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Abstract. This work explores the impact of an imposed radial electric field on

the intermittence parameter in magnetically confined plasmas. The intermittence is

sensitive to both the magnetic configuration (dominant helical modes or low order

rational surfaces) and to poloidal flows or radial electric fields. This behaviour was

verified both in numerical turbulence calculations using a resistive MHD model and

using Langmuir probe data obtained in experiments at the TJ-II stellarator. It is

shown that the intermittence parameter can be used to detect when the local plasma

rotation velocity with respect to the laboratory frame of reference is minimum.
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1. Introduction

Turbulence tends to carry a significant fraction of the radial transport of particles and

heat in magnetically confined plasmas [1]. The radial transport in turn determines the

economic viability of putative future fusion reactors for energy production based on the

concept of magnetic confinement. Hence, advancing our understanding of turbulence in

fusion plasmas is both urgent and important.

An important aspect of turbulence is intermittence. Intermittence involves the

alternation of periods with different fluctuation amplitudes, such as steady turbulence

interrupted by occasional large amplitude bursts [2]. These bursts can sometimes be

associated with relaxation events occurring in the strongly driven fusion plasma, also

denoted ‘streamers’ or ‘avalanches’. To quantify this behaviour, we make use of a method

originating in chaos theory [3]. The corresponding intermittence parameter, C(1), is a

quantifier of the degree of multifractality of a measured signal, such that a monofractal

signal yields C(1) = 0 and a multifractal signal 0 < C(1) ≤ 1.

Perhaps somewhat unexpectedly, previous work [4] has shown that C(1) turns out

to be very useful in the framework of the study of the interaction between turbulence,

low order rational surfaces and plasma flows in fusion plasmas. It is well known that

fluctuations may be driven by the presence of thermodynamic gradients. Fluctuations

near a low order rational surface may be dominated by the turbulent structure of the

resonant helicity (‘filaments’). When fluctuations are dominated by such a single mode,

the fluctuations will tend to be monofractal in nature, resulting in C(1) ' 0.

The mixing of fluctuations from various sources may raise C(1) due to increased

multifractality. This can be the case when, at a given location, various helicities

contribute to the fluctuations. Another situation that may raise C(1) is the presence of

a net poloidal flow velocity. The local temporal fluctuation structure of the turbulence

can then get mixed with its poloidal structure, leading to enhanced multifractality. A

radial variation (shear) in the mean poloidal flow would lead to a gradually varying value

of C(1) with radial position. In the cited work, we show that these properties imply

that one can use the detected value of C(1) as a means to locate the low order rational

surfaces, which tend to coincide with local minima of C(1). It was also seen that the

presence of a radial electric field (often equivalent to a poloidal flow) may modify this

picture due to the mentioned temporal-spatial mixing.

To further clarify this issue, in the present work, we study the impact of a radial

electric field on the intermittence parameter C(1) in a systematic way. For this purpose,

we make use of TJ-II discharges in which an external electric field was applied by means

of a biased electrode inserted into the plasma.

This article is organized as follows. Section 2 discusses the methods we have used for

data analysis and the numerical model for simulation of turbulence. Section 3 presents

some simulations performed using a resistive MHD turbulence model. Section 4 presents

the experimental results. In Section 5 we discuss the results and draw some conclusions.
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2. Methods

The experiments discussed here have been performed at TJ-II, a flexible Heliac [5]. with

toroidal magnetic field BT ' 1 T, major radius R0 = 1.5 m and minor radius a < 0.22

m [6]. Plasmas can be heated using two Electron Cyclotron Resonance Heating (ECRH)

beam lines delivering up to 300 kW each at a frequency of 53.2 GHz (X mode) and two

Neutral Beam Injector (NBI) systems (co and counter) with up to 2 × 700 kW port-

through power.

The experiments were performed using the standard magnetic configuration of TJ-

II, which has an edge rotational transform close to 1.65 (such that the n/m = 8/5

rational surface is located at ρ ' 0.76). The hydrogen plasmas were heated initially by

ECRH and subsequently sustained by NBI heating. The reported results were obtained

using NBI co-injection with PNBI ' 500 kW.

