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Estimation of pump-out and positive radial electric field created by electron
cyclotron resonance heating in magnetic confinement devices

F. Castejón, S. Eguilior, I. Calvo, D. López-Bruna, and J. M. García-Regaña
Laboratorio Nacional de Fusión, Asociación EURATOM-CIEMAT, 28040 Madrid, Spain

�Received 7 September 2007; accepted 12 December 2007; published online 29 January 2008�

A fast approximate technique for calculating the outward electron flux induced by electron cyclotron
resonance heating in magnetic confinement devices with ripple is presented. A model based on
Langevin equations that allows one to compute the microscopic flux into the loss cone in momentum
space is used. The outward macroscopic electron flux is also obtained for given plasma profiles. This
extra flux causes the onset of a positive ambipolar electric field whose time evolution is
demonstrated to depend strongly on the poloidal damping for electrons. © 2008 American Institute
of Physics. �DOI: 10.1063/1.2831063�

I. INTRODUCTION AND MOTIVATION

Previous work shows the existence of an outward par-
ticle flux when electron cyclotron resonance heating �ECRH�
is applied to plasmas confined in the TJ-II stellarator �see,
e.g., Ref. 1�. The flux was detected in those experiments by
soft x rays and radiation measurements that presented the
particularity of being toroidally asymmetric. Besides the di-
rect radiation measurements, the ECRH-induced flux also
manifests itself through enhanced hollowness in the density
profiles, usually accompanied by more peaked electron
temperatures.2 This extra flux �often called pump-out� can be
explained by an increase of the number of particles entering
the loss cone in momentum space due to the enhancement of
their perpendicular velocity component. When this happens,
those particles are lost in a time scale much shorter than
typical confinement times, hence increasing transiently the
outward electron flux. Similar profiles have been observed in
other stellarators �see Refs. 3 and 4� and tokamaks �see, e.g.,
Refs. 5 and 6�, although the explanation does not need to be
the same for both types of device. The enhanced electron
flux creates an extra positive electric field �since ions are not
directly affected by ECRH� and the ambipolarity condition is
restored. The time scale for the creation of such electric field
is correspondingly very short, and the collisional electron
transport is reduced giving rise to a peaked electron tempera-
ture profile. This peaking cannot be explained only by the
decrease in density but it is due to a real improvement of
heat confinement. Such a confinement regime is called core
electron root confinement in the frame of the Stellarator Pro-
file Data Base collaboration.7 A positive electric field may be
created by any mechanism that enhances the electron radial
flux, thus transiently unbalancing the ambipolarity condition,
�e=Z�i, as it can happen with the appearance of a low order
rational surface inside the plasma.8

The direct calculation of this flux implies solving the
five-dimensional �5D� kinetic equation that takes into ac-
count collisions and resonant plasma-wave interaction as
well as the spatial inhomogeneities. A different approach us-
ing adjoint techniques is adopted in Ref. 9. In the present
work, we develop an alternative approximate method based
on Langevin equations. The evolution of the electric field is

also estimated, showing that the main observable time scale
is given in terms of the electron poloidal damping in typical
conditions of ECRH plasmas.

Our procedure involves the calculation of the electron
flux in momentum space through the loss cone. This ap-
proach, when performed in a linear regime, is fast enough to
be inserted in a transport code thus allowing to estimate the
contribution of the pump-out to transport in the device.
Another approach, which includes an approximated geom-
etry and diffusion coefficient, has been recently developed in
Ref. 10.

We define the loss cone as the region in momentum
space where all particles pushed away from thermal equilib-
rium are lost quickly. In this work, such region is considered
to be exactly a cone in the two-dimensional �2D� momentum
space, although in complex devices such as stellarators, the
loss cone is no longer a cone, but consists of several regions
with different typical lifetimes. In addition, the electric field
created by the pump-out will modify the particle orbits, and
hence the loss cone. This effect will not be taken into ac-
count herein.

The remainder of this paper is organized as follows. Sec-
tion II is devoted to summarize a previous work where
Langevin equations for quasilinear wave-particle interaction
are presented. Section III shows an approximate way to work
out the flux driven by ECRH. The dynamics of the electric
field created by this extra flux is presented in Sec. IV. Finally,
conclusions come in Sec. V.

