the bond graph
modeling postulate for the thermodynamic domain:

• entropy S, volume V , and mass m for the state x,
• temperature T , pressure p, and chemical potential g for
the effort dU , and

• entropy flow rate Ṡ, volume flow rate V̇ , and mass flow
rate ṁ for the flow ẋ.

Note that the handling of entropy introduces conceptual
and computational complexity into the models. For this rea-
son, in industrial practice, it is common to work with heat Q
and heat flow rate Q̇ instead of entropy and entropy flow rate.
The terms true bond graphs and pseudo-bond graphs have
been introduced to distinguish bond graphs using entropy
flow rate from those using heat flow rate [4], [24].

Despite the difficulty of working with entropy, the use of
this variable can help to detect inconsistencies in thermo-
dynamic models by checking compliance with the second
principle of thermodynamics.
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D. PAPER ORGANIZATION
This paper is organized as follows. In Section II, we summa-
rize the main results on Equilibrium Thermodynamics and
justify the election of Classical Irreversible Thermodynamics
for modeling the time evolution of thermodynamic systems.
From the concept of the fundamental equation that models the
internal energy of a thermodynamic system, we can define
port-Hamiltonian models for the storage elements of that
internal energy. Since this fundamental equation is not always
available, in many practical cases the system dynamics must
be reconstructed frommeasurable thermodynamic properties.
For this reason, in Section II we also review: i) other ways
of expressing the fundamental equation by the Legendre
transformation (Helmholtz free energy, enthalpy, and Gibss
free energy), ii) the fundamental set of response functions
(specific isochoric heat capacity, adiabatic compressibility,
and adiabatic expansibity), and iii) the primary set of response
functions (specific isobaric heat capacity, isothermal com-
pressibility, and isobaric expansibity).

In Section III, we study the ISO representation of dissi-
pative port-Hamiltonian systems to identify its energy con-
servative and entropy generating parts, and to relate this
representation to the metriplectic formalism.

In Section IV, we explain the equations and the Modelica
implementation of simple thermodynamic systems. The com-
ponents that make up the implemented library are as follows:
power ports, bonds, effort and flow sources, storage elements,
general models of single substances, models of ideal sub-
stances (ideal gases, perfect gases, monatomic gases), empir-
ical models for non-perfect substances, IAPWS-95 model for
water, and model for Syltherm 800.

In Section V, we model simple systems combining electri-
cal and thermodynamic parts, implement themwithMSL and
pHlib, simulate them, and analyze the results.

In Appendix, one can see two lists with acronyms and
nomenclature.

II. PORT-HAMILTONIAN MODELING OF
THERMODYNAMIC SYSTEMS
A. SIMPLE THERMODYNAMIC SYSTEMS
A simple system is a homogeneous and isotropic mixture of r
chemical substances not acted by electric, magnetic, or gravi-
tational fields. The postulates of equilibrium thermodynamics
[7, Chap.1] establish for simple systems that:

(i) There exist equilibrium states characterized by the fol-
lowing extensive parameters: internal energyU , volume
V , and the amount nj (in mole) of each substance.

(ii) For all equilibrium states there exists a real valued
function of the extensive parameters (called entropy S),
that is continuous, differentiable, additive over the con-
stituent subsystems, and strictly monotonically increas-
ing with the energy.

(iii) The values assumed by the extensive parameters are
those that maximize the entropy over the configuration
space (manifold of equilibrium states).

The strict monotonic property of the entropy function
implies that it can be inverted with respect to the energy and,
by postulate (ii), the energy is a single-valued, continuous and
differentiable function of S, V , and each n1,. . . , nr (simplify
n1...r ). Both S = S(U ,V , n1...r ) and U = U (S,V , n1...r ) are
homogeneous first-order functions that contain all thermody-
namic information about a system and each one is known as
the fundamental equation.

The partial derivatives ofU are called intensive parameters
and are zero-order homogeneous functions with a concrete
meaning in thermodynamics:

∂SU = T (S,V , n1...r ) ≡ temperature,

−∂VU = p(S,V , n1...r ) ≡ pressure,

∂njU
∣∣
1≤j≤r = µj(S,V , n1...r ) ≡ chemical potential. (1)

This complete set of equations (called equations of state)
is equivalent to the fundamental equation, so it contains all
thermodynamic information about a system.

Each curve that takes values in the configuration space is a
dense sequence of equilibrium states that lacks information
about the dynamics of state change. However, a real ther-
modynamic process is a sequence of equilibrium and non-
equilibrium states, but no general theory of non-equilibrium
thermodynamics is currently available. Attempts to extend
equilibrium thermodynamics yielded the elaboration of the
Classical Irreversible Thermodynamics (CIT) in the first half
of the 20th century [12], [36], [37], [43]. Subsequent efforts to
overcome the limitations of the CIT have resulted in formu-
lations such as: Rational Thermodynamics (RT) [47] which
has contributed to the development of continuous media
thermodynamics; the Extended Irreversible Thermodynamics
(EIT) [23] which provides a bridge between CIT and RT; and
the formalism known as GENERIC (General Equation for
the Non-Equilibrium Reversible–Irreversible Coupling) [39]
which develops a non-equilibrium thermodynamics with
Hamiltonian structure. Nowadays, more efforts to model non-
equilibrium thermodynamic processes join the program of
geometrization in physics and employ the language of dif-
ferential geometry to address an invariant (coordinate-free)
formulation of phenomenological thermodynamics [51].

In this paper, we have chosen to use CIT because it fits eas-
ily into the port-Hamiltonian approach and it has proved to be
suitable for modeling a large number of non-equilibrium ther-
modynamic processes, as confirmed by experimental results.
The main additional postulate of CIT is the local-equilibrium
hypothesis: ‘‘small volume elements of a system may be con-
sidered to be in thermodynamic equilibrium locally, although
the whole system may not be so, and the same equilibrium
postulates (i–iii) can be applied to those local volumes’’
[48, Chap.23].

One can use this approach to approximate continuous sys-
temsmodels using networks of lumped parameter subsystems
(also called networks of control volumes [38], [41]). Thus,
if we call R+ = {t ∈ R : t > 0}, we consider the smooth
manifold canonical structure of R2+r

+ , the thermodynamic
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FIGURE 1. a) Storage element that represent a simple thermodynamic
system and b) bond graph representation (see [28, Figure 7]).

state of a control volume x = (S,V , n1...r ) ∈ R2+r
+ , and the

energy state function U : R2+r
+ → R, then we can write

the following energy flow rate for thermodynamic systems
[12, p.23] (see [28, Appendix] for a summary on vector
bundles and braket notation)

U̇ = 〈dU | ẋ〉

=
〈
TdS − pdV +

∑
µjdnj

∣∣ Ṡ∂S + V̇ ∂V +∑ ṅi∂ni
〉

= T Ṡ 〈dS | ∂S〉 − pV̇ 〈dV | ∂V 〉 +
∑
µjṅi

〈
dnj

∣∣ ∂ni 〉
= T Ṡ − pV̇ +

∑
j∈1...r

µjṅj, (2)

that corresponds to a storage element C = (R2+r
+ ,U ) (see

[28, Definition 23]) whose state space is the smooth manifold
R2+r
+ , and with Hamiltonian U (S,V , n1...r ). The power port

of C (see [28, Definition 1]) is P = TR2+r
+ ⊕ T ∗R2+r

+ , the
flow variable is the vector field

ẋ = Ṡ∂S + V̇ ∂V +
∑
j∈1...r

ṅj∂nj ∈ TR
2+r
+ , (3)

and the effort variable is the covector field

dU = TdS − pdV +
∑
j∈1...r

µjdnj ∈ T ∗R2+r
+ . (4)

If we express the fundamental equation as a function of
the mass mj = nj · Mmol,j of each chemical species, where
Mmol,j kg/mol is the molar mass of the substance j, thenU =
(S,V ,m1...r ) and

U̇ = T Ṡ − pV̇ +
∑
j∈1...r

gjṁj, (5)

gj =
∂U
∂mj
=
∂U
∂nj

∂nj
∂mj
=

µj

Mmol,j
. (6)

Figure 1 is the thermodynamic domain adaptation of
[28, Figure 7]. Part a) represents the storage element of a sim-
ple thermodynamic system defined by the smooth manifold
X , HamiltonianU , and power port P = 〈dU |ẋ〉. Part b) is the
bond graph representation of this storage element.

Since energy and entropy are homogeneous first-order
functions, they can be scaled from their definition for a
unitary mass system:

U (S,V ,m1...r ) = mU (S/m,V/m,m1...r/m)

= mu(s, v,w1...r ), (7)

m =
∑
j∈1...r

mj;
∑
j∈1...r

wj = 1, (8)

where u = U/m, s = S/m, and v = V/m are called
specific (ormassic [46, Section 8.9]) energy, specific entropy,
and specific volume respectively, and wj = mj/m is called
mass fraction. As intensive parameters are zero-order homo-
geneous functions, they have the same form when expressed
with specific variables, i.e.,

T (S,V ,m1...r ) = T (s, v,w1...r )

p(S,V ,m1...r ) = p(s, v,w1...r )

gj(S,V ,m1...r ) = gj(s, v,w1...r ).

