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Abstract 

Detecting disruptions with sufficient anticipation time is essential to undertake any form of 

remedial strategy, mitigation or avoidance. Traditional predictors based on machine learning 

techniques can be very performing if properly optimised but do not provide a natural estimate 

of the quality of their outputs.  In this paper a new set of tools, based on probabilistic 

extensions of Support Vector Machines, are introduced and applied for the first time to JET 

data. The probabilistic output constitutes a natural qualification of the prediction quality and 

provides additional flexibility. Indeed the versatility of the developed techniques is such that 

different versions of the tools can be optimised to perform various tasks, from prediction for 

mitigation to avoidance or even classification. Large databases of disruptions, covering entire 

campaigns, are analysed, both for the case of the graphite and the ITER Like Wall. Success 

rates of the order of 97% with about 4.5% of false alarms can be easily achieved, satisfying 

even the requirements of the next generation of devices. The fact that the developed tools 

give the probability of disruption improves the interpretability of the results, provides an 

estimate of the predictor quality and gives new insights into the physics. Moreover, a 

probabilistic treatment permits to insert more easily these classifiers into general decision 

support and control systems. 
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1 Machine learning approaches to disruption prediction in Tokamaks and probabilistic 

SVM 

In the last years, collapses and their causes have become not only a major field of 

research but have also captured the attention of the mainstream media. From market crashes 

to earthquakes and structural failures in civil engineering, increasing attention is devoted to 

surprising and typically unexpected abrupt changes in systems, leading to catastrophic 

consequences. The statistical investigation of these phenomena, particularly for robust 

prediction, requires the development of new mathematical tools [1]. The systematic use of 

machine learning methods for this purpose is continuously increasing.  

In Tokamaks, disruptions remain the most serious cause of collapse, leading to the 

abrupt quenching of the plasma with potential major risks for the structural integrity of the 

devices. The percent of disruptions allowed in ITER is quite limited [2]. But disruptions are 

also a serious issue for the present largest devices. For example, they are one of the main 

impediments to systematic high current operation in JET, particularly now that the new 

combination of materials, Be in the main chamber and W in the divertor,  renders the first 

wall less forgiving than in the past. Moreover, high triangularity plasma scenarios are also 

strongly penalised by the high probability and high forces of their disruptions.  

Given their potential impact on the integrity of the devices, disruptions are a subject 

of extensive research at present. Various methods of mitigation are being investigated, 

particularly massive gas injection [2]. The main objective of these techniques consists of 

limiting the energy conducted directly to the wall by converting the highest percentage of it 

into radiation. On the other hand, these conversion methods have not only to be effective but 

also are required not to pose themselves other hazards to the machines, such as excessive 

increases of the eddy currents due to very fast current quenches. To reduce the strain on the 

devices also avoidance tactics are being considered, to undertake remedial actions and 

prevent the occurrence of disruptions. This is particularly important in the perspective of 

DEMO, since in the demonstrative fusion reactor unmitigated disruptions will have to be 

almost completely avoided and the number of mitigated ones minimised [2]. 

Of course, reliable prediction tools are a prerequisite to any mitigation or avoidance 

strategy. Unfortunately, the theoretical understanding of the causes of disruptions is not 

sufficient to guarantee reliable predictions. As a consequence, prediction models based on 

first principles are virtually non-existent. Therefore, in the last decades, a lot of efforts have 

been devoted to developing empirical models, capable of launching an alarm when a 

disruption is approaching. These empirical models are either manual or based on machine 
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learning tools. On JET the main manually adjusted tool is the Locked Mode Predictor based 

on a Threshold criterion (LMPT), which triggers mitigation actions when the signal of the 

locked mode amplitude reaches a certain threshold. This solution results in so called 

“ephemeral predictors”, i.e. systems which age very quickly and require frequent adjustments 

to remain effective. Indeed, in the case of LMPT, the threshold has to be adjusted quite 

frequently and certainly more than once per experimental campaign, not always at an optimal 

level [3].  

Nowadays machine learning tools are deployed in a variety of domains to support, 

and even to perform, the entire decision making process [4]. Following this general trend, 

various generations of predictors based on machine learning tools have also been applied to 

JET data in the last decades. Various alternatives have been explored, ranging from Neural 

Networks to Self Organizing Maps and fuzzy decision trees [5-8]. Two of the most 

performing, APODIS and SPAD, have been deployed in JET real time network. APODIS, 

which  has even been used in closed loop for triggering mitigation actions, is a typical data 

mining tool, using a complex Support Vector Machines (SVM) classifier and requiring a 

large training set [9]. SPAD implements an anomaly detection strategy [10-12] and does not 

need a large number of disruptions for learning a model. Some adaptive prediction tools have 

also been developed and have been applied off line to entire campaigns [13,14]. These 

predictors are quite complex and in general, apart from [13], do not provide as output a 

probability, a fact which can render their interpretation and integration into general control 

systems quite involved.  

In this paper, an adaptive predictor, which provides a probabilistic output, is described 

in detail. The predictor is based on an SVM classifier, whose estimates are processed with a 

Bayesian treatment to provide the probability that a discharge is in a disruptive state. A 

“learning from scratch” approach has been implemented for the training and therefore the 

predictor can start working with just one disruptive and one non disruptive example [13,14]. 

The model obtained with the first examples is then modified as the campaign progresses, by 

refining the training with additional cases. With an appropriate choice of the prior (see 

Section 2), the probability of disruption provided by the classifier allows optimising the 

various remedial strategies, from mitigation to avoidance. Moreover, the approach is fully 

compatible with a more targeted strategy, aimed at optimising the predictors for specific 

types of disruptions; this can be achieved by an appropriate selection of the training set and 

probability thresholds. Specific versions of the predictors have also been developed, to 

determine the disruption type. The proposed techniques therefore constitute a multipurpose 
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methodology capable of providing a wide set of tools to cover all the main tasks involved in 

disruption forecasting for Tokamaks: prediction for mitigation, prediction for avoidance and 

disruption type classification. Predictors of this family are therefore referred to as MAPP 

(Multipurpose Adaptive Probabilistic Predictors). It is worth emphasizing the fact that, in 

addition to providing very competitive performance compared to other machine learning 

methods, the proposed tools present the unquestionable advantage of expressing the output in 

terms of classic probabilities. This aspect no only renders the tools easier to interpret by the 

user but they can also provide better insight in the underlying phenomenology. Moreover 

probabilities constitute a quite natural and common method to qualify the confidence in the 

prediction. Therefore, the probabilistic output is fully suited to the integration of the proposed 

classifiers into more general decision support systems. In particular MAPP can easily become 

part of more complex logics of intervention for both mitigation and avoidance.  