II. THE LANGEVIN EQUATIONS FOR QUASILINEAR
WAVE-PARTICLE INTERACTION

The enhanced electron flux in space is due to the prefer-
ential pumping of particles perpendicularly to the magnetic
field in the heating zone. Actually, ECRH can be understood
as particle diffusion in momentum space along the vector

d = Yse� + N�u�e� , �1�

where � and � stand, respectively, for the parallel and per-
pendicular directions to the static magnetic field, u=p /mc,
Ys=s�c /�, �c=eB /m is the cyclotron frequency, s is a non-
negative integer number denoting the harmonic order, � is
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the wave frequency, and m is the electron mass. In the fol-
lowing, we take s=2. For typical values of the heating pa-
rameters �Ys�1, �N���1, and u��10−2�, d is approximately
proportional to e�, which implies an increase in the rate of
particles entering the loss cone and consequently an extra
outward flux. Since the ion flux is not affected by ECRH, the
ambipolarity condition requires the onset of a radial positive
electric field able to stop the extra electron flux. This electric
field is responsible for the reduction of collisional heat trans-
port, giving rise to peaked temperature profiles. Whenever
there is a change in ECRH deposition, a transient radial cur-
rent must arise until the new equilibrium without unbalanced
electron outflow is reached. As discussed in Sec. I, comput-
ing the extra outward flux is difficult since it implies solving
a 5D kinetic equation �2D in momentum and three dimen-
sions �3D� in position space�.9 Herein, we adopt a different
approach based on Langevin equations for the microscopic
dynamics of particles in phase space.11 The results are
equivalent to those obtained by using Fokker–Planck equa-
tions. The trajectory in momentum space, i.e., u�t�, of a par-
ticle embedded in a wave field is the solution of the equa-
tions

�du

dt
	

ECRH
= Dcy

1/2
��Dcy
1/2 +

1

�d�
�	 · d�d . �2�

The first term on the right-hand side of Eq. �2� is the
deterministic part of the Langevin equation and reads

F�u,r� = 1
2 �d · �Dcy�u,r��d , �3�

where �i=� /�ui, i= � ,�, and Dcy�u ,r� is defined below. The
stochastic part corresponds to the second term on the right-
hand side of Eq. �2�, for which we assume a statistically
stationary Markovian process. Therefore, � is a two-
dimensional random vector whose components take values in
the interval �− 1

2 , 1
2
� and satisfy

��i�t� = 0, ��i�t�� j�t + �� = �ij���� . �4�

Here, �ij is the Kronecker delta, ���� is the Dirac delta dis-
tribution and, as usual, the brackets indicate an average over
all possible stochastic realizations. The 2�2 matrix D�u ,r�
is defined as

D�u,r�ij = �2Dcy�u,r�
1

�d�
didj . �5�

Finally, the coefficient Dcy�u ,r� comes from the quasi-
linear diffusion in momentum space. It is proportional to the
spectral density ��N�� and to the wave power density. Ex-
plicitly,

Dcy�u,r� =
w�r�
�u��	

���
� · e�2��N�R� , �6�

where N�R= �	−s�c /�� /u� is the resonant refractive index,
	= �1+u2�1/2 is the Lorentz relativistic factor, e is a unit vec-
tor proportional to the electric field of the wave, and

��
� = �sJs�
�/
,− iJ��
�, Js�
�u�/u�� , �7�

with Js the Bessel functions of the first kind and 

=N�u��c /�; i.e., the product of the Larmor radius times the

perpendicular wave vector. The radial dependence in the
above formulae comes through w�r�, which can be written in
terms of the available power P�r� and the average micro-
wave beam radius b,

w�r� =
P�r�e2

m2c3��0b2 . �8�

The spectral density will be considered Gaussian in the
reminder of the text, namely,

��N�� =
1

��
e−1/��N� − N0��2

, �9�

where N0� is the main refractive index of the microwave
beam and we take a typical beam width ��=0.2. The wave
frequency � is chosen to resonate with the electron cyclotron
motion in the second harmonic �s=2� in the neighborhood of
the magnetic axis r=0.

