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Electron Bernstein waves (EBWs) have been con-
firmed as a suitable choice for plasma heating and cur-
rent drive generation (electron Bernstein current drive)
at densities where the O and X modes find cutoff values.
In the present work, an estimation of the efficiency func-
tion of current generated for a relativistic distribution
function is presented. The arbitrary large values of the
refractive index, due to the EBW propagation properties,
have also made necessary the expansion of our calcula-
tion up to any Larmor radius order. Particle trapping has
been included considering the Okhawa effect, and the

I. INTRODUCTION

Not only is current drive generated by electron cy-
clotron waves an advantage for current sustainment and
continuous operation in tokamaks, it also is a good tool
for tailoring the rotational transform profile, positioning
low-order rationals in the plasma column, modifying the
magnetic shear, and thus accessing improved confine-
ment regimes in stellarators.'”” As is well known, the
O-modes and X-modes encounter cutoff density values
that electron Bernstein waves (EBWs) do not, and there-
fore, this property makes them key for current drive gen-
eration in overdense plasmas. The viability of current
drive generation by means of EBW heating [electron
Bernstein current drive (EBCD)] in stellarators under
this condition has been experimentally demonstrated.?
Moreover, the propagation properties and the electro-
static nature of EBWSs provide them with arbitrarily large
values of both parallel (N;) and perpendicular (N,) re-
fractive indexes,” which implies a drastic change in the
resonance condition in momentum space and, conse-
quently, widens the integration limits in the parallel mo-
mentum for the absorbed power density calculation,
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fractions of power absorbed by trapped and circulating
particles separately have been estimated. Future work
toward implementation of this method to the ray-tracing
code used for realistic TJ-1I ray trajectories (TRUBA) is
also discussed.

KEYWORDS: ¢electron Bernstein waves, stellarator, current
drive

Note: The figures in this paper are in color only in the electronic
version.

causing electrons with large parallel velocity to resonate.
For heating and current drive purposes, an EBW heating
system is being installed in the TJ-II stellarator'° (O-X-B
scenario) at first harmonic (28 GHz), 300 kW of power
injected, and 100 ms of pulse length.!!

The properties of EBW in TJ-II are shown in Ref. 12,
including the development of a ray-tracing code based on
a weakly relativistic dispersion relation, which is suit-
able for performing such studies.

The remainder of the paper is organized as follows:
Section II shows the efficiency function, Sec. III is de-
voted to the inclusion of trapped particles both in current
drive and power absorption, and Sec. IV presents the
conclusions.

Il. EFFICIENCY FUNCTION AND CURRENT GENERATED

Our calculation of the current drive efficiency is based
on the asymmetric modification of the electron resistiv-
ity in momentum space.'> Assuming a completely ion-
ized pure hydrogen plasma—thus, the ion charge state
Z; = 1 from now on—the fully relativistic efficiency
function for a Maxwellian distribution function and any
angle of propagation is'#
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where u = p/mc, y = (1 + u?)"/2 is the Lorentz relativ-
istic factor, and G (u) is expressed as
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For a review on current drive physics, see Ref. 1,
where the equivalence of the method used here and the
adjoint one, which is explored in Ref. 15, is established.
The induced current density parallel to the magnetic field
in terms of the efficiency function can be written as
follows'6:

2melmc?

8J,
J, = Afdu 8_Pd g w,(u) , withA = IV

3)
where
n = electron density
m = mass
e = electric charge
¢ = speed of light
A = coulomb logarithm

and the sum runs over the harmonic order s. Once the
integration of Eq. (3) over u, has been carried out, we
can rewrite the current density parallel to the magnetic
field as

B = AJdun”l(”u) 2 w,(uy) 4)

The absorbed power density in momentum space w;
at harmonic s takes the following form (see, e.g., Ref. 17):

2,2
) = L I ER exp(-y)
X &(y — so /o — Nyuy) (5)
where
w, = electron plasma frequency

o = wave frequency
w =mc*T
T = electron temperature

K, = second-order MacDonald function.
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The factor 6(y — sw./w — Nyuy) in wy(u,) is due to the
absorbed power being different from zero only for reso-
nant electrons. In the polarization term |IL;-E|, E = Ee is
the wave electric field, and II; is expressed as follows:

S‘Is(p) u,
I, = ,—iJ{(p),J(p) — |, (6)
p u

1

where J,(p) are the Bessel functions of the first kind with
argument p = N, u, w./w. In contrast with previous works
that referred to electron cyclotron waves,'®!” where Bessel
functions in Eq. (6) can be approximated only by the first
term, for EBWs with N, > 1, Bessel functions have been
expanded iteratively until their convergence. In order to
obtain the corresponding N, and polarization of the Bern-
stein wave e, given the values of N, wave frequency, and
plasma parameters, the dispersion relation for a weakly
relativistic Maxwellian distribution function up to the
second order in Larmor radius has been solved.!®1° This
expansion up to a lowest order in Larmor radius than the
one used for the absorption density calculation using
Egs. (5) and (6) is sufficient for this purpose since it is
used to determine the optical properties of our wave (e
and N, ), which is equivalent to assuming that it behaves
optically as the first Bernstein mode. In this way the
distribution function is just an algebraic equation and can
be easily solved. On the other hand the power absorption
is more sensitive to the number of terms taken into ac-
count in Eq. (6) than to the introduction of these first
Bernstein mode e and N, . The only quantity left for the
calculation, in order to obtain the correct units for the
current density J; and absorbed power density wy, is then
the wave electric field amplitude E. This has been ap-
proximated by the following relation between the energy
density associated with the wave and its electric field:
U~ [(0? + 0))/20,15, E* (Ref. 20). This relation
assumes that electrons are moving coherently with the
wave electric field oscillation, and the aim of its use is to
obtain correct units and acceptable orders of magnitude
for the current and power densities. On the other hand,
the global current efficiency &¢p does not depend on E,
and that is the physical quantity of interest in the case we
couple this tool into a ray-tracing code.

The results for the absorption coefficient, consider-
ing only the first harmonic (s = 1), are shown in Fig. 1 for
N, = 0.4 and N, = 1.2. It can be seen that the difference
between the expansion up to the first relevant order and
the convergent one becomes larger in the vicinity of the
resonance frequency w = 28 GHz. That difference is of
the same order of magnitude in both cases, due to the
similar values of N, that satisfy the dispersion relation
for both parallel refractive index values. Apart from this
fact the only remarkable difference lies on the frequency
interval with nonzero absorption coefficient, larger for
1\,” =1.2.

With the total absorbed power density P, perform-
ing the integration of w, over the parallel momentum of
FUSION SCIENCE AND TECHNOLOGY
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Fig. 1. Comparison of the absorption coefficient as a function
of the wave frequency w up to the lowest relevant order
in Larmor radius (dashed thin lines), and for an expan-
sion up to the convergent order (continuous thick lines),
for Ny =04 and N, = 1.2, with T, = 1 keV, n, = 1 X
10" m~3, and B = 1 T. The dotted lines are referred to
the right y-axis and represent the corresponding values
of N, that satisfy the dispersion relation for Bernstein
mode at first harmonic (28 GHz).

the resonant electrons, the macroscopic current drive ef-
ficiency &¢p is finally given as

Ji Jn(vll)ws(vll) dv,
fo = p " - )

b [

As is shown in Fig. 2 the current efficiency &¢p(r)
decreases as N, increases and becomes flatter for N, = 1.
It is also seen that the frequency interval where the effi-
ciency is different from zero is wider for the latter case.
This is shown also in Fig. 3, where the induced parallel
current density decreases remarkably as N, becomes larger,
although the driven current takes place in a wider fre-
quency range because the resonance condition is satis-
fied in this wider frequency interval. The conclusion that
can be drawn from these features is that the advantage
that Bernstein waves represent for the current generation
in a wider range in parameter space, due to its capability
to reach a high parallel component of the refractive index
along the ray trajectories, counteracts with the fall in the
current efficiency as the V, increases.