Regarding the structure of the paper, next section gives an overview of the 

mathematical background required for a basic understanding of traditional SVM and their 

probabilistic extensions. Section 3 

discusses in detail the adaptive 

method adopted to train the various 

versions of MAPP and describes the 

main characteristics of JET 

databases investigated. The results 

obtained for the ILW are reviewed 

in Section 4 and those for the JET 

with a carbon wall in Section 5; 

more details are given in the 

Appendixes. The potential of 

probabilistic SVM for avoidance 

and disruption classification is 

discussed in Section 6 and 7 

respectively. The conclusions and lines of future work are the subject of the last Section 8 of 

the paper.  

 

 

 

 

 
 

Figure 1. SVM classification: the success rate is 

optimised by a linear hyperplane that maximizes the 

separating margin between the two regions, 

disruptive and non-disruptive, in feature space.  
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2 Probabilistic SVM for Classification: the mathematical background 

Machine learning techniques have become quite common to attack problems so 

complex that cannot be solved with more traditional algorithmic methods. They are typically 

deployed to extract useful information from large amount of multidimensional data. Machine 

learning tools can perform many different tasks, including classification, regression and 

anomaly detection. In the arsenal of machine learning methods, SVMs are very powerful and 

present various very desirable properties for scientific applications, such as determinism (of 

the training process) and structural stability [15]. They are used as various types of classifiers 

for the studies described in this paper. In this section, the background on the traditional SVM 

and their probabilistic versions are briefly overviewed. The aim is not to give a full treatment 

of SVMs, which can be found in the references, but to provide a concise treatment to allow 

the reader to appreciate the probabilistic extensions, which are more recent developments not 

completely covered in the non-specialist literature. 

 

2.1 The basics of SVM 

Binary classification is a classic application of machine learning. Given a set of 

examples, which belong to two different classes, the SVM proceeds by projecting these 

inputs into a high-dimensional space through some suitable non-linear mapping. In this high 

dimensional feature space, an optimal separating hyperplane is constructed in order to 

minimize the risk of misclassification. The minimization of the error risk is obtained by 

maximizing the margins between the hyperplane and the closets points, the support vectors, 

 
 

Figure 2. The basic principle of the SVM approach to classification: the projection to a higher 

dimensional space with a kernel and the identification of the best separating hyperplane.  
 

Input Space
(Non linearly separable problem)

Kernel Trasforming
Function

Higher dimensional feature space
(Linear separating hyperplane)
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of each class, as shown in Figure 1. This is achieved by a careful selection of the constraints 

of a suitable functional to maximize. The hyperplane is determined by a subset of points of 

the two classes, named Support Vectors (SV). SVMs therefore basically consist of suitable 

kernels, which project the inputs into higher dimensional spaces, where the classification 

becomes a linearly separable problem and can be solved with traditional quadratic 

programming methods with linear constraints based on the Lagrange multipliers. The main 

ideas behind the SVM approach are illustrated in Figure 2.  

In mathematical terms, given a training set of  samples 1 1( , ),..., ( , )y yx x , 
n

ix  , 

for a binary classification problem such as disruptive or non disruptive discharges (i.e. 

 1, 1iy    ), SVM estimates the following decision function: 

 

𝑑(𝒙) = ∑ 𝛼𝑖𝑦𝑖𝐻(𝒙𝑖 , 𝒙)ℓ
𝑖=1   (1) 

 

where  ,iH x x  is a kernel function and the parameters , 1,...,i i   are the solutions 

of the following quadratic optimization with linear constraints: 

maximization of  the functional 

𝑄(𝛼) = ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐻(𝒙𝑖 , 𝒙𝑗)ℓ
𝑖=1   (2) 

subject to the constraints  

                        ∑ 𝑦𝑖𝛼𝑖 = 0,      0 ≤ 𝛼𝑖 ≤
𝐶

ℓ
, 𝑖 = 1, … , ℓℓ

𝑖=1              (3) 

where C  is a regularization parameter [15]. 

The data points ix  associated with nonzero values of the coefficients i  are called 

support vectors, which give the name to the technique. Once the support vectors have been 

determined, the SVM boundary between the two classes can be expressed in the form 

 

𝑑(𝒙) = ∑ 𝛼𝑖𝑦𝑖𝐻(𝒙𝑖 , 𝒙)𝑠𝑢𝑝𝑝𝑜𝑟𝑡 
𝑣𝑒𝑐𝑡𝑜𝑟𝑠

  (4) 

d(x) is the distance from the input x  to the hyper-plane that separates the two classes 

and, hence, the hyper-plane points satisfy d(x) = 0. 

The rule to classify a feature vector u  as non-disruptive (class dSafe) or disruptive 

(class dDis) is given by: 
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𝑖𝑓 𝑠𝑔𝑛(𝐷(𝒖)) ≥ 0 

𝒖 ∈ 𝐶𝐷𝑖𝑠𝑟  

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝒖 ∈ 𝐶𝑆𝑎𝑓𝑒 

 

where sgn(t) is the sign function. 

 

Given the structural stability that they achieve by implementing the margins, SVMs 

are very powerful tools and have performed extremely well in the case of disruption 

prediction, as demonstrated in real time by APODIS [9,10]. Their hyperplane can therefore 

be considered a very good approximation of the boundary between the disruptive and not 

disruptive regions of the operational space.  