The following derivatives with respect to u are needed in
order to compute the right-hand side of Eq. �2�:12

�Dcy

�ui
=

w

�u��	
�− ��N�R�
�e · ��2��i�

u�

+
ui

	2	 −
��e · ��2

�ui
�

+ ���N�R��e · ��2
1

u�
�− N�R�i� +

ui

	
	� , �10�

��e · ��2

�u�

=
2Jsez

u�

�ex
sJs



+ ez

u�

u�

Js	 , �11�

��e · ��2

�u�

= 2�ex
sJs



+ ez

u�

u�

Js	

�exez
u�

u�

Js�

��−
sJs


2 +
sJs�



	 − ez

u�

u�
2 Js� + 2ey

2Js�Js�
�. �12�

We can include the effect of collisions in Eq. �2� in a
simple approximate way,

du

dt
= �du

dt
	

ECRH
+ �du

dt
	

coll
, �13�

by using the slowing down equations �see, e.g., Ref. 13�,

�du

dt
	

coll
= − �u . �14�

These equations, as written in Ref. 13, involve the
modulus of the momentum and variations of the parallel mo-
mentum. The perpendicular collision frequency can be ob-
tained by changing variables so that the slowing down par-
allel and perpendicular collision frequencies are given by

� = ��� 0

0 ��

	

=��u
1 − � u�

u�

	2�1 + Z

	
	� 0

0 �u
1 + �1 + Z

	
	� � .

�15�
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The slowing down momentum frequency is �in SI units�

�u =
�p�

2nc3

	2

2u3 . �16�

Here, �p=�ne2 /m�0 is the plasma frequency and � is the
Coulomb logarithm.

In order to include slowing down effects, we have cho-
sen a simple collision operator. In the present case, we are
ignoring the pitch angle scattering even though this may in-
deed affect the distribution function and hence the flux: The
pitch angle scattering tends to flatten the distribution func-
tion, thus slightly reducing the flux into the loss cone.

The electron trajectories in momentum space may be
computed by numerical integration of Eq. �13�. Since the
deterministic term is much larger than the stochastic one ex-
cept in the vicinity of the resonance, we will neglect the
stochastic part in this work. On the other hand, we will keep
track of the effect of collisions, although we expect it to be
small as far as microwave absorption happens at values of
the electron velocity that are about twice the thermal
velocity.

We choose a tokamak with ripple to perform the calcu-
lations instead of a �more complex� 3D stellarator because
we are interested in studying the influence of heating on
transport and not in the confinement properties of a given
magnetic configuration. The plasma is a circular torus with
major radius R0=1 m and minor radius a=0.2 m. The mag-
netic field on-axis is B0=1 T, and we take a ripple that de-
pends on the radial coordinate: �=0.08+0.27�r /a�2. The val-
ues of the latter are taken larger than typical values of a
tokamak �actually similar to those of the TJ-II stellarator�, so
that its effect can be noticed easily. We consider a plasma
equilibrium with the following profiles:

B��r,�� =
B0

1 +
r

R0
cos �

, �17�

n�r� = n0�1 − �r/a�4�2 + 10−3n0, �18�

T�r� =
T0

2
�exp�− �r/0.2a�2� + exp�− �r/0.4a�2�� , �19�

where B0=1 T, n0=1019 m−3, and T0=1 keV. The absorbed
power is computed by using a weakly relativistic dispersion
relation.14 The absorption coefficient, which is twice the
imaginary part of the perpendicular component of the wave
vector, is plotted in Fig. 1 for a Maxwellian distribution
function. The transmitted power along the minor radius,
which is proportional to the squared electric field and thus to
the flux in momentum space, is plotted in Fig. 2. In these two
figures, r�0 �r�0� corresponds to the low �high� field side.
They show a strong spatial dependence of P�r�, especially at
low N�, in the absorption area.

III. TRANSPORT ESTIMATES: LINEAR
APPROXIMATION

The outward particle flux in space due to the pushing of
electrons into the loss cone is related to the flux in momen-
tum space through the loss cone surface. This pump-out flux
is given �under certain approximations, see below� by

− � · �ECRH = � �n

�t
	

ECRH
= �

�

f�u�
du

dt
· dS , �20�

FIG. 1. �Color online� Absorption coefficient vs plasma radius for the pro-
files �Eqs. �17�–�19�� and three values of the parallel refraction index.

FIG. 2. �Color online� Transmitted power vs radius for the cases plotted in
Fig. 1. The microwaves are launched from the low field side �positive r�.
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where � is the boundary of the loss cone in momentum space
and f�u� is the electron distribution function. We are assum-
ing that all the electrons that enter the loss cone are lost
immediately. In this expression it is necessary to know the
distribution function and the exact structure of the loss cone
in momentum space to estimate the flux of escaping par-
ticles. The knowledge of these two elements is equivalent to
solving the problem, but we can introduce some approxima-
tions in order to do a quick calculation that allows us to
extract the main properties of the ECRH-induced particle
flux. Firstly, we assume that f�u� is Maxwellian; i.e., the
deformation of the distribution function due to transport and
heating is small �we perform a linearization of the problem�.
Secondly, we consider that all particles entering the loss cone
irreversibly escape from a magnetic surface that comprises
the ECRH deposition zone. Finally, we assume that � is
actually a cone characterized by a pitch angle � of the elec-
tron trajectories. We also take the loss cone to be constant in
time although, strictly, the distribution function will be modi-
fied by the interaction of the electrons with the waves and by
the escaping particles; consequently the structure of the loss
cone should be modified by the electric field. Under the
above approximations, the flux can be written as