By applying Euler’s theorem1 to the first-order homoge-
neous function U we obtain the Euler’s relation [7, p.51]

U = TS − pV +
∑
j∈1...r

gjmj, (9)

u = T
S
m
− p

V
m
+

∑
j∈1...r

gj
mj
m

= Ts− pv+
∑
j∈1...r

gjwj, (10)

that in the entropy representation has the form

S =
(
1
T

)
U +

( p
T

)
V −

∑
j∈1...r

(gj
T

)
mj, (11)

∂US = 1/T , ∂V S = p/T , ∂mjS = gj/T . (12)

Single-substance thermofluid systems have a special inter-
est in thermal engineering to design energy transport and
storage systems. In this case, the fundamental equation, the
equations of the intensive parameters, and the equation of
the energy flow rate take a simple form when expressed with
specific quantities:

u(s, v) =
1
m
U (S,V ,m) = U (S/m,V/m, 1)

= T
S
m
− p

V
m
+ g

m
m

= Ts− pv+ g, (13)

T (s, v) = ∂u/∂s, (14)

p(s, v) = −∂u/∂v, (15)

u̇ = 〈du|ẋ〉

= 〈Tds− pdv | ṡ∂s + v̇∂v〉 = T ṡ− pv̇. (16)

B. THERMODYNAMIC POTENTIALS AND
THERMODYNAMIC PROPERTIES
Although the fundamental equation (in either of its two repre-
sentations: energy or entropy) contains all the information of

1If f (x1...r ) is a homogeneous functions of degree k and has continuous
first partial derivatives, then:∑

j∈1...r

∂f
∂xj

xj = kf (x1...j).
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a thermodynamic system, its theoretical deduction is beyond
the scope of thermodynamics and corresponds to statistical
mechanics [27], [7, Part II]. Experimentally, however, some
approximations to the fundamental equation or its differential
can be obtained.

When experimenting with a thermodynamic system, it has
been found that some variables can be more easily measured
than others. Thus, for example, there are no instruments
to measure the entropy (extensive variable) of a system.
However, the temperature (intensive variable) can be easily
measured with a thermometer. It would thus be convenient
to be able to formulate the fundamental equation taking as
independent variables those extensive and intensive variables
that can be easily measured. The appropriate tool to perform
this alternative formulation without loss of information is the
Legendre transformation [2].
Let y(x1...`...n) be a function with partial derivatives pk =

∂y/∂xk . The Legendre transformation of y with respect to
x1...` is a function of the independent variables p1...`, x`+1...n,
denoted y[p1...`] and defined

y[p1...`] = y−
∑̀
k=1

pkxk . (17)

Note that the sign criterion used in thermodynamics for the
Legendre transformation is the opposite of the one used in
mechanics.

1) THERMODYNAMIC POTENTIALS
The Legendre transforms of the fundamental equation U are
also called thermodynamic potentials (by analogy with the
mechanical potential energy) and some of the most used
are [2]:
• Helmholtz free energy F (or Helmholtz potential):

F(T ,V ,m1...r ) = U [T ] = U − TS, (18)

dF = d(U − TS)

= dU − TdS − SdT

= TdS − pdV +
∑
j∈1...r

gjdmj

−TdS − SdT

= −SdT − pdV +
∑
j∈1...r

gjdmj,

for single substance


f = u− Ts,
df = −sdT − pdv,
ḟ = −sṪ − pv̇.

(19)

• Enthalpy H :

H (S, p,m1...r ) = U [−p] = U + pV , (20)

dH = TdS + Vdp+
∑
j∈1...r

gjdmj,

for single substance


h = u+ pv,
dh = Tds+ pdv,
ḣ = T ṡ+ vṗ.

(21)

• Gibbs free energy G (Gibbs potential, or free enthalpy):

G(T , p,m1...r ) = U [T ,−p] = U − TS + pV , (22)

dG = −SdT + Vdp+
∑
j∈1...r

gjdmj,

for single substance


g = u− Ts+ pv,
dg = −sd+ vdp,
ġ = −sṪ + vṗ.

(23)

It is important to note that the total Legendre transform
U [T ,−p, g1...r ] is identically zero, leading to the Gibbs-
Duhem equation (24) which establishes a relation between
the intensive parameters of a simple system. Indeed,

d

U−TS + pV − ∑
j∈1...r

gjmj

 = 0, (by Eq.(9)),

dU − TdS + pdV −
∑
j∈1...r

gjdmj

−SdT + Vdp−
∑
j∈1...r

mjdgj = 0,

⇒ SdT − Vdp+
∑
j∈1...r

mjdgj = 0, (24)

and, although systems with r substances have r + 2 intensive
parameters, only r+1 of them are independent. It is said that
those systems have r+1 thermodynamics degree of freedom.

2) PRIMARY SET OF RESPONSE FUNCTIONS
Just as the first partial derivatives of the fundamental
equation have an important physical significance (temper-
ature, pressure, and chemical potential), the second partial
derivatives for single substances, called response functions
[48, Chap.10], are also of great physical interest because
they characterize the thermodynamic properties of these sub-
stances (e.g., Syltherm 800, see Example 5).
The primary set of response functions is defined from

the second-order derivatives of the Gibbs free energy G
[26, Chap.1]:
• Specific isobaric heat capacity or specific heat capacity
at constant pressure

cp = −
T
m
∂2G
∂T 2

∣∣∣∣
p
=
T
m
∂S
∂T

∣∣∣∣
p

= T
∂s
∂T

∣∣∣∣
p
=
∂h
∂T

∣∣∣∣
p

J/(kg·K), (25)

is the heat flux per unit mass required to produce a unit
increase in the temperature of a system maintained at
constant pressure.2

• Isothermal compressibility

κT = −
1
V
∂2G
∂p2

∣∣∣∣
T

= −
1
V
∂V
∂p

∣∣∣∣
T
= −

1
v
∂v
∂p

∣∣∣∣
T

Pa−1, (26)

2Remember that 1S = 1Q/T .
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is the fractional decrease in volume per unit increase in
pressure of a systemmaintained at constant temperature.
The inverse of κT is called isothermal bulk modulus
βT = 1/κT .

• Isobaric expansibity

αp =
1
V

∂

∂T

∣∣∣∣
p

∂G
∂p

∣∣∣∣
T

=
1
V
∂V
∂T

∣∣∣∣
p
=

1
v
∂v
∂T

∣∣∣∣
p

K−1, (27)

is the fractional increase in volume per unit increase in
temperature of a systemmaintained at constant pressure.

3) FUNDAMENTAL SET OF RESPONSE FUNCTIONS
The fundamental set of response functions is defined
from the second-order derivatives of the internal energy U
[48, Chap.10]:

• Specific isochoric heat capacity or specific heat capacity
at constant volume

cv =
T
m

(
∂2U
∂S2

∣∣∣∣
V

)−1
=
T
m
∂S
∂T

∣∣∣∣
V

= T
∂s
∂T

∣∣∣∣
v
=
∂u
∂T

∣∣∣∣
v

J/(kg·K), (28)

is the heat flux per unit mass required to produce a unit
increase in the temperature of a system maintained at
constant volume.

• Adiabatic compressibility

κs =
1
V

(
∂2U
∂V 2

∣∣∣∣
S

)−1
= −

1
V
∂V
∂p

∣∣∣∣
S
= −

1
v
∂v
∂p

∣∣∣∣
s

Pa−1, (29)

is the fractional decrease in volume per unit increase in
pressure of a system maintained at constant entropy.

• Adiabatic expansibity

αs =
1
V

(
∂

∂V

∣∣∣∣
S

∂U
∂S

∣∣∣∣
V

)−1
=

1
V
∂V
∂T

∣∣∣∣
S
=

1
v
∂v
∂T

∣∣∣∣
s

K−1, (30)

is the fractional increase in volume per unit increase in
temperature of a system maintained at constant entropy.

Some useful expressions relating the fundamental and pri-
mary sets of response functions are as follows:

γ = cp/cv (heat capacity ratio), (31)

= κT /κs

= 1− αp/αs,

cp − cv = Tvα2p/κT , (32)

κT − κs = Tvα2p/cp. (33)

III. ISO REPRESENTATION OF DISSIPATIVE
PORT-HAMILTONIAN SYSTEMS
In this section, we will use the input-state-output (ISO) repre-
sentation of dissipative port-Hamiltonian systems to compare
the port-Hamiltonian and metriplectic formalisms [29], [33]
introduced to extend the Hamiltonian formalism to dissipa-
tive systems. HereH stands for Hamiltonian, not for enthalpy.
The kernel representation of the port-Hamiltonian system
(X ,F,D,H ) is (see [28, Definition 6 and Remark 12])

F(−ẋ ⊕ f )+ E(dH ⊕ e) = 0, (34)

that yields the following local matrix equation

F(x)
[
−ẋ
f

]
+ E(x)

[
∂xH
e

]
= 0, (35)

where ẋ = [ẋ1, . . . , ẋn]ᵀ and ∂xH = [ ∂H
∂x1
, . . . , ∂H

∂xn ]
ᵀ are the

matrix representation of ẋ and dH respectively.
Provided the matrices F and E can be split as

F = [Fn|Fm], E = [En|Em]

Fn,En ∈ R(n+m)×n, Fm,Em ∈ R(n+m)×m,

with rankFn = n and rank[Fn|Em] = n+m, Equation 35 can
be written

F ′
[
−ẋ
e

]
+ E ′

[
∂xH
f

]
= 0,

where F ′ = [Fn|Em] and E ′ = [En|Fm]. Now F ′ is invertible,
since rankF ′ = n+m; and (35) can be explicitly solve for ẋ[

−ẋ
e

]
= F ′−1E ′

[
∂xH
f

]
.