 

2.2 Probabilistic SVM 

Developing classifiers, which can provide a calibrated posterior probability, is 

extremely useful for subsequent post processing. For example, associating a probability to the 

classification estimate is fundamental for deploying utility models. Posterior probabilities are 

also indispensable when, as in our case, it can be important to combine the classifier output 

with other tools in an integrated decision support system (DSS). Unfortunately, traditional 

SVM do not provide a probabilistic output. Their basic version has therefore to be extended 

to associate a probability to their classification. Various methods have been proposed to 

modify the SVM so that they yield a probability [16]. The approach, adopted in this paper, is 

based on the classification performed by the SVM, to which a probability is associated by 

making recourse to the Bayes rule according to the formula: 

 

              𝑃(𝑦 = 1|𝑓) =
𝑝(𝐷|𝑦=1)𝑃(𝑦=1)

∑ 𝑝(𝐷|𝑦=𝑖)𝑃(𝑦=𝑖)𝑖=−1,1
              (5) 

 

In equation (5) P(y=1) is the prior probability of class 1 and p(D|y=1) indicates its 

likelihood where D is as usual the distance to the hyperplane. Therefore two quantities have 

to be determined to apply equation (5): the prior probability and the likelihood. In our 

application, the natural choice of the prior probability is the percentage of time slices seen so 

far in the campaign for the class to which the SVM classifies the new example. The main 
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issue in relation (5) resides therefore in the determination of the likelihood. To this end, a 

class of methods comprises the techniques, which define a neighbourhood of each new point 

to classify and determine the percentage of the examples, belonging to the class selected by 

the SVM, in that neighbourhood [16]. Theoretical and numerical considerations have shown 

that for our application one alternative advantageous solution consists of remapping the 

distance to the hyperplane to a probability by using a sigmoid function, which has the right 

mathematical properties to be a probability: 

 

                          𝑃(𝑦 = 1|𝐷) =
1

1+𝑒𝑥𝑝(𝐴𝑑+𝐵)
           (6) 

 

In equation (6), A and B are two fitting parameters, and again d indicates the distance 

of the examples to the SVM hyperplane. The determination of the likelihood function 

therefore takes place after the training. The examples in the training set, or in a hold out set, 

are classified and their distances to the 

separating hyperplane are used to fit the 

parameters of the sigmoid (6). The 

sigmoid is typically centred on the 

hyperplane, in the sense that points at 

distance zero from it have 50% 

probability of being in any of the two 

classes (see Figure 3). To summarise, 

for each new case, the class is 

determined by the SVM and the prior by 

the percentage of cases belonging to that 

class detected up to the current example. 

The likelihood is computed using the 

sigmoid, which, together with the prior, allows calculating the probabilistic output according 

to the Bayesian equation (5). The resulting posterior probability is strictly speaking the level 

of confidence in the prediction that the discharge is going to disrupt.  

 

 

 

 

 

v 

 

Figure 3. Sigmoid fit of the distance d to the 

hyperplane to determine the likelihood.  
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3 Training of the Adaptive Probabilistic Predictor and JET Databases  

This section provides the details about the method used to train the probabilistic 

predictors (Subsection 3.1) and provides a general overview of JET databases to which they 

have been applied (Subsection 3.2). Information about the computational requirements is 

provided in Subsection 3.3. 

 

3.1 Training of the adaptive predictor from scratch 

As already mentioned, large devices might not have the luxury of collecting many 

disruptive examples to train machine learning predictors with the traditional data mining 

algorithms. It is therefore important to devise training approaches from scratch, which can 

start predicting with a limited amount of examples; they have also to be sufficiently adaptive 

to preserve good performance as the campaigns progress.  

Various approaches can be adopted to train an adaptive predictor. In harmony with 

previous instances [9-12], a quite simple strategy has been implemented for the training. The 

predictors are designed with a “from scratch” approach and therefore need only one 

disruptive and one non disruptive case to build the first model. In the campaigns analysed, the 

first disruption occurred after a while and therefore the first model was obtained after the first 

disruption. For the disruptive discharge, 15 ms before the beginning of the current quench 

have been divided in 5 intervals of 3 ms each and the averages of the selected signal features 

over these three intervals have been used as input to the training. The 5 discharges prior to the 

first disruptive one have been used as examples for the safe case. For each of these 

discharges, two random periods of 20 ms, with plasma current above 750 kA, have been 

averaged and the averages over these intervals have been used as inputs for the training. The 

number of examples can be increased to improve performance but at the expenses of 

computational resources for the SVM training (which is a quite heavy process). For the 

campaigns whose results are presented in the paper the choice of two training points is more 

than adequate as will become apparent in the following. 

The model derived as previously described needs to adapt in two different directions 

by learning how a) disruptions vary and b) the safe space of operation changes. In other 

words, the model has to be automatically updated to follow the evolution of the boundary 

between the disruptive and non disruptive regions of the operational space as the 

experimental campaigns evolve. To this end a model, starting with the one obtained after the 

first training described above, is used for the following discharges until the first missed 

alarm. When the previous model misses a disruption, the shot not properly classified is 
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included in the training set. In this way a new model is determined, which is deployed to 

analyse the following discharges until the next error, which provides an example for a new 

retraining.  

If the error is a false alarm, it is not appropriate to insert that example in the training 

set and retrain the predictor. In closed loop real time applications, indeed, it is not necessarily 

the case that false alarms can be always recognised, after the discharge has been shutdown 

following the received alarm. Of course post pulse investigations by the experts and analysis 

of possible technical faults can provide indications that the discharge was stopped 

prematurely, but this cannot be assumed to happen systematically. On the other hand, 

retraining only on the basis of disruptive examples can cause the number of false alarms to 

increase unnecessarily, particularly during the course of long campaigns and/or when the 

scenarios evolve and new regions of the operational space are explored. As a compromise 

solution, adopted to obtain the results described in the following, the retraining has been 

performed with a new safe example every time the model launches an alarm. After each 

alarm the previous discharge, if safe as it is normally the case, is used as an example of a non 

disruptive discharge to retrain. Now for the training two 10 ms intervals, around the 

maximum value of the locked mode, have been averaged and these averages are the features 

for the new training. 

 Of course, in the case of closed loop applications of the predictors, more 

sophisticated strategies could be implemented, such as retraining when new scenarios are 

developed and run or by identifying some false alarms. Therefore the results reported in the 

following, even if quite good, have to be considered an underestimate of the possible 

performance in terms of false alarms. Indeed the proposed approach can be run automatically 

but if man power is available to optimise the training, the percentage of false alarms can be 

easily reduced by a factor. This can be easily proven by correcting the first false alarms in the 

adaptive training, which reduces the total false alarms to about 2 %. 

With regard to the implementation strategy, another aspect must be explicitly 

considered. Given the fluctuations of the various plasma parameters, triggering an alarm after 

the first time slice, when the models predict a disruptive behaviour, is not necessarily the best 

strategy. To increase reliability, it would be better to wait for the model to predict a 

disruption for two or three subsequent time intervals. This is the traditional choice 

implemented when using a traditional SVM, which classifies giving only a binary output, the 

class the example belong to. Now the probabilistic output provides an additional knob to 

work with, the probability threshold; therefore the question can be asked whether an optimal 
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trade-off exists between using a different threshold and waiting some time before triggering 

an alarm. This optimization problem has been investigated in detail as reported in the sections 

4 and 5.  