− � · �ECRH = � �n

�t
	

ECRH

= 2�
−�

+�

u�� S

�S�
·

d

�d�	�du

dt
� f�u�du�

= 2�
0

+�

u��− cos �
du�

dt
+ sin �

du�

dt
	 f�u�du�

+ 2�
−�

0

u��cos �
du�

dt
+ sin �

du�

dt
	 f�u�du� .

�21�

Figures 3 and 4 show the structure of the flux through
the loss cone in momentum space for N� =0.1 and Ys=1.01,
together with the loss cone and the resonance curve. Figure 3
gives the perpendicular component of the flux versus the
parallel momentum, whereas the parallel component of the
flux is shown in Fig. 4. For these values of N� and of the
magnetic field, the flux is well localized in momentum space.
All the calculations are performed for X-mode at second har-
monic.

Figure 5 shows the flux structure in momentum space for
N� =0.1, at several radial positions and using the profiles in-
troduced in the previous section. The pump-out in the center
of the device is much larger due to the higher absorbed
power density. The bulk of the pumped particles can have up
to twice the thermal speed, which corresponds roughly to
�u�=0.1.

Given the temperature, the magnetic field, the power
deposition profile, and making use of Eq. �21�, the macro-
scopic perpendicular flux can be estimated, making the usual
assumption that the plasma is homogeneous at every mag-
netic surface:

�r
ECRH�r� =

1

r
�

0

r

� · �ECRHr�dr�. �22�

Figure 6 shows the divergence of the flux that gives the
local contribution to the integrated flux, which is also plot-
ted. The positive sign means outwardly directed flux. The
most important contribution comes from the plasma core,
where the absorbed power is maximum. The application of
the ambipolarity condition implies that a radial positive
electric field must be created to keep the plasma quasineu-
trality, as has been observed in many experiments �see, e.g.,
Ref. 15�.

A procedure similar to the one presented in Eq. �21� can
be used to estimate the Okhawa effect on electron cyclotron

FIG. 3. �Color online� Structure of the perpendicular component of the flux
in momentum space �solid line� for N� =0.1 and Ys=1.01. The loss cone and
the resonance condition �dotted lines� are also plotted.

FIG. 4. �Color online� The same as Fig. 3 for the parallel component of the
flux.
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current drive. The asymmetric particle trapping rate in the
positive and negative directions can cause a net plasma cur-
rent. This asymmetry can be easily estimated using such an
equation.

The energy spectrum of the particles that move out-
wards,

��K� =
1

a
�

0

a

2u�� S

�S�
·

d

�d�	�du

dt
� f�u�r�dr�, �23�

is plotted in Fig. 7, where we see that it presents a maximum
that moves to larger energy values for increasing N�. The

particles that are expelled reach energies as large as 6 keV in
this model, which means that superthermal electrons will es-
cape to outer plasma positions and will be able to absorb
power at those positions and to modify the measured x-ray
spectrum. The faster particles will give an important contri-
bution to the pump-out and will be the cause of the fast
response, since the escape velocity is given by the combined
curvature and �B drifts,

v�B =
m�v�

2 + 2v�
2 �

2e

B � �B

B3 . �24�

It is worth discussing the appropriateness of neglecting
the effect of the radial electric field through the E�B drift
�that in general improves confinement by modifying the loss
cone structure�. For the plasma parameters considered
herein, i.e., E�103 V /m, in agreement with Ref. 16, and the
E�B drift is smaller than v�B for particles with K�1 keV,
which indeed gives the most important contribution to the
flux. Particles with K�1 suffer the effect of collisions, with
the consequent modification of the loss cone, which is suit-
ably accounted for in our model. Our approximations affect
particles with K in a narrow region centered at the value of
the electrostatic potential �about 1 keV in our case�, which
collide at a moderate rate. Therefore, we are overestimating
the flux slightly.

