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In nuclear fusion reactors, plasmas are heated to very high temperatures of more than 100 million kelvin and in so-

called tokamaks, they are confined by magnetic fields in the shape of a torus. Light nuclei, such as deuterium and 

tritium, undergo a fusion reaction, which releases energy and makes fusion a promising option for a sustainable and 

clean energy source. Tokamak plasmas, however, are prone to disruptions, which are a sudden collapse of the system 

terminating the fusion reactions. As disruptions lead to an abrupt loss of confinement, they can cause irreversible 

damage to present-day fusion devices and are expected to have a more devastating effect in future devices. Disruptions 

expected in the next-generation tokamak ITER, for example, could cause electromagnetic forces larger than the weight 

of an Airbus A380. Furthermore, the thermal loads in such an event could exceed the melting threshold of the most 

resistant state-of-the-art materials by more than an order of magnitude. To prevent disruptions or at least mitigate their 

detrimental effects, empirical models obtained with artificial intelligence methods, of which an overview is given here, 

are commonly employed to predict their occurrence — and ideally give enough time to introduce counteracting 

measures.  
 

Tokamaks are currently the most promising configuration for a commercial fusion reactor 

but — contrary to stellarators — they are prone to disruptions. Because they are also very 
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complex devices, disruptions depend on many effects as well as on nonlinear interactions 

between them. Pulsed tokamak experiments consist of discharges of currents of the order 

of millions of amperes. The normal evolution of these discharges can be suddenly 

interrupted by various types of instabilities [1]. Particularly frequent and dangerous are 

instabilities related to excessive radiation (from the visible to the X-ray region of the 

spectrum), too high plasma density or anomalous current profiles. 

Disruptions occur in two stages, namely the thermal quench and the current quench. 

During the thermal quench, most of the plasma’s internal energy is lost on time scales of 

the order of one millisecond. This thermal quench is immediately followed by the current 

quench, during which the plasma current is extinguished in time intervals that can last 

from a few to hundreds of milliseconds in present-day tokamaks. The lead-up to a 

disruption is typically characterised by anomalies in several diagnostic signals, for 

example in the electron temperature (see Figure 1). These so-called precursor signals, 

however, can also be present in non-disruptive plasmas, making the prediction of 

disruptions a complex multi-objective problem. Because the mitigation of disruptions 

requires the immediate termination of the discharge, false alarms are costly in terms of 

resources as well as risking damage to the devices. For this reason, both false positives 

and false negatives need to be kept to a minimum.  

The accurate prediction of disruptions will be even more important for next-generation 

tokamaks, which will operate with metallic plasma facing components. Metal offers 

several advantages. First, it can stand the loads with acceptable erosion, meaning that it 

has a smaller impact on the lifetime of the components facing the plasma and thus on the 

efficiency of the tokamak. Second, the retention of the plasma fuel is comparatively low. 

High retention, that is the accumulation of radioactive fuel within the wall, is a safety 

threat and would also affect the availability of the tokamak. However, recent experiments 

with metallic walls have shown that the challenge posed by disruptions is more severe for 

devices with metallic plasma facing components than expected. ITER requires less than 

5% of pulses with disruptions at a maximum current of 15 MA [2]. Experiments on the 

Joint European Torus (JET) with the ITER-like wall made of tungsten and beryllium have 

demonstrated that the rate of disruptions can be unacceptably high [3]. The rate in the so-

called baseline reference scenario for ITER reached 80% on JET [4], but was excessive 

in all the devices, on which the scenario has been tested under reactor relevant conditions. 

In the hybrid reference scenario that is developed on JET, the rate of disruptions was 

about 20%, which also does not meet the requirements for ITER. 
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In light of these recent findings, the abrupt termination of the discharges is a major issue 

for tokamaks and disruption prediction will be a crucial real-time requirement in even 

larger ones. Because theoretical models are often insufficient to reliably describe 

disruptions, empirical models based on machine learning are a common approach for 

understanding and predicting disruptions. 

 

Models based on traditional machine learning 

Disruption predictors based on machine learning are usually conceptualised as binary 

classifiers: the training process splits the operational space into two regions — the 

disruptive and the non-disruptive region — and determines the boundary in between. 

Ideally, classifications are meant to be carried out during discharges with a typical time 

resolution on the order of milliseconds. The signals are typically available in the form of 

time series, which are sequences of data points indexed in time (usually equally spaced). 

For disruption prediction, the signals have to be processed and then suitable predictors 

have to be developed. So far, the variety of existing real-time signal processing methods 

implemented have explored practically all known data analysis techniques for time series 

in the time domain [5-15]. These techniques have been complemented with tools in the 

frequency domain [16], based on Fourier transforms. Approaches relying on a mixture of 

time/frequency domains, including wavelet decompositions, have also been pursued [17-

19].  With regard to classifier technologies, real-time compatible predictors have typically 

been based on artificial neural networks, support vector machines, fuzzy logic, generative 

topographic mapping and deep learning and have been studied on a broad range of 

tokamaks, including ADITYA (India) [20], ASDEX Upgrade (Germany) [21], DIII-D 

(US) [22-24], J-TEXT (China) [25], NSTX (US) [26], ALCATOR C-MOD (US) [27], 

JT-60U (Japan) [28], EAST (China) [29-31], HL-2A (China) [32] and JET (UK) [33-35]. 