 

3.2 JET Databases: ITER Like Wall and Carbon wall 

In building both databases, the intentional disruptions have been eliminated from the 

training. Indeed they do not need to be predicted and, being typically different from naturally 

occurring disruptions, can affect the quality of the adaptive training. Of course, they have 

also been excluded from the computation of the final statistics (see next sections). Only 

discharges whose plasma current exceeds 750 kA have been considered but no other general 

selection has been implemented. All the signals have been resampled at 1kH frequency. 

Alarms, which are launched 10 ms or less from the beginning of the current quench, are 

considered tardy, since 10 ms is the minimum time required on JET to undertake mitigation 

action. Alarms triggered more than 2.5 s before the beginning of the current quench are 

considered early, even if this choice is a bit penalising because in various instances, indeed, 

the predictors have detected an almost disruptive situation but the plasma just managed to 

survive longer than 2.5 s. Therefore if an alarm had been launched in these cases, since the 

quality of the plasmas had already been compromised, in general no useful experimental time 

would have been lost and time for a soft landing would have been available. Therefore 

keeping these cases in the list of the not properly classified discharges is a conservative 

choice.  

Coming to the database with the ILW wall, the campaigns C29 to C31 have been 

 

 
Figure 4 .Overview of the databases for the Carbon wall and ILW- A characteristic point for 

each shot in the database has been  reported. The red points belong to disruptive shots.  
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considered. After proper cleaning and validation of the database, overall 187 disruptive and 

1020 non disruptive shots are included. A plot showing the operational space covered by the 

database is shown in Figure 4 (bottom row). 

The database of the C wall comprises the campaigns C15a, C15b, C16, C1617, C18, 

C19  (from shot 65988 to 70749). Overall, 143 disruptive and 2083 non-disruptive shots are 

included. A plot showing the operational space covered by the database is shown in Figure 4 

(top row). 

 

3.3 Computational aspects 

With the adaptive approach implemented, and described in detail in subsection 3.1, 

the computational requirements for the deployment of the proposed tools are very limited. 

The training, which is the computationally most demanding phase of a predictor 

development, typically involves a quite limited number of discharges and therefore can easily 

be performed between shots. Once the model is available, as already demonstrated for the 

case of APODIS, the classification of a new time slice can be easily performed in a fraction 

of JET system cycle time of 2 ms [19]. The proposed tools are therefore fully compatible 

with real time applications. The retraining can easily be performed between shots and their 

deployment in real time would provide an instantaneous response on the time scale of typical 

feedback controls systems in Tokamaks.  

 

 

4 Results for disruption mitigation: JET with an ITER Like Wall 

To show the potential of the approach compared to previous tools, it has been decided 

to select the amplitude of the locked mode and the internal inductance signals as inputs. 

These are indeed quantities routinely available in real time in JET and have been used since a 

Table I. Main indicators of MAPPSVM quality using only the SVM output to decide whether to 

trigger an alarm. The three rows show the results for the cases when one single disruptive 

time slice is considered sufficient to trigger an alarm and when, on the contrary, two or three 

consecutive time slices are required. 

 

SVM 

 

Success 

 Rate % 

Missed % Early % Tardy % False % 

 

Mean  

[ms] 

 

Std  

[ms] 

1 Disurptive 

time slice 
94.62 0.54 2.69 2.15 5.58 321 332 

2 Disurptive 

time slices 
95.16 0.54 2.15 2.15 5.79 320 344 

3 Disurptive 

time slices 
94.62 0.54 2.15 2.69 5.79 325 337 
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long time to develop machine learning predictors. Moreover, recent theoretical considerations 

seem to indicate that these to quantities are the main ingredients for multimachine modelling 

of the onset of disruptions [20].  To start, the adaptive “from scratch” training has been 

performed using the simple output of the SVM, not the posterior probability, to decide about 

the disruptive character of the time slices. This version of MAPP is called MAPPSVM. Then 

the possible improvements in performance, which can be achieved by selecting an optimal 

threshold in the posterior probability, have been investigated. For the time to trigger an alarm, 

three different choices have been tested: immediately after the first time slice the predictor 

detects a disruptive behaviour, immediately after two consecutive time slices and 

immediately after three consecutive time slices.  

The overall quality of the predictor, using only the output of MAPPSVM to take the 

decision whether or not to trigger an alarm, can be appreciated by inspecting Table I, which 

reports the main figures of merit used to assess disruption predictors. The success rate of the 

predictor is quite good and the false alarm rate more than satisfactory. This is particularly 

remarkable since it is to be remembered that MAPP is an adaptive predictor and therefore it is 

trained during the same campaigns in which its performance are evaluated.  

Notwithstanding the good performance of MAPPSVM, it is essential to see whether the 

performance can be improved by selecting a proper threshold in the posterior probability.  A 

systematic investigation of this aspect has been performed. MAPPSVM has been rerun in an 

adaptive way for different levels of posterior probabilities and the different choices for the 

Table II. Main indicators of MAPP quality using the posterior probability to decide whether to 

trigger an alarm. The threshold of 80% provides a good trade-off between success rate and 

false alarms and therefore it is the reference case discussed in the rest of the paper. 

 

Threshold 

post prob 

DISR 

 

Succes 

Rate % 

 

Missed % 

 

Early % 

 

Tardy % 

 

False % 

 

Mean 

[ms] 

 

Std 

[ms] 

30 % 87.63 0.54 10.21 1.61 12.67 336 338 

40 % 93.55 0.54 4.30 1.61 6.45 338 339 

50 % 95.70 0.54 2.15 1.61 5.69 329 339 

60 % 96.23 0.54 1.61 1.61 5.40 330 338 

70 % 97.31 0.54 0.54 1.61 5.12 331 338 

80 % 97.31 0.54 0.54 1.61 4.62 316 333 

90 % 96.23 0.54 0.54 2.69 4.23 317 330 
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number of consecutive time slices for which the threshold is exceeded. The results are 

reported in Tables II for the case of the alarm triggered immediately after the first time slice 

considered disruptive by this version of MAPP. In appendix A, Tables A1 and A2 report the 

cases for which two and three consecutive disruptive time slices are required to trigger an 

alarm. From the tables it is evident that, even if the results obtained by MAPPSVM are already 

quite good, an optimum of the posterior probability to maximise performance exists. If the 

threshold is chosen as 80% and an alarm is triggered after the first time slice crosses this 

value of the probability, a quite good compromise if found between missed alarms and false 

alarms is minimised. This version of MAPP is referred to as MAPP1,80% in the following. The 

evolution of MAPP1,80% performance of is shown graphically in Figure 5. The performance of 

the predictor is quite positive and would satisfy the needs of the next generation of devices 

such as ITER. The quality of MAPP1,80% are even more remarkable if one considers the actual 