For the present plasma conditions, all the power absorp-
tion is localized in the vicinity of the resonance and little
absorption happens at upshifted values of the magnetic field.
The resonance condition implies that the energy of the par-
ticles �mc2	� is close to the thermal energy. In fact, the reso-
nant energy in the quasiperpendicular propagation regime is
given by 	=B /B0=R /R0. Therefore, if the absorption were
small enough for making some power available at higher
values of B, the resonance condition would allow higher en-
ergy particles.

FIG. 5. �Color online� Structure of the flux in parallel momentum space, for
N� =0.1, as given by Eq. �21�, for the following radial positions: �r /a�
=0,0.01,0.02,0.03. The value at r=0 has been divided by 100 in order that
the structure of the flux can be properly seen.

FIG. 6. �Color online� Divergence of the electron flux �Eq. �21�� vs radius
�thick solid line�. The flux �Eq. �22�� is also plotted �thin continuous line�
together with the symmetrized flux �thin dashed line�.

FIG. 7. �Color online� Particle flux of escaping particles as a function of
energy.
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Figure 8 shows the maximum of the divergence of the
flux and the flux itself as functions of N�. The maximum of
the divergence is a decreasing function of N�. Hence, the
pump-out is weaker because diffusion in momentum space
tends to be directed parallel to the magnetic field. However,
the total flux increases due to the fact that the power depo-
sition profile becomes broader.

IV. TIME EVOLUTION OF THE ELECTRIC FIELD

The ambipolarity condition ensures that the perturbation
of the radial electron flux by ECRH causes the onset of a
positive radial electric field. This fact has been observed in
modulation as well as in switch-on experiments in tokamaks
and stellarators using a heavy ion beam probe �HIBP� �see,
e.g., Refs. 16 and 17, respectively�.

In this section we propose a simple set of first-order
differential equations describing the behavior of the radial
electric field at short time scales. Our simplifications are
based on the conditions prevailing in the heating power
deposition zone of typical TJ-II ECRH discharges: the ion
flux remains roughly unperturbed and the density profile is
almost flat or has a negligible gradient in comparison with
that of the electron temperature.

If we start from the momentum balance equations �see,
for instance, Refs. 18 and 19� and apply the former condi-
tions, the equilibrium radial force balance imposes E�B
rotation for the ion species and null rotation speed for the
electrons, which can only be attained with the electrons be-
ing affected by a diamagnetic rotation exactly opposed to the
E�B drift. For the conditions described above, this implies
a radial electric field Er�−�Te /e, as found in the
experiments.15 A model that reproduces these constraints is
obtained considering that the ions are frozen, so that the
dynamics at the time scales of interest is governed by the
changes in the radial electron flux, �r. In addition, we as-
sume E�=E�=0, ��=0, and Br, B��B�. In order to simplify
the notation, E�Er and B�B�. Our equations read

�tE =
e

�0��

�r, �25a�

�t�r = −
en

m
E − �r�r +

eB

m
�� −

1

m
�rp , �25b�

�t�� = −
eB

m
�r − ����, �25c�

where ��= �c /vA�2, vA=B /��0nM is the Alfvén velocity,
and M is the proton mass. The large dielectric constant ��

accounts for radial polarization current effects �see Ref. 20�.
Clearly, the equilibrium solution is

E = −
1

en
�rp, �r = �� = 0, �26�

and our aim is to find out how long it takes for the electric
field to reach its equilibrium value. Defining

X ª � E

�r

��

� ,

M ª� 0
e

�0��

0

−
en

m
− �r �c

0 − �c − ��

� , �27�

Z ª�
0

−
�rp

m

0
� ,

the set of equations �25� takes the form

�tX = MX + Z , �28�

whose general solution, taking t0=0, can be compactly writ-
ten as

X�t� = eMtX�0� + �
0

t

eM�t−t��Z�t��dt�. �29�

The variations of Z�t� will correspond to transport time
scales, much slower than those of interest in transient re-
gimes of ECRH driven phenomena. Accounting for such
slow variations cannot be done without �at least� one trans-
port equation with E-dependent transport coefficients. We
leave this for a future work and concentrate on the dynamics
of E itself. Hence, the characteristic times of our problem are
given by �the real part of� the eigenvalues of M. The char-
acteristic equation of M is

P��� ª �3 + ��r + ����2 + ��r�� + �2�� + ���p
2/�� = 0,

�30�

where �=��p
2 /��+�c

2.