In this section, we briefly describe the tools we used in this study. Section 2.1

describes the probe systems we used. Section 2.2 describes the calculation of the

intermittency parameter, C(1). Section 2.3 describes the resistive MHD model used

to perform the turbulence calculations.

2.1. Probe systems

TJ-II is fitted with two reciprocating Langmuir probe drives, located at toroidal angles

φ = 38.2◦ (the D probe, entering the plasma from above) and φ = 195◦ (the B probe,

entering the plasma from below). Each drive can be fitted with different probe heads.

In the experiments discussed here, the D probe was fitted with a two-dimensional probe

head (with 4 × 5 pins laid out in a poloidal-radial grid), while the B probe was fitted

with a rake probe (with 12 pins laid out in a radial array). For more details, please refer

to [7].

TJ-II also disposes of a 2-D carbon composite mushroom-shaped electrode (12

mm high, with a diameter of 25 mm), installed on a fast reciprocating probe drive at

φ = 174.4◦, entering from above. The electrode was inserted about 2 cm inside the last

closed flux surface (LCFS), to ρ ' 0.85, and biased with respect to one of the two TJ-II

limiters [8].

2.2. Intermittency

In this article, we use the method for calculating the intermittence of temporal signals

described in Refs. [9, 10, 11], which we summarize here for convenience. Given a time

series X = {xi, i = 1, . . . , N} that has been sampled at a constant sampling rate, we

calculate the measure

ε(1, i) =
(xi − 〈xi〉)2

〈(xi − 〈xi〉)2〉
, i = 1, . . . , N, (1)

where 〈xi〉 = (
∑N
i=1 xi)/N . This measure can be averaged over subblocks of data of
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length n < N , as follows:

ε(n, i) =
1

n

n−1∑
j=0

ε(1, i+ j). (2)

We then calculate the q-moments, 〈ε(n, i)q〉. In a given range of n-values, these moments

are expected to scale like [12]:

〈ε(n, i)q〉 ∝ n−K(q), (3)

where K(1) ≡ 0. If the time series X is monofractal, the function K(q) is asymptotically

linear in q, otherwise the series is multifractal. The parameter C(q) is defined as [12]:

C(q) =
K(q)

q− 1
(4)

and is related to the so-called generalized dimension D(q) = 1−C(q). Of special interest

is the so-called “intermittency parameter” C(1), which must be calculated as

C(1) =
dK(q)

dq

∣∣∣∣∣
q=1

(5)

due to the singularity of Eq. 4 at q = 1. Its value ranges from 0, for a monofractal time

series, to 1. Details of the calculation of C(1) are given in [11], and the robustness of

this parameter with respect to experimental noise is discussed in [13].

In the past, intermittence has often been characterized using the fact that

intermittence (‘burstiness’) tends to increase the kurtosis of the corresponding time

series [14]. It can be shown that the present quantifier is superior, based on the fact

that it considers the temporal variations of a signal rather than merely the shape of its

probability distribution.

As noted in the introduction, the intermittence (or degree of multifractality C(1))

provides valuable information about the nature of turbulence. At locations where a

single unstable mode dominates, the degree of multifractality will be low. In the case of

magneto-hydrodynamic (MHD) turbulence, the unstable (helical) modes are associated

with rational surfaces, although their mode amplitude may peak off the rational surface

location, depending on the symmetry of the eigenmode [4]. Multifractality may increase

when several modes overlap (due to, e.g., a high density of unstable rational surfaces).

It also increases due to poloidal plasma flow, as that leads to a mixing between the

temporal and spatial (poloidal) structure of a given mode for measurements taken at a

fixed point.

2.3. Resistive MHD model

The model used for the present calculations is a resistive MHD turbulence model which

has been used in the past to interpret some experimental results from the TJ-II [15,

16] and W7-X [17] stellarators. It is based on the reduced MHD equations [18], the

dominant instability being pressure gradient modes. The geometry is that of a periodic

cylinder, with minor radius a and length L = 2πR0. We use a coordinate system (r, θ, ζ),
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in which r is the radius of the cylindrical surface, θ is the poloidal angle, and ζ = z/R0,

where z is the coordinate along the axis of the cylinder, so ζ is an effective toroidal

angle when the cylinder is bent in a torus.