Since F ′E ′ᵀ + E ′F ′ᵀ = 0, F ′−1E ′ is skew-symmetric and
can be written

F ′−1E ′ =
[
J g
−gᵀ B

]
,

with J and B skew-symmetric matrices. If there is not a direct
f to e coupling, then B = 0 and the explicit equations that
model the behavior of a port-Hamiltonian system are

ẋ = J (x)∂xH + g(x)f

e = gᵀ(x)∂xH .

If we split F⊕E into an open input-output port U⊕Y (with
Y = U∗) and a resistive port FR ⊕ ER (energy-dissipating
port, see Figure 2), the matrix F ′−1E , and the equations of
the system can be written

F ′−1E ′ =

 J gR g
−gᵀR 0 0
−gᵀ 0 0

 ,

ẋ = J∂xH + gRfR + gu
eR = gᵀR∂xH
y = gᵀ∂xH .

If the resistive port is defined by the linear relation fR =
−R′eR (with R′ symmetric and positive definite), then fR =
−R′gᵀR∂xH and

ẋ = [J (x)− R(x)]∂xH + g(x)u

y = gᵀ(x)∂xH ,
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FIGURE 2. Input-state-output port-Hamiltonian system with energy
dissipation.

where R(x) = gR(x)R′(x)g
ᵀ
R(x) is a symmetric positive

semidefinite matrix.
The previous equations let us introduce the following

geometric and coordinate-free definition of an ISO port-
Hamiltonian system:
Definition 1: An ISO port-Hamiltonian system is a

dynamical system defined by the 6-tuple (X ,H , J ,R,U, g)
where:

1) The smooth manifold X is the state space.
2) The Hamiltonian smooth function H : X → Rmodels

the energy of the system.
3) The skew-symmetric bundle morphism J : T ∗X →

TX represents the internal power-preserving inter-
connections. The isomorphism Hom(T ∗X ,TX ) ∼=
Hom(T ∗X ⊕ TX ,R) allows to identify J with
a skew-symmetric bilinear form (or antisymmetric
order 2 tensor).

4) The symmetric positive semidefinite bundle morphism
R : T ∗X → TX represents the dissipation of
the system. The isomorphism Hom(T ∗X ,TX ) ∼=
Hom(T ∗X ⊕ TX ,R) allows to identify R with a sym-
metric positive semidefinite bilinear form (or symmet-
ric positive semidefinite order 2 tensor).

5) The input power variable u is a constant section of the
trivial vector bundle X ⊕U, i.e., u depends on the time
t but not on the state x.

6) The output power variable y is a constant section of the
trivial vector bundle X ⊕ Y = X ⊕ U∗.

7) The bundle morphism g : X ⊕U→ TX describes the
distribution of the power incoming into the system from
the environment. Its dual morphism is g∗ : T ∗X →
X ⊕ Y.

8) The behavior of the system is represented by the
equations:

|ẋ〉 = (J − R) |dH〉 + g |u〉

|y〉 = g∗ |dH〉 or 〈y| = 〈dH | g. (36)

Since J is a skew-symmetric morphism then
〈dH | J | dH〉 = 0, and the power balance of an ISO

port-Hamiltonian system is

Ḣ = 〈dH | ẋ〉

= 〈dH | (J − R) | dH〉 + 〈dH | g | u〉

= 〈dH | J | dH〉 − 〈dH |R | dH〉 + 〈y | u〉

= 〈y | u〉 − 〈dH |R | dH〉 = Pu − PR.

To relate the dissipative port-Hamiltonian systems to the
metriplectic formalism we split the Hamiltonian into two
summands H = Hc − Hd , with the additional requirements
(known as degeneracy constraints [39, Eqs.1.4-5]):

R |dHc〉 = 0, (37)

J |dHd 〉 = 0. (38)

The dynamics of a closed system is then ( [33, Eq.25],
[29, Eq.18])

|ẋ〉 = J |dHc〉 + R |dHd 〉 .

The first term corresponds to the symplectic structure and
the second one to the metric structure (so the namemetriplec-
tic system). In addition, the following properties are fulfilled:

Ḣc = 〈dHc | ẋ〉 = 0,

Ḣd = 〈dHd | ẋ〉 = 〈dHd |R | dHd 〉 ≥ 0,

Ḣ = 〈dH | ẋ〉 = − 〈dHd |R | dHd 〉 = −Ḣd .

The above equations mean that Hc is the conserved energy
(Ḣc = 0), Hd is the dissipated energy, and Ḣd ≥ 0 implies
that dissipation is an irreversible process (the metriplectic
formalism mentions this term as an entropy-like function).
For closed thermodynamic systems we can identify H = F
(Helmholtz free energy, see Equation 18), Hc = U (internal
energy), Hd = TS, and write

Ḣd = 〈d(TS) | ẋ〉

= T 〈dS | ẋ〉 + 〈SdT | ẋ〉

= T 〈dS | ẋ〉 + 〈SdT | (J − R) | SdT 〉

= T 〈dS | ẋ〉 − S2 〈dT |R | dT 〉 ≥ 0,

i.e., Ṡ = 〈dS | ẋ〉 ≥ S2/T 〈dT |R | dT 〉 ≥ 0, which means an
increase of entropy in an irreversible process.

IV. MODELICA IMPLEMENTATION OF SIMPLE
THERMODYNAMIC SYSTEMS
In this section, we take a further step in the development
of the Modelica library pHlib started in [28]. This library
consists of two main packages: Dirac and pHS. In the package
Dirac, we modeled the following concepts: power port, bond,
general Dirac structure, and junction structures (0-junctions,
1-junctions, transformers TF, and gyrators GY). With these
elements, one can define the non-dissipative energy exchange
structure of a complex system by connecting elementary junc-
tion structures. In the package pHS, wemodeled the following
concepts: flow and effort sources (Sf, Se), storage element
(C), and resistors (R, RS). These elements are used to model
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Listing 1. Thermodynamics.Ports.

the energy exchangedwith the environment, the energy stored
in the system, and the dissipation of energy.

In this article, we take full advantage of the fact thatModel-
ica is an object-oriented language to extend the pHlib library
to the thermodynamics domain. To do so, we implement a
new package called Thermodynamics by reusing the classes
defined in the packages Dirac and pHS.

A. POWER PORTS AND BONDS
In the remainder of this paper, ‘‘thermodynamic system’’
will refer to a simple single-substance thermodynamic system
unless otherwise stated.

We remember that, for the smoothmanifoldX with tangent
bundle TX and cotangent bundle T ∗X , the fiber product
P = TX ⊕ T ∗X is a power port if the dual product
〈ω|X〉 —where the effort ω ∈ T ∗X is a covector field and
the flow X ∈ TX is a vector field—, has physical dimen-
sions of power [28, Definition 1]. This definition applies to
thermodynamic systems, where:

X = R3
+,

ẋ = Ṡ∂S + V̇ ∂V + ṁ∂m ∈ TR3
+,

dU = TdS − pdV + gdm ∈ T ∗R3
+, and

U̇ = 〈dU |ẋ〉 .

Listing 1 shows the Modelica implementation of thermo-
dynamic ports.

As we can see, the effort and flow variables of type
Real that appear in the general definition of the connector
Dirac.Interfaces.Ports.Port have been redeclared with units of
the International System (SI), so they have meaning in the
thermodynamic domain and can be checked for dimensional
consistency.

Listing 2 shows the extension of the class Bond (used to
connect subsystem ports in a complex system) to the thermo-
dynamic domain.

It should be noted that, in defining new bonds for the
thermodynamic domain, we have extended the base types
defined in Dirac.Interfaces.Bonds to include variables with
names associated with each type of bond. These variables

Listing 2. Thermodynamics.Bonds.

facilitate access and visualization of the values transferred by
the bond.

In Figure 3 we can see the symbols used for a graphical
representation of bonds and other elements defined in the
package Thermodynamics.

B. SOURCES
The sources of flow (Ṡ, V̇ , ṁ) and effort (T , p, g) have been
derived from the general ones defined in pHS, and redeclared
according to their physical meaning. Listing 3 shows the
implementation of modulated and constant sources.

C. STORAGE ELEMENTS
The class pHS.Storage.C is the base class for defining storage
elements. The application of [28, Definition 23] to thermody-
namic systems is as follows:
Definition 2: A thermodynamic storage element is a

1-port element defined by the pair (R3
+,U ) whereR3

+ has the
structure of a smooth manifold that models the state variables
x = (S,V ,m), and U ∈ C∞(R3

+) is the Hamiltonian that
models the system energy. The flow and effort variables of
the port are the vector field ẋ ∈ TR3

+ and the covector field
dU ∈ T ∗R3

+.
Listing 4 shows the implementation of the class Inter-

nalEnergy which derives from pHS.Storage.C according to
Definition 2.
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Listing 3. Thermodynamics.Sources.

The assertions in the equation section are intended to stop
the simulation when the storage element volume or mass
takes values out of range, i.e., when V < Vmin or m < mmin.