FIG. 8. �Color online� Maximum of the divergence of the flux �Eq. �21�� as
a function of N� �solid line� and total flux �dashed line� �Eq. �22��.
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Firstly, let us check that Eq. �25� is stable; i.e., that the
solutions of the set of homogeneous linear equations

�tX = MX �31�

vanish when t→�. Equivalently, we must show that if �i is
a root of P���, then Re��i��0. The real part of every root of
P��� is negative if and only if21

�r + �� � 0,

�r�� + �2 � 0,

���p
2 � 0,

��r + �����r�� + �2� � ���p
2/��,

which are obviously satisfied as long as ���0.
P��� is a real cubic polynomial; hence, it has at least a

real root, which we denote by �1. Since the parameters �r

and �� are related, respectively, to radial and poloidal elec-
tron viscosities, �r, ����. It is easy to see that in this situ-
ation

�1 � −
��

��
��p

�
	2

. �32�

Knowing �1, we can find the remaining two roots �2, �3

by factorization of P���. It turns out that they are complex
and consequently, �3=�2

*. Explicitly,

�2 � −
1

2

�r + ����c

�
	2� + i� . �33�

We can get rid of the extremely fast, unobservable oscil-
lations by averaging the solution X�t� over a few periods
2 /�. Denoting the averaged solution by �X�t�,

�X�t� = e�1t�X�0� + �
0

t

e�1�t−t���−
1

en
�rp

0

0
�dt�, �34�

whence we expect the observable time scales of E and �� to
be the same and essentially governed by the electron poloidal
damping ��, which is given by the electron-ion collision fre-
quency �note that we work with the electron radial force
balance�. Within our hypotheses, any initial condition �r

�0 must decay to the equilibrium solution following the
exponent given by Eq. �32�. Therefore, if we start from an
equilibrium field that satisfies the ambipolarity condition �e

=Z�i, the final field will be the equilibrium one plus the extra
field due to the increase in electron pressure gradient, pro-
vided that the ion flux remains unperturbed �or that its per-
turbation is negligible�. Obviously, our variable for the radial
flux must be interpreted in this context as �r=�r

ECRH.
In a forthcoming work it will be shown that the response

time of the electrostatic potential in the TJ-II flexible heliac
is of the order of several milliseconds, which is in agreement
with Eq. �32�. In fact, for the present plasma conditions
given by T=1 keV, n=1019 m−3, B=1 T, and Zeff=2, the
collision frequency is �ei=2Zeff�104 s−1, and ��= �c /vA�2

=2.1�102. Therefore, the typical evolution time of the elec-
tric field is given by �=−1 /�1��ei /���5 ms. The equilib-
rium value of the electrostatic potential after a gyrotron has
been switched on will be given by the value of electron tem-
perature, provided that the density profile is almost flat,
which happens in ECRH plasmas �see, e.g., Ref. 2�, and the
enhanced flux is zero once the steady state has been reached.

V. CONCLUSIONS

In this work, a linear estimation of the pump-out created
by ECRH has been provided. The flux is obtained assuming
that particles entering the loss cone are immediately lost and
that the distribution function is Maxwellian; i.e., we deal
with a plasma close to the equilibrium.

The divergence of the pump-out, or the rate of particle
loss, is given by the integration of the electron flux through
the loss cone in momentum space. Since no evolution of the
distribution function is considered, the pump-out is propor-
tional to the injected power. Despite the aforementioned ap-
proximation, this model allows the calculation of the ECRH-
induced flux to be introduced, for instance, in a transport
code. Moreover, it is suitable to explore the properties of the
pump-out, such as the energy of the particles that escape
from the plasma or the distribution of pump-out in momen-
tum space.

Assuming that the ion flux is not modified by the ECRH,
it is possible to estimate the electric field created by the
heating, just applying the ambipolarity condition. The out-
ward electron flux must be compensated by an ambipolar
electric field whose evolution depends strongly on electron
poloidal damping, which is given by collision frequency. The
equilibrium value of the field after ECRH switch-on depends
on how the heat transport is reduced by the electric field
itself.

The particle trajectories in phase space could be obtained
by combining the Langevin equations for heating with the
guiding center equations. The latter are solved in Ref. 22 to
calculate the ion kinetic transport in TJ-II. The guiding cen-
ter equations together with the heating and the collision
terms will give the modification of the particle and heat flux
due to ECRH. The advantage of this heavy calculation is that
it can be performed in a distributed way in many processors,
which is suitable for the present clusters and computing
grids.
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