 
 

Figure 5. MAPP1,80% : evolution of the figures of merit in the analysed campaigns. The 

vertical red lines indicate the shots where an error has occurred. 
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behaviour of the so called tardy alarms. It has been checked that they all occur because, in 

these cases, the first symptoms of disruptions appear later than 10 ms before the beginning of 

the current quench. An example of these cases is reported in Figure 6, from which it can be 

seen that the inputs to the predictor do not give any hint about an incoming disruption before 

10 ms from the beginning of the 

current quench. As soon as the 

signals indicate an anomalous 

behaviour, the probability of 

disruption immediately jumps from 

zero to 100%. Of course, if the 

signals do not show any sign of 

disruption, in a certain sense the 

predictor is justified in not 

triggering an alarm. If the definition 

of tardy detection is moved later, 

progressively all the tardy 

disruptions are detected. If this 

aspect is taken into account, it can 

be seen that the number of missed 

alarms after the first training is 

always of the order of one or two 

shots. Therefore it is possible to 

argue that developed predictor 

exploits all the information in the signals [21]. 

Since the number of false alarms is about 2.5%, the predictor performs acceptably for 

ITER and it is difficult to expect a major improvement in performance using the locked mode 

and inductance as inputs. It is also worth noting that the predictor has mainly to learn the safe 

behaviour; much more retraining is indeed required due to false alarms whereas only a 

handful of cases are enough for MAPP to identify disruptions. This corresponds to the 

experimental practice, since it is normal that, during campaigns, the configurations are 

changed and progressively pushed to explore new regions of the operational space. The 

evolution of the operational space requires an adaptive predictor to adjust and take into 

account the new experimental situations. 

 
 

Figure 6. Evolution of the signals input to 

MAPP1,80% for the case of a tardy alarm. From top 

to bottom: evolution of the locked mode, evolution of 

the internal inductance and of the disruption 

probability.  
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With reference to the false 

alarms, it is worth mentioning that 

the statistics shown in table II are 

also quite pessimistic. In addition to 

the fact, already mentioned, that the 

adaptive training from scratch has 

been performed blind, without any a 

posteriori information, it is to be 

noticed that some false alarms 

included in the statistics are really at 

the limits. Many of them are 

considered false alarms only 

because the current does not reach 

the decay rate of 5MA/s, considered 

in JET the threshold to declare a 

current ramp down a current 

quench. The reported numbers in 

Table II respect this convention even 

when it is very questionable. A 

typical example is reported in Figure 

7, in which a jump in the locked 

mode appears exactly at the 

beginning of the current ramp down. 

The control system manages to keep 

the current decay below the threshold 

of 5MA/s but it is very dubious that, 

by detecting an anomaly,  the 

predictor really made a mistake in 

this case.  

 

 
Figure 8. Evolution of the signals input to MAPP1,80% 

for the case of a typical disruption.  
 

 
Figure 7. Evolution of the signals input to 

MAPP1,80%for the case of a dubious false alarm.  
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A part form the excellent MAPP1,80%  performance, the results of the scan in 

probability deserve some comments. The fact that performance does not vary proportionally 

to the variations in the probability threshold is due to the behaviour of the input signals, in 

particular the locked mode. 

Indeed, as shown in the first 

plot of Figure 8, for a 

typical disruptive discharge 

the locked mode signal 

changes so abruptly that the 

probability of disruption 

increases from almost 0% 

to almost 100% in a matter 

of a single time slice (time 

scales of about 1 ms). This 

fact limits the impact of 

selecting a different 

probability threshold for 

triggering an alarm. 

Moreover, since the 

aforementioned behaviour 

 

 
 

Figure 9. Top: plot of the safe and disruptive regions of the 

operational space in JET with the ILW as obtained with 

MAPP1,80%. The colour codes indicates the value of the 

posterior probability. The black crosses are all the non-

disruptive shots (all time slices for each shot at 1 ms time 

resolution). The red circles are the data of the disruptive shots 

at the time slice of the alarm. Bottom: zoom of the most 

relevant boundary region.   
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is quite general, the choice of the locked mode signal seems to be questionable for the 

purpose of devising a proportional reaction to alarms of various intensities for avoidance. The 

problem is further complicated by the fact that the locked mode precursor can manifest itself 

in a wide interval of times before the beginning of the current quench, from the order of a few 

seconds to a few ms. This is the main reason why predictors based on the locked mode 

signals have a dispersion in the warning times, which is typically very large, as confirmed 

from the previous tables. Therefore the locked mode signal seems to be appropriate as an 

input for last resort predictors aimed at triggering mitigation but not for avoidance. 

A second important observation is based on the evolution of the boundary between 

disruptive and non-disruptive parts of the operational space, as plotted on the feature space of 

locked mode and internal inductance (see Figure 9). The transition between the safe and 

disruptive regions is a curve and a good separation cannot be achieved by selecting a simple 

threshold on the locked mode, as done in predictors such as LMPT. A threshold in the locked 

 
Figure10. MAPPCarbon: evolution of the figures of merit in the analysed campaigns. The 

vertical red lines indicate the shots where an error has occurred. 
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mode signal would correspond to a vertical line in the plot of Figure 9. A good separation 

between the safe and disruptive regions of the operational space cannot be achieved with such 

a threshold. Indeed from the plot of Figure 9 it is evident that the threshold in the locked 

mode signal depends on the value of the plasma inductance.  This observation contributes to 

explaining why on JET predictors based on a threshold in the locked mode have traditionally 

performed worse than multisignal classifiers such as APODIS [21].   

 

 

5 Results for disruption mitigation: JET Carbon Wall 

To confirm the general applicability of the method described in the previous sections, 

the same approach has been applied also to a database of disruptions of JET with the carbon 

wall. Again, the amplitudes of locked mode and the internal inductance signals have been 

selected as inputs. The same adaptive training procedure, described in detail in Section 3.1 

has been implemented. This version of the predictor is called MAPPCarbon. The same criteria 

to evaluate the performance as used for the ILW case have been adopted. The results, in 

terms of the traditional 

basic indicators used to 

qualify predictors, are 

reported in Appendix B. 