The four equations of the model are summarized here in their dimensionless form,

∂ψ̃

∂t
= ∇‖Φ− Sω̄∗e

(
Teq
neq
∇‖n+∇‖Te

)
+ ηJ̃‖, (6)

∂Ũ

∂t
= − v⊥ · ∇U + S2∇‖J‖ − S2 β0

2ε2
κ

(
Teq
neq

1

r

∂ñ

∂θ
+

1

r

∂T̃e
∂θ

)
+ µ∇2

⊥Ũ , (7)

∂ñ

∂t
= − v⊥ · ∇n+

S

ω̄ci
∇‖J‖ +D⊥∇2

⊥ñ, (8)

∂T̃e
∂t

= − v⊥ · ∇Te +
S

ω̄ci

Teq
neq
∇‖J‖ + χ⊥∇2

⊥T̃e +∇‖
(
χ‖∇‖Te

)
. (9)

The first equation, describing the evolution of the poloidal magnetic flux ψ, is

derived from Faraday’s and Ohm’s laws. The second one is the momentum balance

equation where U is the z component of the vorticity. The other two equations give

the evolution of density n and electron temperature Te. All the quantities appearing

in equations (6)-(9) are decomposed in an equilibrium component feq and a fluctuating

component f̃ , so f = feq + f̃ .

The electrostatic potential is Φ and the velocity stream function is φ = Φ/Bz. So

the electric field is E = −∇Φ and the perpendicular velocity is

v⊥ = −∇φ× z, (10)

where z is the unit vector in the toroidal direction.

The parallel current density is J‖ = ∇2
⊥ψ, and U = ∇2

⊥Φ. The resistivity is η, the

viscosity is µ and the perpendicular diffusivity is D⊥. χ‖ and χ⊥ are the parallel and

perpendicular thermal diffusivity, respectively. β0 is the ratio of the plasma pressure, p,

and the magnetic pressure, B2
z/2µ0, at the plasma axis: β0 = 2µ0p(0)/B2

z , where Bz is

the toroidal magnetic field and µ0 is the vacuum permeability; τR is the resistive time

at the magnetic axis, τR = µ0a
2/η(0), where η(0) is the resistivity at the magnetic axis

and τA is the Alfvén time, τA = R0
√
µ0mini/Bz, where mi and ni are the ion mass and

density, respectively. R0 and a are the major and minor radius, respectively, and the

inverse aspect ratio is ε = a/R0. The Lundquist number S = τR/τA. ω∗e = τAω∗e, where

ω∗e = Te/ea
2Bz is the electron diamagnetic frequency; ωci = τAωci, where ωci = eBz/mi

is the ion cyclotron frequency.

In the set of equations (6)–(9) density is normalized to ni(0), magnetic fields are

normalized to Bz, lengths are normalized to minor radius a, and time to τR. The electron

temperature and resistivity are normalized to their respective values at the magnetic

axis. In the numerical calculations, ε = 0.15, S = 2 × 105, β0 = 10−3, ω̄∗e = 2 × 10−4,

ω̄ci = 500. The diffusivity parameters used are D⊥ = χ⊥ = 0.1a2/τR and µ = 0.05a2/τR.

The parallel electron heat conductivity is χ‖ = 2× 106R2
0/τR.
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The physical variables are decomposed in Fourier series for the poloidal and toroidal

angle and the radial direction is solved using finite differences so

f (r, θ, ζ, t) =
∑
m,n

[
f sm,n (r, t) sin (mθ + nζ) + f cm,n (r, t) cos (mθ + nζ)

]
.(11)

In the present numerical calculations we introduce the resonant helicities, corresponding

to the rotational transform profile, up to m = 100 which give a total number of angular

components of 446. The value m = 100 is chosen because it is a sufficiently high value

of m so that the resistive interchange turbulence is saturated through dissipation. The

finite difference grid consists of 400 unequally spaced points between r = 0 and r = 0.5

and 1000 equally spaced points between r = 0.5 and r = 1.
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3. Numerical calculations