FIGURE 3. Symbols proposed for the package Thermodynamics: T1
(temperature), p1 (pressure), and g1 (specific Gibbs free energy) are
sources of effort; Sfr1 (entropy flow rate), Vfr1 (volume flow rate), and
mfr1 (mass flow rate) are sources of flow; U1 is a storage element for
internal energy; TB1 〈T |Ṡ〉, pB1 〈p|V̇ 〉, and mB1 〈g|ṁ〉 are
one-dimensional bonds; thB1 〈(T ,p,g)|(Ṡ, V̇ , ṁ)〉 is a three-dimensional
bond; TS1 (temperature), pS1 (pressure), and VfrS1 (volume flow rate) are
ideal sensor. These symbols, together with those proposed in [28] for the
elementary Dirac structures, facilitate the composition of complex
systems (see Figure 5) with the Modelica drag-and-drop graphical user
interface.

D. MODELING THE BEHAVIOR OF SINGLE SUBSTANCES
In the implementation of the class InternalEnergy, the
instance substance of the abstract class SingleSubstancemod-
els the thermodynamic behavior of any simple substance,
as described in its fundamental equation. The class Inter-
nalEnergy encodes the structure of the storage element from
the point of view of the port-Hamiltonian approach, and the
class SingleSubstance provides information about the behav-
ior of the particular substance used to define the storage
element.

Listing 5 shows the Modelica code used to implement
the class SingleSubstance, which is defined in the package
Substances.Partial included in the package Thermodynamics.
The assertions in the equation section are intended to stop
the simulation when the substance temperature, pressure,
or density takes values outside the valid range established for
the fundamental equation. The security ranges are: Tmin ≤

T ≤ Tmax, pmin ≤ p ≤ pmax, and % ≥ %min.
SingleSubstance is a partial class (or abstract class in the

terminology of object-orientedmodeling). It is a template that
can be used to define derived classes for modeling particular
substances or families of substances with common features.
In the following, we illustrate the applicability of the devel-
oped tools by modeling some ideal thermodynamic systems.
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Listing 4. Thermodynamics.Storage.InternalEnergy.

E. IDEAL THERMODYNAMIC SYSTEMS
In statistical mechanics, some idealized systems have been
defined for which it is possible to calculate their fundamental
equation. Although these models may seem too simple, they
are sometimes a good first approximation to actual physical
systems.

The main characteristic of the fundamental equation of
an ideal thermodynamic system —in either of its two
forms: internal energy or entropy, and expressed in specific
quantities— is the separability of its variables [48, Chap.11].

1) IDEAL GASES
For ideal gases, the fundamental equation in the specific
entropy representation is [6, Appendix D]

s = s0 + φ(u)+ R ln(v/v0), (39)

where R = Rmol/Mmol J/(kg·K) is the specific gas constant of
the substance, Rmol = 8.314472(15) J/(mol·K) is the molar
gas constant [31], and (s0, u0, v0) are values of a reference
state. The function φ depends on the characteristics of each
gas and satisfies the condition φ(uo) = 0.
The intensive parameters of an ideal gas are (see (13))

1/T = ∂us = dφ/du

⇒ u(T ) = Tc(T ) (40)

Listing 5. Thermodynamics.Substances.Partial.SingleSubstance.

⇒ ∂T u = du/dT

p/T = ∂vs = R/v

⇒ pv = RT , (41)

⇒ h(T ) = Tc(T )+ RT

⇒ ∂T h = dh/dT ,

g/T = u/T − s+ pv/T

= u/T − s0 − φ(u)− R ln(v/v0)+ R. (42)

From (40) and (41), we can deduce some values of the
response functions common to all ideal gases. In particular,

αP =
1
v
∂T v|p = 1/T , (43)

κT = −
1
v
∂pv|T = 1/p, (44)

cv = ∂T u|v = du/dT

⇒ u(T ) = u0 +
∫ T

T0
cv(θ )dθ, (45)

cp = ∂T h|p = dh/dT

⇒ h(T ) = h0 +
∫ T

T0
cp(θ )dθ (46)

cp − cv = ∂T h|p − ∂T u|v = R [by Eq.(32)], (47)
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Listing 6. Thermodynamics.Substances.Partial.IdealGas.

dφ
dT
=

dφ
du

du
dT
=

1
T
cv

⇒ φ(T ) =
∫ T

T0
cv(θ )

dθ
θ
. (48)

The Modelica implementation of the ideal gases behavior
has resulted in the class IdealGas (see Listing 6), defined in
the package Thermodynamics.Substances.Partial. We imple-
ment only equations (41) and (47), that are common to all
ideal gases and depend on the temperature.

2) PERFECT GASES
For perfect gases, c(T ) = c is constant, and this implies
cv = d(Tc)/dT = c is also constant. This feature allows to
obtain explicit expressions for the fundamental equation and
the intensive parameters. Indeed,

u(T ) = cvT [by Eq.(40)]⇒ T (u) = u/cv, (49)

φ(T ) =
∫ T

T0
cv
dθ
θ
= cv ln(T/T0) [by Eq.(48)],

φ(u) = φ(T (u)) = cv ln(u/u0), u0 = cvT0, (50)

s(u, v) = s0 + cv ln(u/u0)+ R ln(v/v0) [Eq.(39)] (51)

u(s, v) = u0e(s−s0)/cv (v/v0)−R/cv , (52)

T = u/cv
= T0e(s−s0)/cv (v/v0)−R/cv = ∂su, (53)

p = RT/v

= RT0/v0e(s−s0)/cv (v/v0)−(R/cv+1)

= p0e(s−s0)/cv (v/v0)−cp/cv = −∂vu, (54)

g = u− Ts+ pv

= cvT − Ts+ RT = (cv + R− s)T

= (cp − s)T0e(s−s0)/cv (v/v0)−R/cv . (55)

Remark 3: Another way to obtain (55) is to calculate g
from its definition g = ∂U/∂m. The internal energy of an
ideal gas is

U (S,V ,m) = mu (S/m,V/m)

= m

[
u0e

S/m−s0
cv

(
V/m
v0

)−R/cv]
,

therefore

g =
∂U
∂m
= u0

∂

∂m

[
me

S/m−s0
cv

(
V/m
v0

)−R/cv]

= u0

[
e
S/m−s0

cv

(
V/m
v0

)−R/cv

Listing 7. Thermodynamics.Substances.Partial.PerfectGas.

Listing 8. Thermodynamics.Substances.Partial.MonatomicPerfectGas.

+m

{
−S
cvm2 e

S/m−s0
cv

(
V/m
v0

)−R/cv
+ e

S/m−s0
cv

V
v0

(
−1
m2

)(
−R
cv

)(
V/m
v0

)−R/cv−1}]

= u0
1+ R− S/m

cv
e
S/m−s0

cv

(
V/m
v0

)−R/cv
.

If we take into account equations (49) (u = cvT , i.e., u0 =
cvT0) and (47) (cp − cv = R), then

g =
cvT0
cv

(cp − S/m)e
S/m−s0

cv

(
V/m
v0

)−R/cv
= T0(cp − s)e(s−s0)/cv (v/v0)−R/cv (see (55)).

Listing 7 shows the implementation of the class PerfectGas.
Here we implement equations (49) and (51), i.e., we consider
the fundamental equation in the entropy representation. Note
that PerfectGas inherits equations (41) and (47) from its par-
ent class IdealGas.

3) MONATOMIC PERFECT GASES
For monatomic perfect gases cv = 3

2R, cp =
5
2R, and we can

write

s(u, v) = s0 +
3
2
R ln(u/u0)+ R ln(v/v0), (56)

u(s, v) = u0e
2
3 (s−s0)/R(v/v0)−2/3, u0 = cvT0, (57)

T = T0e
2
3 (s−s0)/R(v/v0)−2/3, (58)

p = p0e
2
3 (s−s0)/R(v/v0)−5/3, (59)

g = (
5
2
R− s)T0e

2
3 (s−s0)(v/v0)−2/3. (60)

The implementation of the class MonatomicPerfectGas is
shown in Listing 8.

4) EMPIRICAL MODELS FOR NON-PERFECT SUBSTANCES
The perfect gas condition (constant cp) may be suitable for
modeling the behavior of polyatomic gases or liquids in a
first approximation. However, to obtainmore accurate results,
we must take into account that cp varies with temperature.
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Given the difficulty of theoretically deducing this depen-
dence from first principles, we have to employ a phenomeno-
logical approach inferred from experimental measurements.
It is usual to opt for a dimensionless polynomial representa-
tion cp(T )/R =

∑
i∈I⊂Z aiT

i because it simplifies calcula-
tions and facilitates symbolic manipulation. The number of
coefficients ai comes from a tradeoff between accuracy and
computational cost.

For example, the library of thermodynamic data used with
the CEA NASA Glenn computer program contains data for
over 2000 substances modeled with seven coefficients for cp
in different temperature ranges from 200 to 20000K [30]. The
expressions to calculate the specific heat capacity, specific
entropy, and specific enthalpy with these coefficients are as
follows:

cp(T )
R
= a1T−2 + a2T−1 + a3 + a4T

+ a5T 2
+ a6T 3

+ a7T 4, (61)
s(T )
R
= −

a1
2
T−2 − a2T−1 + a3 ln(T )+ a4T

+
a5
2
T 2
+
a6
3
T 3
+
a7
4
T 4
+ b2, (62)

h(T )
RT
= −a1T−2 + a2 ln(T )T−1 + a3 +

a4
2
T

+
a5
3
T 2
+
a6
4
T 3
+
a7
5
T 4
+
b1
T
, (63)

where b1 and b2 are integrations constants. Each substance
can have several sets of coefficients (a1...7, b1,2) grouped by
temperature intervals depending on the phase (condensed or
non-condensed) adopted in each interval.