Also in this case, a good 

equilibrium between 

success rate of disruption 

detection and false alarms is 

achieved for a probability 

threshold of 80 % and 

triggering after the 

detection of the first 

disruptive time slice. For 

this level of threshold the 

success rate is almost 96% 

and the false alarm are 

2.6%. With regard to these 

very competitive results, the 

same considerations, mentioned for the case of the ILW, also apply. The statistics are 

 

 
Figure 11. Plot of the safe and disruptive regions of the 

operational space in JET with the Carbon wall as obtained 

with MAPPCarbon (threshold at 80%). The colour codes 

indicates the value of the posterior probability. The black 

crosses are all the non-disruptive shots. The red circles are the 

data of the disruptive shots at the time of the alarm.  
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conservative both in terms of success rate and false alarms and for the same reasons. A 

graphic summary of MAPPCarbon performance, emphasizing the temporal evolution of the 

results is provided in Figure 10. 

From the tables in Appendix B and the plots of Figure 10 it is clear that the proposed 

methodology provides very good results also for JET with the carbon wall. This analysis 

therefore confirms the general character of the proposed technique, which can be applied to 

completely different experimental situations. The shape of the boundary in the plane of the 

Locked Mode and the Internal Inductance is reported in Figure 11. From the plot of the 

posterior probability, it is easy to see how the boundary between the safe and disruptive 

regions of the operational space is more involved in the case of JET with the carbon wall. 

This reflects the more forgiving nature of the wall, which allowed more freedom in 

experimenting than with the more delicate ILW.  

 

 

6 Application to disruption avoidance 

The results shown in this paper, and also those achieved by the most advanced general 

predictors deployed so far on JET, indicate that the performance obtained are not completely 

satisfactory. Tools such as the ones described in this paper can exploit practically the whole 

information contained in the input signals and they can be deployed for mitigation. 

Unfortunately, their performance are not good enough for avoidance. First, they cannot 

always provide sufficient warning times for undertaking successful avoidance actions, given 

the time scales of the current quench on JET and the response time of the available actuators. 

Second, the dispersion in the warning times remains too large, which constitutes a serious 

issue for the logic presiding on the decision about what actions to take. Indeed, at the moment 

of the alarm, it is not possible to tell whether a disruption is imminent or whether there are 

Table III. Comparison of the SVM using the locked mode and inductance and the SVM using 

the radiated fraction and the inductance as inputs 

  

Typology Percentage 
Discrete  

Ratio  

Mean  

[ms] 

Std  

[ms] 

MAPPPRAD False Alarms  17.73 180/1015 --- --- 

MAPP1,80% Success rate 97.31 179/185 316 333 

Pre-Alarm MAPPPRAD 38.92 72/185 860 528 
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hundreds of ms available to react. These of course are problems inherent in the characteristics 

of the signals used as input not of the predictor technology itself, as sown in Figure 8.  

On the other hand, the classification tools described in the previous sections, being 

based on probabilistic SVM, can in principle be applied also to disruption avoidance and not 

only mitigation. Of course, such a strategy is predicated on the fact that signals can be found 

that give sufficient warning time and possibly vary more gently than the locked mode. If such 

signals are available, different actions can be undertaken depending on the value of the 

probability of disruption. In this section, an example is provided For JET with the ILW to 

illustrate the applicability and capability of the presented methodology. It must be 

emphasised that prediction for avoidance, and not for mitigation, is a new field of application 

for machine learning tools. Various aspects will have to be further investigated and more 

optimization remains to be implemented. Moreover, as described in detail in the following, 

new signals will have to be made reliably available in real time for the deployment of these 

new tools. In the rest of this section only an example to illustrate the potential of the 

developed tools is therefore 

provided. 

In metallic machines, 

the control of heavy 

impurities is a major issue. 

Impurity accumulation can 

lead to disruptions. The 

radiation from the plasma can 

therefore be considered a 

potential indicator of the 

probability of disruptions. 

Moreover, it is expected that 

the dynamic of the radiated 

power is slower than the one 

of the locked mode. 

Therefore, it is worth 

investigating whether the radiated fraction can help in prediction for avoidance. To this end, a 

probabilistic SVM has been trained (MAPPPRAD) using plasma internal inductance and the 

radiated fraction PRAD/PINPUT as inputs. The same adaptive procedure described in Section 3 

has been followed again.  

 
 

Figure 12. Plot of the safe and disruptive regions of the 

operational space in JET with the ILW as obtained with 

MAPPPRAD (threshold at 80%). The colour codes indicates 

the value of the posterior probability. The black crosses are 

all the non-disruptive shots. The red circles are the data of 

the disruptive shots at the time of the alarm. 
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The approach tested consists of comparing the SVM based on the locked mode and 

the internal inductance (MAPP1,80%) as the basic predictor for mitigation and test to what 

extent the SVM using the radiated fraction can provide earlier alarms. Again, a threshold in 

probability of 80% provides the 

best compromise. The overall 

results are shown in Table III; as 

can be seen from this Table, 

there is an overall improvement 

in the warning time from about 

360 ms to 860 ms over the whole 

set of disruptions. The standard 

deviation of the warning times is 

also more favourable if 

normalised to the mean. This 

comes at the price of an increase 

of false alarms to about 18 %, 

which can or cannot be 

acceptable depending on the 

campaign and the scientific 

objectives. The probability 

distribution of the disruptivity in 

the space of radiated fraction and 

internal inductance is shown in Figure 12.   

Of course, since the predictors now give a probability as output, avoidance actions 

can be undertaken after an alarm from the SVM using the radiated fraction and then react 

according to the effects, always resorting to mitigation once the locked mode SVM launches 

an alarm. The radiated fraction, having slower dynamic evolution than the locked mode, 

allows some time for reaction, as can be seen from the evolution of the disruption probability 

for a radiative disruption shown in the plots of Figure 13. It is worth mentioning that he 

campaigns analysed do not include specific experiments aimed at testing the radiation limit; a 

specific investigation of the discharges devote to the operation at high radiated fraction is 

planned for the future using advanced tomographic inversion methods. 