We use the Resistive MHD turbulence model to calculate turbulence for a TJ-II

configuration (the ‘standard’ configuration, labelled 100 44) in steady state. Resistive

pressure gradient driven instabilities are dominant. Once steady state was achieved, we

imposed an additional constant electric field, Er0, in the region 0.5 < r/a < 1.0, which

induces a constant poloidal rotation. The calculation was then continued to study

the effect of this electric field on the turbulence. We have performed this calculation

for five values of the electric field normalized to aBz/τR : −200,−100, 100, 200, and

300. For all these cases, we have evaluated the intermittence parameter for potential

and electron temperature fluctuations. Near the rational surfaces, the corresponding

resonant helicity is dominant, and in the absence of poloidal rotation the signal is

monofractal and C(1) is close to zero. As noted in the introduction, the effect of the

poloidal rotation is to mix the intermittence due to temporal fluctuations with the

one induced by the poloidal structure of the same fluctuations. This mixture increases

the degree of the multifractality of the signal. Accordingly, the observed value of the

intermittence parameter responds to the imposed Er0/Bz = −Vθ0. This effect was

most visible for the potential fluctuations (Φ), and somewhat less clear for electron

temperature fluctuations (Te).

Fig. 1 shows the intermittence parameter C(1) (of the potential fluctuations, Φ)

as a function of the radius for a small radial range and for the mentioned values of the

imposed radial electric field Er0. Near the 8/5 rational surface, the profile of C(1) shows

a clear minimum for Er0 = −200 aBz/τR, which becomes less deep as Er0 increases.

Around Er0 = 200 aBz/τR the minimum disappears.

Fig. 2 shows the variation of the intermittence parameter C(1) (of the electron

temperature fluctuations, Te) as a function of the radius for a small radial range and for

the different values of the imposed radial electric field Er0. The minimum at the main

low order rational surface, 8/5, is visible for all values of the applied radial electric field

Er0, although it is deeper for negative than for positive Er0.

Fig. 3 shows the variation of the intermittence parameter C(1) (of the potential

fluctuations, Φ) as a function of the poloidal rotation Vθ0 imposed by the applied field

Er0 at the location of the two lowest order rational surfaces in the calculation. Both

curves show a minimum at a specific value of Vθ0. This suggests that the value of

the rotation velocity at this minimum corresponds to the situation where the poloidal

rotation imposed by the applied Er0 compensates the spontaneous rotation: at the 11/7

surface (located at ρ ' 0.50), the spontaneous rotation is therefore about 100 a/τR, and

at the 8/5 surface (located at ρ ' 0.76), it is about -200 a/τR.
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Figure 1. Intermittence parameter C(1) of the potential fluctuations, Φ, as a function

of the radius. The legend indicates the applied radial electric field Er0, in units of

aBz/τR.
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Figure 2. Intermittence parameter C(1) of the electron temperature fluctuations, Te
as a function of the radius. The legend indicates the applied radial electric field Er0,

in units of aBz/τR.
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Figure 3. Intermittence parameter C(1) of the potential fluctuations as a function of

the poloidal rotation Vθ0 imposed by the applied electric field at two resonant positions.
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Figure 4. Intermittence parameter C(1) of the potential fluctuations as a function

of the imposed radial electric field Er0. Vertical dashed lines indicate a few low order

rational surfaces, as indicated by the corresponding labels. The thick red line is minus

the spontaneous poloidal rotation (+Vθ0Bz at Er0 = 0). Thin, dashed red lines indicate

the corresponding error.

Fig. 4 shows the data of Fig. 1 in a two-dimensional representation. This figure

clarifies that the deepest minima of C(1) (dark blue) tend to occur at positions

corresponding to low order rational surfaces. As noted, the minimum at a specific value

of ρ occurs at the value of the imposed poloidal rotation velocity that compensates the

spontaneous rotation. If one connects the minima of C(1) at different ρ values, the

background velocity rotation profile can therefore be recovered, in principle. To clarify

this, we have superposed minus the profile of the spontaneous rotation (without applied

field Er0). It is seen that the values of Er0 where the minima occur approximately match

the negative spontaneous rotation. In other words, C(1) roughly attains its minimum

when the rotation is halted with respect to the laboratory frame of reference.
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Figure 5. Floating potential profile, biasing on/off, NBI conditions. Left: D probe;

right: B probe.