To incorporate the NASA Glenn database into our Mod-
elica implementation, we have processed the text file con-
taining the above-mentioned coefficients [30, Appendix D]
and generated the Modelica package NASAGlennCoefficients.
This package contains the partial class Partial.Substance (see
Listing 9) derived from class Thermodynamics.Substances.
Partial.IdealGas and implements the equations (61)-(63)
taking into account the temperature intervals.

The rest of the package NASAGlennCoefficients is com-
posed of 2073 substance models. Each model is an extension
of the previous class Substance.
Example 4: As an example, we show the classes modeling

the thermodynamic behavior of CO2 (Listing 10) and air
(Listing 11). The latter is a mixture of substances, but in the
NASA Glenn library, it is also modeled as an ideal gas. The
class CO2 has three temperature intervals: [200. . . 1000K],
(1000. . . 6000K], and (6000. . . 20000K].

The class Air has two temperature intervals: [200. . . 1000K]
and (1000. . . 6000K].

As classes CO2 and Air extend the class Substance, they
inherit equations (61)-(63), where the thermodynamic behav-
ior of all substances modeled in the package NASAGlennCo-
efficients is defined. It is only necessary to initialize the
parameters involved in these equations to complete the defi-
nition of the derived classes.

Listing 9. NASAGlennCoefficients.Partial.Substance.

Listing 10. NASAGlennCoefficients.Substances.CO2.

F. IAPWS FORMULATION 1995 FOR THE
THERMODYNAMIC PROPERTIES OF ORDINARY WATER
Water is a substance widely studied by the scientific com-
munity, not only for its role in many natural processes, some
of them so important as the origin of life or the evolution
of Earth’s climate, but also for the large number and variety
of its industrial applications. For these reasons, the scientific
community has endeavored to find the fundamental equation
that models its thermodynamic behavior, and as a result of
this effort, the International Association for the Properties of
Water and Steam has published two empirical formulations
of it, known as IAPWS-95 [22], [53] and IAPWS-IF97 [21],
[52]. IAPWS-95 is the most accurate and is intended for
general scientific research. IAPWS-IF97 is a simplification
of the previous one and is intended for industrial applications.
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Listing 11. NASAGlennCoefficients.Substances.Air.

Although it is less accurate, it has the advantage of consuming
less computational resources when performing simulations.

The Modelica Standard Library implements the IAPWS-
IF97 model in the package Modelica.Media.Water.Wa-
terIF97. We have implemented the IAPWS-95 model in
the class Thermodynamics.Substances.WaterIAPWS95. This
model formulates the fundamental equation of water in terms
of the specific Helmholtz free energy f (T , v) = f (T , 1/%).
The model has two dimensionless terms: φo(δ, τ ) for the
ideal-gas part and φr(δ, τ ) for the residual part:

f (%,T )
RT

= φo(δ, τ )+ φr(δ, τ ),

δ = %/%c, τ = Tc/T ,

%c = 322 kg/m3, Tc = 647.096 K,

R = 0.461 518 05 kJ/(kg·K). (64)

The ideal-gas part of (64) is

φo = ln δ + no1 + n
o
2τ + n

o
3 ln τ +

∑
i∈4...8

noi ln
[
e−γ

o
i τ
]
, (65)

and we can see that it fulfills the condition of being an sep-
arate variables equation (see Section IV-E). The coefficients
no1...8 and γ

o
4...8 can be consulted in [22, Table 1].

The residual part of (64) is

φr =
∑
i∈1...7

niδdiτ ti +
∑

i∈8...51

niδdiτ tie−δ
ci

+

∑
i∈52...54

niδdiτ tie−αi(δ−εi)
2
−βi(τ−γi)2 ,

+

∑
i∈55...56

ni1biδ9,

1 = 22
+ Bi

[
(δ − 1)2

]ai
,

2 = (1− τ )+ Ai
[
(δ − 1)2

] 1
2βi ,

9 = e−Ci(δ−1)
2
−Di(τ−1)2 . (66)

The coefficients c8...51, d1...54, t1...54, n1...56, α52...54,
β52...56, γ52...54, ε52...54, a55...56, b55...56, B55...56, C55...56,
D55...56 and A55...56 are listed in [22, Table 2].

Since (64) is a fundamental equation, it contains all the
information about the thermodynamic behavior of water.
Therefore, all other thermodynamic properties and quanti-
ties can be reduced from f . In our implementation of the
IAPWS-95 model, we are also interested in calculating the
specific entropy s, pressure p, the isobaric heat capacity cp,
and the isochoric heat capacity cv:

s(δ, τ )
RT

= τ (φoτ + φ
r
τ )− φ

o
− φr, (67)

p(δ, τ )
%RT

= 1+ δφrδ, (68)

cp
R
= −τ 2(φoττ + φ

r
ττ )+

(1+ δφrδ − δτφ
r
δτ )

2

1+ 2δφrδ + δ
2φrδδ

, (69)

cv
R
= −τ 2(φoττ + φ

r
ττ ). (70)

TABLE 1. Partial derivatives φo
τ , φr

τ , and φr
δ

(adapted from [22, Table 5]).
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TABLE 2. Second order partial derivatives φo
ττ , φr

ττ , φr
δτ

, and φr
δδ

(adapted from [22, Table 5]).

Table 1 shows the partial derivatives φoτ , φ
r
τ , and φ

r
δ used in

(67)-(68). The second partial derivatives φoττ , φ
r
ττ , φ

r
δτ , and

φrδδ used in (69)-(70) are shown in Table 2.
Listing 12 is the implementation of the Modelica class

WaterIAPWS95. This implementation has been validated
with the computer-program verification test values given in
[22, Tables 6 and 7].

G. EMPIRICAL MODELS FOR GENERAL SUBSTANCES
We have already seen (Figure 1) that the port-Hamiltonian
model of a simple thermodynamic system requires to know
the covector field dU (see (4)). Although U and dU are
not directly within our reach, we can approximate them
numerically from the primary set of response functions
(Section II-B2). As these properties are measured and tabu-
lated as a function of temperature and pressure, it is more con-
venient to work with Gibbs potential G(T , p,m) or specific
Gibbs potential G/m = g(T , p) rather than internal energy
U (S,V ,m). Thus, we can write the following equations:

ds =
∂s
∂T

∣∣∣∣
p
dT +

∂s
∂p

∣∣∣∣
T
dp =

cp
T
dT − vαpdp, 3

dv =
∂v
∂T

∣∣∣∣
p
dT +

∂v
∂p

∣∣∣∣
T
dp = vαpdT − vκT dp,

dg =
∂g
∂T

∣∣∣∣
p
dT +

∂g
∂p

∣∣∣∣
T
dp = −sdT + vdp,

and in the CIT approach

ṡ =
cp
T
Ṫ − vαpṗ, (87)

v̇ = vαpṪ − vκT ṗ, (88)

ġ = −sṪ + vṗ. (89)

For practical considerations, it is useful to relate αp and κT
to the density % = m/V = 1/v because it is easier to tabulate
%(T , p) than αp or κT :

αp =
1
v
∂v
∂T

∣∣∣∣
p
= %

∂(1/%)
∂T

∣∣∣∣
p
= −

1
%

∂%

∂T

∣∣∣∣
p
, (90)

κT = −
1
v
∂v
∂p

∣∣∣∣
T
= −%

∂(1/%)
∂p

∣∣∣∣
T
=

1
%

∂%

∂p

∣∣∣∣
T
. (91)

3If the potentials satisfy the Maxwell relations, then ∂2U/∂S∂V =

∂2U/∂V ∂S and we can write ∂T/∂V = −∂p/∂S, i.e., ∂V/∂T = −∂S/∂p.
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Listing 12. Thermodynamics.Substances.WaterIAPWS95. Listing 12. (Continued.) Thermodynamics.Substances.WaterIAPWS95.
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Listing 12. (Continued.) Thermodynamics.Substances.WaterIAPWS95.

Therefore, if we can measure cp and % as a function of tem-
perature and pressure, we only need equations (87) and (89)
to model the thermodynamic behavior of a single-substance.
Note that (88) is redundant because v = 1/%.
Example 5: Syltherm 800 is a silicone fluid manufactured

by DowCorning Corporation usedmainly as HTF in facilities
like thermal solar power plants. The manufacturer provides
tables with the thermodynamic properties of the fluid in the
temperature range 233.15 K≤ T ≤ 673.15 K [15], where the
following polynomial approximations can be obtained for cp,
%, and ∂%/∂T [34]:

cp = 1.01787+ 1.70736× 10−3T kJ/(kg·K), (92)

% = 1.2691× 103 − 1.52115T + 1.79133× 10−3T 2

− 1.67145× 10−6T 3kg/m3, (93)

Listing 13. Thermodynamics.Substances.Sylterm800.

FIGURE 4. Implementation with MSL of a system consisting of two open
tanks at ambient conditions (20 ◦C, 1 atm) connected through a thermal
conductor G1, and heated with the electrical resistor R1.

∂%

∂T
= −1.52115+ 2× 1.79133−3T

− 3× 1.67145× 10−6T 2 kg/(m3
·K). (94)

The class Syltherm800 derived from SympleSubstance and
models the thermodynamic behavior of Syltherm 800 (see
Listing 13).