 

 

 
 

Figure 13. Evolution of the signals inputs to MAPP1,80% 

and MAPPRAD and their output probability for a 

disruption due to a radiative collapse. The change in the 

disruption probability is much less abrupt for the 

predictor using the radiated fraction as input compared 

to the one using the locked mode.  
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7 A probabilistic classifier for determination of disruption types 

As a consequence of the observations reported in the previous sections, probably one 

of the most promising strategies for the development of predictors for avoidance based on 

machine learning tools could consist of optimizing their performance for individual classes of 

disruptions. This consideration of course raises the question whether probabilistic SVM can 

also be deployed for the identification of disruption types. Indeed various approaches to the 

classification of disruptions have already been tested on JET data quite successfully. The 

most performing techniques are based on Self Organising Maps (SOM), Generative 

Topographic Mapping (GTM) and K-means with Geodesic Distance on Gaussian Manifolds. 

All these alternatives have provided very good results in terms of automatically determining 

the disruption type many tens of ms in advance of the beginning of the current quench 

[22,23]. On the other hand they do not provide naturally a calibrated probability as output. 

Therefore, it is natural to investigate the potential of the probabilistic SVM techniques to 

discriminate disruption types. This subsection is meant simply to provide an example of 

classification of the disruption types just to illustrate the potential of the developed technique. 

Classification is a completely new field for the SVM-based probabilistic predictors and 

therefore a more systematic treatment is required. In addition, it must be considered that the 

database available is not completely satisfactory; any different disruption types are seen on 

JET and their classification will require a much wider statistical basis. On the other hand, to 

prove the potential of MAPP type predictors to classify a simple example is sufficient. 

As a feasibility tests, it has been decided to consider the cases when MAPPPRAD 

triggered an alarm. At the time of the alarm, a specific classifier has been developed to 

determine whether the disruption is due to excessive radiation. The objective of the classifier 

is therefore to determine whether, at the time of the alarm triggered by MAPPPRAD, the 

disruption is caused by excessive radiation or other causes. This binary classifier is already a 

very ambitious task given the database. Indeed only a total of 72 shots are therefore available. 

The classification of the disruption type has been provided by the group of expert session 

leaders operating JET and it is considered completely correct. Of the 72 shots available, 10 (5 

for each class) have been used for training and the remaining 62 for testing the performance 

of the predictors. A preliminary analysis revealed that the signals input to MAPPPRAD are not 

sufficient for classification. A success rate no higher than 60% is very difficult to achieve. 

This is due to the fact that these signals cannot identify the radiative disruptions. As 

additional inputs, the ratio of various bolometric chords have been selected. The bolometric 

diagnostic is available routinely an in real time on JET and therefore this is a choice 
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compatible with real time applications. The layout of the diagnostic is reported in Figure 14. 

The chords analysed are 24 of the vertical and 24 of the horizontal camera.  

The tool implemented to select the most relevant chords to perform the classification 

is the Classification And Regression Trees (CART) approach. CART is a machine learning 

technique, which constructs a model starting from the data [24]. The objective consists of 

classifying a target variable based on the information provided by a series of observations. 

The model output is a tree, 

whose internal nodes, also called 

non-leaf nodes, represent 

conditions on the observations. 

Each leaf of the tree is labelled 

with a class. The arc of the tree 

from the root to a leaf identifies 

a series of conditions, which 

when satisfied allow attributing 

to a new example the label of the 

leaf. The CART training, the 

algorithm that determines the 

classification tree on the basis of 

the set of examples, consists of 

recursively partitioning the data 

and finding the partition which 

minimizes the impurity of the 

leaf nodes. The impurity of a node is calculated with the Gini coefficient. Since CART does 

not provide probabilities, in our application this machine learning approach has been used for 

the selection of the most relevant chord ratios. Since it is well known that trees ae no very 

robust classifiers, the CART routines have been runs tens of times and the chord ratios most 

commonly identified have been selected for as inputs to a version of the SVM-based 

probabilistic classifier called MAPPClass. The five ratios finally selected are: 

 

1. Ratio 1: Horizontal chord #1     /     Vertical chord #2 

2. Ratio 2: Horizontal chord #22     /     Vertical chord #23 

3. Ratio 3: Horizontal chord #1           /     Horizontal chord #4 

4. Ratio 4: Horizontal chord #10         /     Horizontal chord #8 

5. Ratio 5: Vertical chord #2                /     Vertical chord #8 

 
 

Figure 14. Layout of JET bolometric cameras. Ni and Di 

indicate the chords used respectively as numerators and 

denominators in the five ratios provided as inputs to 

MAPPClass. 
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These five ratios of bolometric channels have been used as inputs to MAPPClass 

together with the internal inductance and the radiated fraction (basically the chord ratios have 

been added to the inputs of MAPPPRAD). 

The success rate of the classifier is reported in Table IV, for a threshold in probability 

of 80%. The performance of MAPPClass are certainly not completely satisfactory. On the other 

hand, various extenuating circumstances should be considered. First of all the complexity of 

the classification task, which renders the set of examples available very limited. Second, the 

nature of the classification itself; from a manual inspection of the data it appears very clearly 

that the two classes, radiative and other, are not very well separated. There are other types of 

disruptions, which are characterised by a very high radiated fraction. Therefore, the two 

classes are not completely mutually exclusive and this explains in particular the relatively 

high rate of errors in classifying the disruptions in the class others. On the other hand, this 

example is sufficient to support statement that the technology developed is more than 

adequate also for classification and hat much better results can be expected once various 

aspects of the database and the input signals are improved.  

 

 

8 Discussion and Conclusions 

The development of an SVM-based probabilistic classifier has allowed the 

implementation of a series of tools for disruption prediction, which provide very competitive 

performance. The generality of the developed tools has been confirmed by their deployment 

to predict disruptions in JET for both the Carbon wall and the ITER Like Wall. These tools 

are also very flexible and allow attacking all the main issues related to disruption forecasting 

in Tokamaks, from prediction for mitigation to avoidance and classification. Of course, the 

quality of the final results, particularly for the classification of the disrupting types, is 

predicated on the identification of adequate signals with sufficient information content. In 

any case, the output of such tools being a probability is a fact that increases their 

interpretability. Moreover, probabilistic predictors are certainly more suited to the integration 

Table IV. Success rat eof MAPPClass in identifying the disruptions of the radiative collapse type.  

  

Total Success Rate  

 [%] 

Success Rate Radiation Limit Class  

[%] and ratio 

Success Rate Others  

[%] and ratio 

77.4 80    (8/10) 76.9     (40/52) 
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into complex decision-making systems than simple binary classifiers, which do not qualify 

the quality of their results.  