4. Experimental results

The following sections present the experimental results in two conditions: (a) NBI-

heated high density plasmas (ion root, characterized by a negative radial electric field

in the plasma edge region) and (b) ECR-heated low density plasmas (electron root,

characterized by a positive radial electric field in the plasma edge region).

4.1. Ion root phase

The discharges analyzed here have been reported in detail in Ref. [19]. The main

features of the plasmas have been summarized in Section 2. The electron density was

fairly constant in the interval 1165 < t < 1240 ms, corresponding to the NBI phase,

with a value of ne ' 1 · 1019 m−3. Central electron temperatures were in the range of

300 < Te(0) < 400 eV. The voltage applied to the biasing probe was a 40 Hz square wave

with an amplitude of −350 V and a duty cycle of 50%. In each discharge, the Langmuir

probes were moved to a slightly different radial position, allowing the reconstruction of

profiles over a relatively wide radial range on a shot-by-shot basis.

We quantified the measurements by detecting the ‘biasing on’ and ‘biasing off’ time

intervals; each time interval lasting 12.5 ms. We rejected the first 0.5 ms and the last

0.5 ms of each time interval to avoid transient effects, so each biasing phase yielded

11.5 ms of useful data. Over whole time window analyzed, we obtained 6 or 7 such

time intervals, depending on the discharge. Fig. 5 shows the mean profile of the floating

potential, averaged over the selected discharges and the biasing time intervals, for the

two levels of biasing. The error bars indicate the standard deviation of values obtained

for the various discharges and biasing time intervals.

Fig. 6 shows the profile of the intermittence parameter of the floating potential

fluctuations, C1(Vf ), averaged over the selected discharges and the biasing time

intervals, for the two levels of biasing.

Fig. 7 shows −dVf/dρ, calculated by fitting a 5th order polynomial to the profiles
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Figure 6. Intermittence parameter, C(1), biasing on/off, NBI conditions. Left: D

probe; right: B probe.
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Figure 7. −dVf/dρ, biasing on/off, NBI conditions. Left: D probe; right: B probe.

of Fig. 5 (shown as continuous lines in that figure) and taking the derivative. This

procedure is especially inaccurate near the edges of the data interval, so the apparent

rapid changes seen for the smallest and largest values of ρ in each graph should be

ignored. The quantity −dVf/dρ is a proxy for the radial electric field Er = −dVp/dr
assuming electron temperature gradient effects are small, noting d/dr ' (1/a)d/dρ with

a ' 0.2 m. Comparing biasing on and biasing off, one observes that −dVf/dρ is generally

more negative when biasing is on. In the case of the B probe, the position of the highest

value of | − dVf/dρ| (near ρ = 0.95) is seen to coincide approximately with the position

of the highest values of C(1). In the case of the D probe, resolution may not be sufficient

to see this effect clearly.

In another set of experiments, the polarization voltage waveform was triangular. A

single modulation period consisted of a linear ramp from 0 to -340 V in 6.25 ms, a linear

ramp from -340 to 0 V in 6.25 ms, followed by a non-biasing interval (0 V) lasting 12.5

ms. Plasma conditions were similar as in the discharges reported above. The B probe

was moved radially from one discharge to the next. To reconstruct the spatiotemporal

evolution, data from 4 shots were combined by synchronizing (subtracting a reference
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Figure 8. The mean evolution of Vf (V) vs. ρ and t− t0 for 4 shots. Data from probe

B.

time, t0, corresponding to the start of a biasing ramp). Fig. 8 shows the evolution of

the mean floating potential, Vf . Fig. 9 shows the corresponding intermittence, C(1).

When biasing is activated, C(1) increases predominantly at ρ ' 0.95, corresponding to

the location of the 18/11 rational and the location of highest Er ' −a−1dVf/dρ (the

radial region where the contours are closest together in Fig. 8). This matches the result

shown in Fig. 6 for square wave biasing.
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B.



The impact of radial electric fields and plasma rotation on intermittence in TJ-II 15

0.9 0.92 0.94 0.96 0.98 1
-100

0

100

200

V
f (

V
)

Bias off

Bias on

0.9 0.95 1 1.05 1.1
-100

0

100

200

V
f (

V
)

Bias off

Bias on

Figure 10. Floating potential profile, biasing on/off, ECRH conditions. Left: D

probe; right: B probe.