V. EXAMPLES
The examples in this section have been processed and sim-
ulated with Dymola running in a Linux virtual machine,
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FIGURE 5. Implementation with the library pHlib of the two-tank system previously modeled with MSL (see Figure 4).

which was installed on an iMac computer configured with
a 2.66 GHz Intel Core 2 Duo processor and 8 GB of memory.

A. COMPARING pHlib AND MSL FOR ACCURACY
Figure 4 shows the MSL implementation of a system consist-
ing of two open tanks at ambient conditions (20 ◦C, 1 atm)
connected through a thermal conductor G1 = 300W/K.
The first tank contains 1m3 of water modeled with the MSL
IAPWS-IF97 implementation for industrial use [21] and it
has thermal losses with its surroundings modeled with the
thermal conductor G2 = 50W/K. The second tank also
contains 1m3, in this case of Syltherm 800, modeled with
the MSL library from data supplied by the manufacturer [15]
and it has thermal losses with its surroundings modeled with
the thermal conductor G3 = 150W/K.
The water tank is heated for 60 hours with the heat gen-

erated by the electrical resistor R1 = 32� and then allowed
to cool for another 60 hours. For this purpose, we connect
a modulated voltage generator V1 = 400V to R1 and make
the assumptions: a) all the electrical power transformed into
heat is transferred to the water tank, b) we do not consider
the variations that R1 may have with temperature. We use
thermal conductors and ideal resistors to focus our study on
the modeling of the thermodynamic behavior of water and
Syltherm substances.

Figure 5 shows the implementation of the same system
with the library pHlib where the proposed port-Hamiltonian
representation makes it easier to visualize the connection net-
work for energy exchange between the different components
of the system.

In this figure we can see the following components (see
Figure 3 and [28, Figures 9 and 12] for a detailed explanation
of the symbols):

• The tank water modeled by:

– the storage element IAPWS95,
– the boundary conditions modeled by the constant

temperature source T1, the constant pressure source
p1 and the constant mass flow rate source mfr1,

– the three-port slicer slc1 that separates the
3-dimension thermodynamic port #4 into three
1-dimension ports (thermal port #1, pressure port
#2, and mass port #3),

– the thermal conductance GS2 thermal modeling
losses to the environment,

– the temperature sensor TS1, and
– the 0-junction J0_1.

• The Syltherm 800 tank, with a similar structure to
the water tank, and modeled by the storage element
Syltherm.

• The thermal conductance GS1 connecting both tanks.
• The modulated voltage generator V1 connected to the
electrical resistor RS1 for heating the water tank.

The thermodynamic behavior of water has been modeled
with the class WaterIAPWS95 (see Section IV-F) that imple-
ments the equations for general and scientific use [22], and
the behavior of Syltherm with the class Sytherm800 (see
Section IV-G). The thermal conductors GS1,2,3 and the elec-
trical resistor RS1 have been modeled as entropy generating
elements derived from the class pHlib.Dissipative.RS (see [28,
Remark 26] and Listing 14).
The implementation of RS satisfaying that the equation
〈e|f 〉 + 〈T2|Ṡ2〉 = 0, guarantees the conservation of energy
during the heat conduction process. Thus, the incoming
power P1 = 〈e|f 〉 is equal to the outgoing heat flow rate
U̇2 = 〈T2|Ṡ2〉. However, in the transformation process, there
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FIGURE 6. Evolution of water and Syltherm temperature during a
120-hour simulation for MSL (a) and pHlib (b) models, and evolution of
the relative error (c).

will be an entropy generation to be modeled in each particular
class derived from RS.
The heat flow rate between the ends of a thermal conductor

of conductance G at temperatures T1 and T2 is

U̇cond = G · (T1 − T2), (95)

and the equations for calculating the entropy flow rate Ṡcond
generated in the conduction process are [4, Chap.2]

Ṡcond = G
(T1 − T2)2

T1 · T2
≥ 0, (96){

Ṡ2 − Ṡ1 = Ṡcond if T1 > T2,
Ṡ1 − Ṡ2 = Ṡcond if T1 < T2.

(97)

These equations are implemented in the classes MGS and
GS (see Listing 15).

We consider that all the electrical energy consumed by
an ideal linear resistor of resistance R is transferred to the
thermal port, so the entropy flow rate in this port is

Ṡ2 =
R · i2

T
=

v2

R · T
≥ 0. (98)

FIGURE 7. Evolution of water and Syltherm volume during a 120-hour
simulation for MSL (a) and pHlib (b) models, and evolution of the relative
error (c).

In part a) of Figures 6–8, we can see the temperature,
volume, and density evolution of water and Syltherm during
the 120-hour simulation of the MSL model. In part b) we can
see the evolution of the same system modeled with pHlib.
We can see that both models show qualitatively similar

behavior. For a quantitative comparison, we have taken the
MSL model as a reference and calculated the relative errors
of the pHlib model with the expression

error%
(
XpHlib

)
=

∣∣XMSL − XpHlib
∣∣

|XMSL|
· 100,

X ∈ {T ,V , %} . (99)

In part c) of Figures 6–8, we can see the time evolution
of the relative error. For water, the errors are below 0.03%
in temperature and below 0.005% in volume and density. For
Syltherm, the maximum error is only slightly above 0.01% in
all three quantities.

B. COMPARING pHlib AND MSL FOR PERFORMANCE
AND SCALABILITY
Figure 9 shows a system consisting of N = 5 open water
tanks at ambient conditions (20 ◦C, 1 atm) connected through
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FIGURE 8. Evolution of water and Syltherm density during a 120-hour
simulation for MSL (a) and pHlib (b) models, and evolution of the relative
error (c).

Listing 14. pHlib.Dissipative.RS.

thermal conductors. Figure 10 shows the model of each
tank. The system parameters are the number N of tanks,
the mass of water stored in each tank, its initial volume,
the thermal conductance between tanks tankToTankG, and
the thermal conductance with the environment tankToAmbG.
The model used for water is IAPWS-95. Resistor R1 con-
nected to the modulated voltage generator V1 heats the

Listing 15. Thermodynamics.Dissipative.

FIGURE 9. System of N = 5 open water tanks at ambient conditions
(20 ◦C, 1 atm) connected through thermal conductors.

FIGURE 10. Model of each tank in Figure 9.

first tank for 60 hours, and then we let the tanks cool for
another 60 hours. This system has also been implemented
with MSL and the IAPWS-IF97 water model. Both models
generate 2× N state variables.
Table 3 shows the execution times when simulating each

model for some values ofN . The results show that simulations
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TABLE 3. Performance comparison pHlib (IAPWS-95)–MSL (IAPWS-IF97).

FIGURE 11. System of 5× 5 open water tanks at ambient conditions
(20 ◦C, 1 atm) connected through thermal conductors.

with the IAPWS-IF97 model are faster than simulations with
the IAPWS-95 model. These results are expected because the
industrial formulation simplifies the scientific formulation to
increase computational speed in a tradeoff for lower accuracy
(for more details on this subject see [21], [52]).

These results might seem to suggest that IAPWS-95 mod-
els are not very suitable for real-time applications. How-
ever, note that the 120-hour simulation for the 50 tanks
system took only 9.35 seconds. This system produces a
model with 100 state variables, which is common inmodeling
complex industrial systems. For this reason, we think that
improvements in hardware performance over the last two
decades make it possible to use the IAPWS-95 formulation
in real-time applications. The IAPWS-95 model also has the
advantage of formulating the fundamental equation of water
with a single continuous and differentiable expression, unlike
IAPWS-IF97, which is forced to split the formulation into

FIGURE 12. Evolution of water temperature in tanks 11, 13, 15, 33 and 55
during a 120-hour simulation (see Figure 11).

five regions, each with its corresponding fundamental equa-
tion. This partitioning complicates the construction of models
with region changes and it can even lead to convergence and
stability problems at the region boundaries due to chattering
phenomena (see [3] for details).

C. ARRAY OF 5× 5 TANKS
Figure 11 shows a system consisting of an array with 5
open water tanks at ambient conditions (20 ◦C, 1 atm) con-
nected through thermal conductors. Each tank has 250 kg
of water, 10W/k of thermal conductance with the envi-
ronment, and 250W/K of thermal conductance with each
of its neighbors. Resistors R1 and R2 heat the system
for 120 hours. V1 is a voltage generator that generates 400 V
during the first 59 hours, and V2 generates 400 V during the
last 59 hours. Therefore, during the two central hours, the
resistors do not supply heat to the system.

Figure 12 shows the temperature evolution of some tanks
that have been chosen to check the consistency of the model.
Given the symmetry of the system, some temperatures have to
converge to the same value as is the case for the temperatures
of tanks 11 and 55. Other temperatures have to maintain a
relationship of order, e.g., the temperature of tank 13 has to
be higher than that of tank 33 because it is closer to the heat
sources.

VI. CONCLUSION AND FUTURE WORKS
This work is a continuation of [28] where we presented a
general purpose Modelica library for modeling multiphysics
systemswith a port-Hamiltonian approach. In the conclusions
of that article, we proposed the extension of this library as
a future research line for ‘‘modeling of thermofluid systems
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and its assessment in the development of models for large-
scale solar thermal power plants’’.

In the current article, we have extended the library with
the proposed line of research and presented the added com-
ponents for modeling thermodynamic systems. This is a
first step in approaching the modeling of thermofluid sys-
tems. We will complete the modeling and the library in a
future paper studying the transport phenomena in flowing
substances.