As mentioned one of the main advantages of the probabilistic predictors of the MAPP 

family resides certainly in the flexibility provided by their probabilistic output. This 

information allows optimising the predictors and fine-tuning them for any specific 

application. On the other hand, the MAPP family remains a data driven approach to 

prediction. Therefore, the performance of these tools are ultimately determined by the 

information content of the signals used as inputs. This has been clearly shown by the analysis 

of the temporal evolution of the probability of disruption in the case of the locked mode and 

the radiated fraction as inputs. The limits of the statistics available and the signals are 

particularly evident for the more complex task of classification. 

In terms of practical applications, in the short term it is planned to use the developed 

tools for selecting the most appropriate threshold for the LMPT predictor, the one routinely 

used on JET for triggering mitigation actions. On the other hand, the main line of future 

investigations is expected to be the adaptation of the developed tools for avoidance. This is a 

quite innovative field for machine learning predictors, which have been so far mainly used 

for mitigation. To extend the applicability and improve the performance for avoidance, first a 

careful selection of the input signals will have to be performed. As shown in Section 6, 

analysing the radiated power seems to be a very promising alternative. Probably more 

sophisticated indicator than the simple total radiated fraction will have to be provided as input 

to the predictors in order to improve significantly the results. The peaking of the radiation, or 

in any case information about the radiation profile, are probably quite good candidates. Other 

profiles, such as the one of the temperature, will also have to be seriously considered.  

In addition to a proper selection of additional quantities, the training procedures will 

likely have to be refined. More sophisticated approaches will have to be developed to identify 

appropriate precursors and to use their information in a reliable way. More complex logic 

would probably also be necessary. As an example, to better profit from the effects of impurity 

on radiation, it is possible that different predictors will have to be trained for different levels 

of input power. Indeed, it is not obvious that a certain device can operate safely at the same 

radiated fraction at all levels of input power.  

With regard to other future applications, the same tools described in this paper can be 

profitably used to investigate other aspects of Tokamak physics. A natural potential extension 

of the methodology could be the investigation of the L-H transition physics, to complement 

the approach already presented in [25]. This problem can indeed also be formulated as a 
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boundary between different operational regimes [26] and could be therefore analysed with the 

tools developed for the present work.  
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APPENDIX A: Performance of MAPP for various choice of the triggering window: database of 

JET with the ILW. 

 

 

  

Table A1. Main figures of merit of MAPP quality using the posterior probability to decide 

whether to trigger an alarm. This adaptive predicators have been implemented triggering 

an alarm after two consecutive time slices detect a disruption.  

Thershold 

post prob 

DISR 

Succes Rate 

% 

Missed 

% 

Early  

% 

Tardy  

% 

False  

% 

Mean 

[ms] 

Std 

[ms] 

30 91.40 0.54 5.37 2.69 11.70 314 327 

40 94.08 0.54 2.69 2.69 6.37 314 329 

50 95.16 0.54 2.15 2.15 5.79 317 332 

60 95.70 0.54 1.61 2.15 5.55 321 336 

70 95.70 0.54 1.61 2.15 5.40 321 335 

80 94.62 0.54 2.15 2.69 5.69 312 331 

90 96.23 0.54 0.54 2.69 4.03 301 326 

 

Table A2. Main figures of merit of MAPP quality using the posterior probability to decide 

whether to trigger an alarm. This adaptive predicators have been implemented triggering an 

alarm after three consecutive time slices detect a disruption.  

 

Thershold 

post prob 

DISR 

Succes Rate 

% 

Missed 

% 

Early 

% 

Tardy 

% 

False  

% 

Mean 

[ms] 

Std 

[ms] 

30 91.93 0.54 5.37 2.15 11.61 314 327 

40 94.08 0.54 3.22 2.15 6.27 314 329 

50 94.62 0.54 2.15 2.69 5.79 317 332 

60 96.24 0.54 1.07 2.15 5.40 321 335 

70 95.16 0.54 1.61 2.69 5.79 320 335 

80 95.70 0.54 0.54 3.22 4.43 312 331 

90 96.24 0.54 0.54 2.69 4.23 310 326 

 
 



31 

 

APPENDIX B: Performance of the MAPPCarbon for various choice of the triggering window: 

database of JET with the graphite wall. 

 

 

Table B1 Main figures of merit of MAPPCarbon quality using the posterior probability to decide 

whether to trigger an alarm. This adaptive predicators have been implemented triggering an 

alarm after the first time slice detecting a disruption.  

 

Threshold 

post prob 

DISR 

Succes 

Rate 

Missed Early Tardy False Mean Std 

30 91.55 1.41 4.93 2.11 6.14 264 321 

40 93.66 0.70 3.52 2.11 5.80 272 344 

50 93.66 0.00 3.52 2.81 4.32 264 333 

60 92.96 0.00 4.22 2.81 3.89 276 346 

70 95.07 0.00 2.11 2.81 3.41 277 349 

80 95.77 0.70 1.41 2.11 2.64 270 332 

90 95.77 0.70 1.41 2.11 2.64 257 314 

 

 

 

Table B2 Main figures of merit of MAPPCarbon quality using the posterior probability to decide 

whether to trigger an alarm. This adaptive predicators have been implemented triggering an 

alarm after two consecutive time slices detecting a disruption.  

 

Threshold 

post prob 

DISR 

Succes 

Rate 

Missed Early Tardy False Mean Std 

30 88.73 1.41 7.04 2.81 4.93 274 340 

40 89.44 1.41 6.34 2.81 4.36 287 368 

50 90.14 1.41 5.63 2.81 3.69 280 367 

60 92.25 2.81 2.81 2.11 3.60 264 318 

70 92.95 2.11 2.81 2.11 3.31 259 317 

80 93.66 2.11 2.11 2.11 2.73 260 313 

90 92.25 2.81 2.11 2.81 2.21 260 316 
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Table B3 Main figures of merit of MAPPCarbon quality using the posterior probability to decide 

whether to trigger an alarm. This adaptive predicators have been implemented triggering an 

alarm after three consecutive time slices detect a disruption.  

 

Threshold 

post prob 

DISR 

Succes 

Rate 

Missed Early Tardy False Mean 

[ms] 

Std  

[ms] 

30 87.32 2.11 7.74 2.81 5.40 266 340 

40 88.73 2.11 6.34 2.81 5.17 273 340 

50 89.44 2.11 5.63 2.81 4.84 286 371 

60 90.84 2.81 3.52 2.81 3.89 297 394 

70 91.55 2.11 2.81 3.52 3.17 257 316 

80 93.66 2.11 2.81 2.11 2.26 264 318 

90 93.66 2.11 0.70 3.52 2.21 269 334 

 