4.2. Electron root phase

Similar experiments were performed in ECR-heated conditions, yielding lower electron

densities such that the plasma was in the electron root state. In the relevant time

window, the line average density was approximately ne = 0.4 · 1019 m−3. Central

electron temperatures were approximately Te(0) ' 1.5 keV. Again, square wave biasing

was applied, as described in Section 2. The applied biasing was a 40 Hz square wave

signal alternating between 0 and +230 V in a duty cycle of 50%. The analysis is fully

analogous to the procedure for the analysis of the square wave modulation described in

the previous section.

Fig. 10 shows the mean profile of the floating potential, averaged over the selected

discharges and the biasing time intervals, for the two levels of biasing. The error bars

indicate the standard deviation of values obtained for the various discharges and biasing

time intervals.

Fig. 11 shows the profile of the intermittence parameter of the floating potential

fluctuations, C1(Vf ), averaged over the selected discharges and the biasing time

intervals, for the two levels of biasing.
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Figure 11. Intermittence parameter, C(1), biasing on/off, ECRH conditions. Left:

D probe; right: B probe.
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5. Discussion and conclusions

In order to study the impact of a radial electric field on the intermittence, numerical

simulations were performed using a resistive MHD turbulence code in which a constant

radial electric field was added. It was observed that the intermittence responded to the

imposed electric field. The variation of the intermittence due to the imposed electric

field was largest near low order rational surfaces. The intermittence value was lowest

when the imposed electric field compensated the spontaneously generated electric field.

To verify this behaviour in an experimental context, a biasing probe was used to

significantly modify the plasma potential profile (and hence the radial electric field)

in the edge region of the TJ-II stellarator. Specific biasing waveforms were used to

facilitate the comparison between biasing on and biasing off phases. Experiments were

performed in both ion and electron root conditions (high and low line average electron

density, respectively).

In ion root conditions, biasing was such as to decrease the potential and to enhance

the absolute value of the negative radial electric field, Er. The enhancement of Er was

maximum around ρ ' 0.95. Biasing led to a significant increase of the intermittence in

the range 0.9 < ρ < 1, peaking near ρ ' 0.95. We note that this position corresponds

to the position of the 18/11 rational surface. This effect was similar at both the B and

D probes.

In electron root conditions, biasing was such as to increase the potential and to

enhance the positive radial electric field. Here, too, the larger absolute value of the

radial electric field leads to an increased value of the intermittence parameter, and

again the effect was similar at both probes.

Summarizing, in both conditions, the enhanced absolute value of the radial electric

field leads to enhanced intermittence. This observation is consistent with the numerical

results of Section 3 and the explanation in terms of the mixing between the temporal

and spatial structure of the turbulence. Thus, the intermittence is both sensitive to

the local magnetic configuration (the presence of rational surfaces [20]) and the radial

electric field (or poloidal flow), as shown here, providing a window to improve our

understanding of plasma turbulence. In future experiments, it could be attempted to

apply a range of biasing voltages and vary the magnetic configuration (i.e., the radial

placement of specific rational surfaces) in order to produce graphs like Fig. 3.

An interesting practical application may be the use of the intermittence parameter

to determine the local rotation velocity state of the plasma. As observed, C(1) achieves

its deepest minimum when the local rotation velocity is small with respect to the

laboratory frame of reference. If one therefore disposes of a means to vary the local

rotation velocity, the point where the plasma rotation is halted with respect to the

laboratory frame can be determined, and the turbulence spectrum or other quantities

can then be obtained in the plasma frame of reference from a point measurement.

The intermittence may also be helpful when identifying the type of instability

producing the fluctuations. In both conditions studied here (electron and in root),
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biasing affected the intermittence to the same degree at both the B and D probes.

The numerical model does not include the full geometry of TJ-II and hence cannot

be used to compare differences or similarities between the probes. We note, however,

that the field line curvature is rather different at the two probe locations. Namely, at

probe B, the geodesic field line curvature is positive, whereas at probe D, it is negative.

Likewise, normal field line curvature is negative but relatively small at probe B, and

more strongly negative at probe D. As the intermittence response is similar, we speculate

that the responsible instabilities are not curvature driven modes.
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