The object-oriented design of the library (taking advan-
tage of the resources offered by the Modelica language) has
allowed us to build general substance models and to refine
them in a simple way to model specific substances such as
water or Syltherm 800.

The proposed symbols which accompany each component
allow the construction of complex system models that are
easy to read for any designer familiar with bond graphs.

When contrasting the simulation results of the two-tank
model with the results obtained for the same model imple-
mented with MSL, we have found that they coincide with rel-
ative errors lower than 0.005% in some variables, even though
both libraries are designed with different methodologies. This
result validates the choice of the port-Hamiltonian approach
and Classical Irreversible Thermodynamics to model the
behavior of thermodynamic systems. The suitability of the
port-Hamiltonian formulation as a multiphysics modeling
tool of great theoretical and practical value has been illus-
trated, according to the following aspects: the mathematical
rigor of the port-Hamiltonian formalism built on differential
geometry, the fundamental role played by energy in the defi-
nition of port-Hamiltonian systems, and the ease of modeling
complex systems by connecting simpler ones that exchange
energy with each other.

The performance measurements evaluated on the N tanks
example show that the system modeled with IAPWS-IF97
(MSL library) is faster than the one modeled with IAPWS-95
(pHLib library). The pHlib library, due to its more academic
port-Hamiltonian approach, will be mainly useful in scien-
tific research. However, the response times measured for
different values of N indicate that modern computers can
cope with real-time simulations of large systems in industrial
applications. This result encourages us to continue with the
research initiated in [28] to complete the library pHlibwith the
modeling of transport phenomena in thermofluid systems and
to study its application to the modeling of complex systems
such as solar thermal power plants.

APPENDIX
ACRONYMS AND NOMENCLATURE
A. ACRONYMS
CEA Chemical Equilibrium with Applications
HTF Heat Transfer Fluid
IAPWS International Association for the Properties

of Water and Steam
ISO Input State Output
MSL Modelica Standard Library

B. NOMENCLATURE
Quantity Name SI units
cp Isobaric heat capacity J/(kg·K)
cv Isochoric heat capacity J/(kg·K)
〈e|f 〉 Dual product 〈effort|flow〉 W
F Helmholtz free energy J
f Specific Helmholtz free energy J/kg
G Gibbs free energy J
g Specific Gibbs free energy J/kg
gj Chemical potential J/kg
H Enthalpy J
H Hamiltonian (Section III) J
h Specific enthalpy J/kg
m Mass kg
Mmol,j Molar mass kg/mol
nj Mole number mol
p Pressure Pa
R Specific gas constant J/(kg·K)
Rmol Molar gas constant J/(mol·K)
S Entropy J/K
s Specific entropy J/(kg·K)
T Temperature K
TX Tangent bundle of X —
T ∗X Cotangent bundle of X —
U Internal energy J
u Specific internal energy J/kg
V Volume m3

v = 1/% Specific volume m3/kg
wj = mj/m Mass fraction 1
X Smooth manifold X —
αp Isobaric expansibity K−1

αs Adiabatic expansibity K−1

γ = cp/cv Heat capacity ratio 1
κs Adiabatic compressibility Pa−1

κT Isothermal compressibility Pa−1

µj Chemical potential J/mol
% = 1/v Density kg/m3

REFERENCES
[1] R. Abraham and J. E. Marsden, Foundations of Mechanics, 2nd ed.

Reading, MA, USA: The Benjamin/Cummings, 1978.
[2] R. A. Alberty, ‘‘Use of Legendre transforms in chemical thermody-

namics (IUPAC technical report),’’ Pure Appl. Chem., vol. 73, no. 8,
pp. 1349–1380, Aug. 2001.

[3] J. Bonilla, L. J. Yebra, and S. Dormido, ‘‘A heuristic method to minimise
the chattering problem in dynamic mathematical two-phase flow models,’’
Math. Comput. Model., vol. 54, nos. 5–6, pp. 1549–1560, Sep. 2011.

[4] W. Borutzky, Bond Graph Methodology–Development and Analy-
sis of Multidisciplinary Dynamic System Models. London, U.K.:
Springer-Verlag, 2010.

[5] W. Borutzky, Ed., Bond Graph Modelling of Engineering Systems. Theory,
Applications and Software Support. NewYork, NY, USA: Springer-Verlag,
2011.

[6] H. B. Callen, Thermodynamics. Hoboken, NJ, USA: Wiley, 1960.
[7] H. B. Callen, Thermodynamics Introduction to Thermostatistics, 2nd ed.

Hoboken, NJ, USA: Wiley, 1985.
[8] F. E. Cellier, Continuous System Modeling. New York, NY, USA:

Springer-Verlag, 1991.
[9] F. E. Cellier and J. Greifeneder, ‘‘ThermoBondLib—A new modelica

library for modeling convective flows,’’ in Proc. 6th Int. Modelica Conf.
Bielefeld, Germany: Univ. of Applied Sciences, 2008, pp. 163–172.

VOLUME 9, 2021 131517



F. M. Márquez et al.: Port-Hamiltonian Modeling of Thermofluid Systems and Object-Oriented Implementation

[10] F. E. Cellier and A. Nebot, ‘‘The Modelica bond braph library,’’ in Proc.
4th Int. Modelica Conf., G. Schmitz, Ed. Hamburg, Germany: Hamburg
Univ. of Technology, 2005, pp. 57–65.

[11] T. J. Courant, ‘‘Dirac manifolds,’’ Trans. Amer. Math. Soc., vol. 319, no. 2,
pp. 631–661, 1990.

[12] S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics.
Amsterdam, The Netherlands: North-Holland, 1962.

[13] A. de la Calle, F. E. Cellier, L. J. Yebra, and S. Dormido, ‘‘Improvements in
BondLib, the modelica bond graph library,’’ in Proc. 8th Congr. Modeling
Simulation (EUROSIM), Sep. 2013, pp. 282–287.

[14] A. Donaire and S. Junco, ‘‘Derivation of input-state-output Port-
Hamiltonian systems from bond graphs,’’ Simul. Model. Pract. Theory,
vol. 17, no. 1, pp. 137–151, Jan. 2009.

[15] SYLTHERM 800 Heat Transfer Fluid, Dow Chemical Company, Lansing,
MI, USA, 1997.

[16] V. Duindam, A. Macchelli, S. Stramigioli, and H. Bruyninckx, Eds.,Mod-
eling and Control of Complex Physical Systems. The Port Hamiltonian
Approach. Berlin, Germany: Springer, 2009.

[17] H. Elmqvist, H. Tummescheit, and M. Otter, ‘‘Object-oriented modeling
of thermo-fluid systems,’’ in Proc. 3rd Int. Modelica Conf. Stockholm,
Sweden: Linköping Univ., 2003, pp. 269–286.

[18] P. Fritzson, Principles of Object-Oriented Modeling and Simulation With
Modelica 3.3: A Cyber-Physical Approach, 2nd ed. Hoboken, NJ, USA:
Wiley, 2015.

[19] P. Fritzson, A. Pop, K. Abdelhak, A. Asghar, B. Bachmann, W. Braun,
D. Bouskela, R. Braun, L. Buffoni, F. Casella, and R. Castro, ‘‘The Open-
Modelica integrated environment for modeling, simulation, and model-
based development,’’Model., Identificat. Control A, Norwegian Res. Bull.,
vol. 41, no. 4, pp. 241–295, 2020.

[20] G. Golo, A. van der Schaft, P. C. Breedveld, and B. C. Maschke, ‘‘Hamil-
tonian formulation of bond graphs,’’ in Nonlinear and Hybrid Systems in
Automotive Control, R. Johansson and A. Rantzer, Eds. London, U.K.:
Springer-Verlag, 2003, ch. 16, pp. 351–372.

[21] IAPWS, ‘‘Revised release on the IAPWS industrial formulation 1997 for
the thermodynamic properties of water and steam,’’ Int. Assoc. Properties
Water Steam, Lucerne, Switzerland, Tech. Rep. IAPWS R7-97 (2012),
2007.

[22] IAPWS, ‘‘Revised release on the IAPWS formulation 1995 for the ther-
modynamic properties of ordinary water substance for general and scien-
tific use,’’ Int. Assoc. Properties Water Steam, Prague, Czech Republic,
Tech. Rep. IAPWS R6-95, 2018.

[23] D. Jou, J. Casas-Vázquez, and G. Lebon, Extended Irreversible Thermody-
namics, Dordrecht, The Netherlands: Springer, 2010.

[24] D. Karnopp, D. Margolis, and R. Rosenberg, System Dynamics: Modeling,
Simulation, and Control of Mechatronic Systems, 5th ed. Hoboken, NJ,
USA: Wiley, 2012.

[25] A. N. Kaufman, ‘‘Dissipative Hamiltonian systems: A unifying principle,’’
Phys. Lett. A, vol. 100, no. 8, pp. 419–422, Feb. 1984.

[26] Y. Koga, Solution Thermodynamics and its Application to Aqueous Solu-
tions. A Differential Approach. Amsterdam, The Netherlands: Elsevier,
2007.

[27] L. D. Landau and E. M. Lifshitz, Statistical Physics. Part 1 of Course of
Theoretical Physics, 3rd ed., vol. 5. Oxford, U.K.: Butterworth, 1980.