Out of the three machine-learning based predictors that were implemented in JET’s real-

time network, APODIS [17], SPAD [36], and Centroid [37], the former correctly 

identified disruptions in more than 98% of cases, and had a false alarm rate, that is 

wrongly classified non-disruptive data, in less than 2% of cases with an average warning 

time of hundreds of milliseconds. 

Despite encouraging results, this disruption predictor and others based on traditional 

machine-learning technologies suffer from inherent fundamental limitations. First, they 

are not derived from first principles but are empirical. This means that their results are 

difficult to interpret in terms of plasma dynamics and whether they can be extrapolated 
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to future, larger devices [38-39] remains unclear. Second, traditional machine-learning 

predictors require very large amounts of data for the training. Given the potential damage 

caused by disruptions, collecting many examples is not a viable option for large-scale 

devices such as ITER. Finally, the predictors lack generality. Even when large data sets 

are available, the performance of these predictors degrades quickly when the discharge 

present characteristics different from those in the training data. Moreover, the use of 

predictors is typically restricted to the specific tokamak for which they were derived and 

it has proven challenging to transfer machine-learning classifiers from one device to 

another. 

The classifiers employed in the studies on tokamaks mentioned above [20–35] were 

developed using real-time valid solutions, which guarantee response times within a 

specified time window. The predictors discussed in the remainder of this work have been 

tested offline with real-time compatible technologies and using only real-time available 

signals. After having been trained, these predictors can provide their output on a 

millisecond time scale, which is sufficiently fast not to affect the overall reaction time of 

the actuators for disruption mitigation and avoidance in tokamaks.  

 

From closed- to open-world learning 

The main drawbacks of traditional machine-learning predictors can be attributed to the 

assumptions adopted for their training. Most examples discussed above followed a 

closed-world approach to learning. This means that the information required for training 

the classifier has to be available prior to the first prediction. Moreover, the performance 

of traditional classifiers hinges on the assumption that the data are sampled independently 

from an identical distribution function. This assumption, however, implies that the 

plasmas are stationary in the sense that their data distribution function does not change 

significantly because the predictors have no capability of adapting to new regimes or new 

physics. In practice, these assumptions are systematically violated due to the rapid 

evolution of experimental programmes.  

This situation is particularly unsatisfactory because humans can learn from few 

examples, can adapt to changing situations and can also transfer knowledge from one 

problem to similar ones. 

In recent years, more attention has been devoted to providing deep learning, and 

interpretable solutions for disruption prediction across tokamaks and in particular for 

next-generation of devices such as ITER [40]. Efforts towards implementing an open-
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world approach to learning have also become more popular, as evidenced by a series of 

adaptive strategies that have been developed to maximise the performance of disruption 

predictors in non-stationary conditions. The training of adaptive predictors is done from 

scratch, meaning that only a single example of each class (discharge with or without a 

disruption) is needed for a prediction [18, 19, 21, 34]. The predictors are updated between 

discharges by refining the training sets and by implementing trajectory learning during 

the shots. The cases causing the predictors to err still contain a lot of useful information. 

Retraining them with these failed examples is an effective form of adaptive learning. 

Because fusion plasmas exhibit memory effects, taking into account the evolution of their 

properties — their trajectories as opposed to values at specific times — is beneficial for 

the improvement of the predictor performance. The most advanced versions of open-

world strategies also include various forms of de-learning that allows predictors to discard 

or reduce the effects of training data that do not apply anymore.  

For the JET tokamak, fully general and automatic adaptive predictors have been 

developed. These are based on ensemble classifiers, which consist of a high number of 

specific predictors — each trained on slightly different datasets [41]. The outputs of the 

individual classifiers are then evaluated with a suitable decision function to determine 

whether a disruption is likely to occur. The overall performance of these adaptive 

predictors is promising: false alarms are less than 1% and the rate of correctly identified 

disruptions is higher than 99%. This is shown in Figure 2, which reports results for 

thousands of discharges at the beginning of the operation of JET with the ITER-like wall 

to simulate the initial operation of a new device [41]. In this case, the first prediction of 

the ensemble classifier was based on a single disruptive and four non-disruptive 

discharges [34, 41]. Because adaptive predictors based on open-world learning have been 

successfully transferred from one device to another [42, 43], they provide much better 

flexibility and generality than more traditional machine-learning techniques. Therefore, 

open-world learning is a very promising approach for implementation in next-generation 

tokamaks.  