[28] F. M. Marquez, P. J. Zufiria, and L. J. Yebra, ‘‘Port-Hamiltonian model-
ing of multiphysics systems and object-oriented implementation with the
modelica language,’’ IEEE Access, vol. 8, pp. 105980–105996, 2020.

[29] M. Materassi, ‘‘Entropy as a metric generator of dissipation in complete
metriplectic systems,’’ Entropy, vol. 18, no. 8, p. 304, Aug. 2016.

[30] B. J. McBride, M. J. Zehe, and S. Gordon, ‘‘NASA Glenn coefficients for
calculating thermodynamic properties of individual species,’’ Nat. Aero-
naut. Space Admin., Glenn Res. Center, Cleveland, OH, USA, Tech. Rep.
NASA/TP-2002-211556, 2002.

[31] P. J. Mohr and B. N. Taylor, ‘‘CODATA recommended values of the
fundamental physical constants: 1998,’’ Rev. Modern Phys., vol. 72, no. 2,
pp. 351–495, Apr. 2000.

[32] P. J.Morrison, ‘‘Bracket formulation for irreversible classical fields,’’Phys.
Lett. A, vol. 100, no. 8, pp. 423–427, Feb. 1984.

[33] P. J. Morrison, ‘‘A paradigm for joined Hamiltonian and dissipative sys-
tems,’’ Phys. D, Nonlinear Phenomena, vol. 18, nos. 1–3, pp. 410–419,
Jan. 1986.

[34] A.Mwesigye, T. Bello-Ochende, and J. P.Meyer, ‘‘Numerical investigation
of entropy generation in a parabolic trough receiver at different concentra-
tion ratios,’’ Energy, vol. 53, pp. 114–127, May 2013.

[35] H. Olsson, Modelica—A Unified Object-Oriented Language for Sys-
tems Modeling. Language Specification. Version 3.5. Linköping, Swe-
den: Modelica Association, 2021. [Online]. Available: https://www.
modelica.org/documents/MLS.pdf

[36] L. Onsager, ‘‘Reciprocal relations in irreversible processes. I,’’ Phys. Rev.,
vol. 37, no. 4, pp. 405–426, 1931.

[37] L. Onsager, ‘‘Reciprocal relations in irreversible processes. II,’’ Phys. Rev.,
vol. 38, no. 12, pp. 2265–2279, Dec. 1931.

[38] G. Oster, A. Perelson, and A. Katchalsky, ‘‘Network thermodynamics,’’
Nature, vol. 234, no. 5329, pp. 393–399, Dec. 1971.

[39] H. C. Öttinger, Beyond Equilibrium Thermodynamics. Hoboken, NJ, USA:
Wiley, 2005.

[40] H. M. Paynter, Analysis and Design of Engineering Systems. Cambridge,
MA, USA: MIT Press, 1961.

[41] A. S. Perelson, ‘‘Network thermodynamics. An overwiew,’’ Biophysical J.,
vol. 15, pp. 667–685, Jul. 1975.

[42] M. Pfeifer, S. Caspart, S. Hampel, C. Müller, S. Krebs, and S. Hohmann,
‘‘Explicit Port-Hamiltonian formulation of multi-bond graphs for
an automated model generation,’’ Automatica, vol. 120, Oct. 2020,
Art. no. 109121.

[43] I. Prigogine, Introduction to Thermodynamics of Irreversible Processes,
3rd ed. New York, NY, USA: InterScience, 1967.

[44] R. Rashad, F. Califano, A. J. van der Schaft, and S. Stramigioli, ‘‘Twenty
years of distributed Port-Hamiltonian systems: A literature review,’’ IMA
J. Math. Control Inf., vol. 37, no. 4, pp. 1400–1422, Dec. 2020.

[45] J. Thoma and B. O. Bouamama, Modelling and Simulation in Thermal
and Chemical Engineering. A Bond Graph Approach. Berlin, Germany:
Springer-Verlag, 2000.

[46] A. Thompson and B. N. Taylor, ‘‘Guide for the use of the international
system of units (SI),’’ Nat. Inst. Standards Technol., Gaithersburg, MD,
USA, NIST Special Publication 811, 2008.

[47] C. Truesdell, Rational Thermodynamics, 2nd ed. New York, NY, USA:
Springer–Verlag, 1984.

[48] N. W. Tschoegl, Fundamentals Equilibrium Steady-State Thermodynam-
ics. Amsterdam, The Netherlands: Elsevier, 2000.

[49] A. van der Schaft, L2-Gain and Passivity Techniques in Nonlinear Control.
London, U.K.: Springer-Verlag, 2000.

[50] A. van der Schaft, L2-Gain and Passivity Techniques in Nonlinear Control,
3rd ed., vol. 11. Cham, Switzerland: Springer-Verlag, 2017.

[51] A. van der Schaft and B. Maschke, ‘‘Geometry of thermodynamic pro-
cesses,’’ Entropy, vol. 20, no. 12, p. 925, Dec. 2018.

[52] W. Wagner, J. R. Cooper, A. Dittmann, J. Kijima, H.-J. Kretzschmar,
A. Kruse, R. Mareš, K. Oguchi, H. Sato, I. Stöcker, O. Šifner, Y. Takaishi,
I. Tanishita, J. Trübenbach, and T. Willkommen, ‘‘The IAPWS industrial
formulation 1997 for the thermodynamic properties of water and steam,’’
J. Eng. Gas Turbines Power, vol. 122, no. 1, pp. 150–184, Jan. 2000.

[53] W. Wagner and A. Pruß, ‘‘The IAPWS formulation 1995 for the thermo-
dynamic properties of ordinary water substance for general and scientific
use,’’ J. Phys. Chem. Ref. Data, vol. 31, no. 2, pp. 387–535, 2002.

[54] D. Zimmer and F. E. Cellier, ‘‘The Modelica multi-bond graph library,’’ in
Proc. 5th Int. Modelica Conf., Vienna, Austria, 2006, pp. 559–568.

FRANCISCO M. MÁRQUEZ received the B.S.
degree in electronics engineering from the Uni-
versidad de Alcalá, Alcalá de Henares, Spain,
in 1990, and the M.S. degree in telecommunica-
tion engineering and the M.S. degree in statistical
and computational information processing from
the Universidad Politécnica de Madrid, Madrid,
Spain, in 2010 and 2011, respectively.

From 1989 to 1991, he was the Head of the
laboratory at INDRA, Spain. Since 1991, he has

been a Lecturer with the Departamento de Automática, UAH.

131518 VOLUME 9, 2021



F. M. Márquez et al.: Port-Hamiltonian Modeling of Thermofluid Systems and Object-Oriented Implementation

PEDRO J. ZUFIRIA received the Ingeniero de
Telecomunicación degree from the Universidad
Politécnica de Madrid (UPM), in 1986, the M.Sc.
degree in ME, the M.Sc. degree in EE, the Ph.D.
degree from the University of Southern California
(USC), in 1989, the Doctor Ingeniero de Teleco-
municación degree from MEC, in 1991, and the
Licenciado en Ciencias Matemáticas degree from
the Universidad Complutense de Madrid, in 1997.

From 1987 to 1990, he was a Teaching and
Research Assistant with USC, in collaboration with different projects of the
National Science Foundation and TRW/NASA. Since 1991, he has been
holding a teaching position (currently as a Full Professor) at the Escuela
Técnica Superior de Ingenieros de Telecomunicación (ETSIT), UPM, where
he was the Chairman of the Departamento de Matemática Aplicada a las
Tecnologías de la Información y las Comunicaciones, from 1999 to 2004.
In the ETSIT, he was responsible for the Office of International Relations
with other academic institutions, from 1993 to 1996. He was the Vice-
Dean of the research and graduate studies, in 1999, and the Co-Director
of the Orange Chair, from 2009 to 2019. Since 2019, he has been the Co-
Director of Cabify Chair. He also has been the Founder and a Scientist
responsible for the Neural Networks Group and currently the Dynamical
Systems, Learning, and Control Research Group, where he has been involved
in research projects of the European Union as well as several Spanish official
and private institutions. He has authored over 100 international publications
in his research field. His research interests include analysis, control, and fault
diagnosis of dynamical systems, and the applications of statistics, machine
learning paradigms, and complex network theory on system modeling and
data processing.

LUIS J. YEBRA was born in Almería, Spain,
in 1971. He received the degree in telecommuni-
cations technical engineering from the Universi-
dad de Alcalá, Alcalá de Henares, Spain, in June
1993, the degree in physics from the Universi-
dad Nacional de Educación a Distancia (UNED),
Madrid, Spain, in June 1997, and the Ph.D. degree
in automatic control and industrial computing
from the Department of Automatic Control and
Computer Science, UNED, in May 2006.

From 1999 to 2007, he was a Predoctoral Fellow with the National
Research Center, CIEMAT, and a Researcher with the Department of Energy,
CIEMAT in Plataforma Solar de Almería (PSA-CIEMAT). Since 2007,
he has been a Tenured Scientist in dynamic modeling and automatic con-
trol with PSA-CIEMAT, where he has been mainly focused on concen-
trated solar thermal plants (CST). He has coauthored four books, more
than 30 scientific articles published in international journals (JCR), and more
than 70 international conference proceeding papers. He has supervised four
Ph.D. degree students. He has participated in more than 30 publicly funded
research projects, two technology transfer agreements, and the creation of a
spin-off company.

Dr. Yebra has received three prizes to the best academic curriculum for his
Physics degree.

VOLUME 9, 2021 131519