 

Interpretable models with symbolic regression 

The classifiers discussed above provide mathematical models, which have no relation to 

the actual plasma dynamics and are difficult to interpret in terms of our understanding of 

plasma physics. For this reason, methodologies for steering the machine-learning process 

toward interpretable models, reflecting the actual physics and dynamics of the phenomena 
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involved, are under development. This is more ambitious than ‘traditional’ explainable 

artificial intelligence [44], because the goal is to obtain mathematical equations 

describing the underlying physics [26, 45-46].  

Physics interpretability of models obtained with support vector machines was achieved 

by applying symbolic regression methods [47], which make use of genetic algorithms 

[48]. The deployment of symbolic regression allows the exploration of a large set of 

mathematical equations — hundreds of thousands of models — describing the boundary 

between non-disruptive and disruptive regions of the operational space. Each generation 

of models is evaluated based on a fitness function and those demonstrating better 

performance in terms of this metric are retained and used as starting point for the next 

iteration, from which new models are derived by using traditional genetic operators such 

as mutation, copy and cross-over.  

The equation of the boundary, between disruptive and non-disruptive regions in JET’s 

operational space with an ITER-like wall displayed in Figure 3, was obtained with 

symbolic regression and revealed information on factors that are likely to trigger 

disruptions [49]. 

 

Warning time prediction 

Even predictors with a good performance in terms of success and false alarm rates suffer 

from a major limitation: on JET, the range of their warning times can be of the order of 

one second. Thus, the control system lacks the information about the time remaining 

before the beginning of the current quench— it could be in a few milliseconds or in a 

second.  Given the importance of predicting the time remaining before the occurrence of 

a disruption [37] or at least providing a robust estimate of the minimum time still available 

to introduce remedial actions [50-51], accurate estimates of the warning time are 

indispensable. A recent study on JET combining Support Vector Machines and genetic 

programming [52] allowed integrating three classes of predictors for avoidance, 

prevention and mitigation of disruptions. As shown in Figure 4, the warning times of the 

overall system obtained with the three predictors present negligible overlap, providing a 

clear lower bound of the time intervals available to introduce remedial actions.  

 

Outlook 

For the prediction of disruptions on next-generation tokamaks like ITER, these results 

need to be transferred to these devices. Achieving the same performance after adequate 
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modifications of the algorithms would be a major breakthrough — even if the overall 

system requires large amounts of data for the training. In this regard, a coherent strategy 

is emerging for ITER, suggesting to deploy adaptive predictors in the first operational 

stages, providing inputs to the genetic programming for the training of the integrated 

system that would provide accurate warning times for avoidance, prevention and 

mitigation of disruptions.  

Apart from the prediction of disruptions in tokamaks, most of the discussed data-driven 

techniques are fully general and could be adapted for forecasting and understanding any 

form of collapse, crash and catastrophe in other fields of science. Indeed, some of these 

techniques are already being deployed in various disciplines ranging from earth science 

to epidemiology [53-55]. 
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Figure captions 

Figure 1. Disruption precursors. Time evolution of typical disruption precursors during normal 
operation and in the lead-up to a disruption. In agreement with the literature, the beginning of the 
current quench is considered the disruption time. 

Figure 2. Performance of adaptive disruption predictors on JET with the ILW. The rate of 
correctly identified disruptions, the so-called true positive rate, is shown in red on the left vertical 
axis. The right axis displays the false alarms rate. The x-axis reports the sequential discharge 
number (the database consists of about 2500 shots). The results are based on a purely adaptive 
approach, where the discharges in the figure had not been used in the training of the classifier, 
which was retrained only when errors occurred in the predictions. 

Figure 3. Non-disruptive and disruptive regions of the operational space in JET. In 
discharges with the ITER-like wall, non-disruptive and disruptive regions are identified. The 
vertical axis and the surface, depicted according to the colour code on the right, represent the 
posterior probability of disruption. The black asterisks are all the non-disruptive shots (10 random 
time slices for each shot). The white dots are the data of the disruptive shots, at the time when the 
predictor triggers the alarm. The black squares are the false alarms. The line separating the 
disruptive from the safe region of the operational space, whose equation was obtained from 
symbolic regression, is displayed in red. 
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Figure 4. Warning time intervals for predictors. The predictors were optimized for 
avoidance, prevention and mitigation of disruptions. Avoidance actions keep the plasma 
within stability boundaries, prevention methods terminate the discharge in a controlled way 
and mitigation techniques alleviate the consequences of unavoidable disruptions. More than 
one thousand discharges of JET with the ILW were analysed. The warning times present 
negligible overlap, providing a clear estimate of the minimum intervals remaining to introduce 
remedial actions — from a minimum of 400 milliseconds in the case of the avoidance predictor 
to tens of milliseconds in the case of the one for mitigation. The vertical purple line indicates the 
disruption time, i.e. the beginning of the current quench, and the blue solid line represents the 
plasma current. 
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