I1l. PARTICLE TRAPPING EFFECTS

It is well known that particles with momentum u are
trapped if

(Lt"/u) = My = (1 - B/Bmax)l/2 ’ (8)
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Fig. 2. Dependence of the efficiency function £ ¢p on the wave
frequency w (thick lines), for Ny = 0.4, N, = 0.7, and
Ny = 1.2, and their corresponding curves of N, satisfy-
ing the dispersion relation for Bernstein mode at first
harmonic (thin lines). Plasma parameters: 7, = 1 keV,
n.=1x%10""m3 and B=0.95T.
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Fig. 3. Induced parallel current density J, as a function of the
wave frequency w, for several values of N (thick lines)
and their corresponding N, obeying the dispersion re-
lation for Bernstein mode at first harmonic (thin lines).
As before, T, =1keV,n,=1X10°m 3, B=095T,
and 300 kW of injected power.

where
M, = trapping parameter
B = local magnetic field

B.x = maximum magnetic field on a field line, or
approximately, on the magnetic surface, since
a magnetic field line is dense in a magnetic
surface for nonrational rotational transform

values.
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The cone defined by the equality in Eq. (8) cuts the
resonance condition curve into two points in momentum
space:

YN u? £ p (Y = 1+ uiNHY?
u =
" G

)

where Y; = sw./w. These intersections fix the integration
limits for the parallel current calculation in Eq. (7), in
order to exclude trapped particles from the net current
contribution. At the same time, this procedure applied to
the integration of w(u,) provides a useful and easy way
to distinguish between the contribution to absorption due
to trapped and circulating particles separately.?! This ap-
proach to the effect of trapped electrons on current gen-
eration, together with the diffusion of circulating electrons
into the trapping region in momentum space, which is
explained below, might overestimate the result of current
drive because the slowing-down equations governing the
present model do not take into account the change in the
slowing-down frequency due to the presence of a large
population of trapped electrons in the trajectory of those
that produce current. Integration of the Langevin equa-
tions considering two different slowing-down frequen-
cies could be a task for future work. For a better knowledge
of the trapped electrons on current drive using the adjoint
formalism, see Refs. 22, 23, and 24.

For the calculations presented in Figs. 4 through 8, a
set of profiles similar to those measured in TJ-II has been
considered. The magnetic field and trapping parameter
profiles have been taken as B ~ Bro/(ro + ar.y) and

Resonance condition and loss cone at ry4=-0.60
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Fig. 4. Resonance condition for N, = 0.2, Ny = 1.2, and N, =
2.5, at the radial position r,; = —0.60, in a plasma
with similar parameters and profiles as the one con-
fined in TJ-II. Electron density and temperature at the
core n,o = 1 X 10" m™3 and T,o = 1 keV, B(ryy =
—0.60) ~ 1.1 T and u,(ry = —0.60) ~ 0.24. The
solid thick line is the limit over which resonant elec-
trons become trapped (u; = uy/u).
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wm,~0.08 +0.27|r. |, where r ;= r/a is the normalized
radius, r is the radial coordinate, a = 0.2 m is the mean
minor radius of the plasma, and ry = 1.5 m is the major
radius of the device. Note that the latter expression for
the trapping parameter and the magnetic field profile do
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Fig. 5. Comparison of the absorption coefficient for N, = 0.2
as a function of the effective radius 7.4, considering all
the resonant electrons in momentum space « (thick
continuous line), circulating electrons «.. (dotted line),
and trapped electrons «;, (dashed line), in a plasma
with electron density and temperature at the core n,o =
1 X10' m=3 and T, = 1 keV, respectively. TJ-II typ-
ical profiles for magnetic field and ripple have been
considered. The thin continuous line represents the N
obeying the dispersion relation for Bernstein mode at
first harmonic.
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Fig. 6. In the left y-axis: absorbed power density in momen-
tum space w(u;) for a unitary wave electric field at
different radial positions and the same N, = 0.2, as in
Fig. 5. In the right y-axis: perpendicular momentum
Uy s obeying the elliptical resonance condition at those
radial positions, together with the trapping cone at the
last position (continuous thick line). Same plasma pa-
rameters and profiles as Fig. 5.
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Fig. 7. Comparison of the absorption coefficient, for N, = 1.5
as a function of the effective radius .4, considering all
the resonant electrons in momentum space « (thick
continuous line), circulating electrons «,. (dotted line),
and trapped electrons «,, (dashed line), in a plasma
with electron density and temperature at the core 1,9 =
1 X 10" m~3 and T, = 1 keV, respectively. TJ-II typ-
ical profiles for magnetic field and ripple have been
considered. The thin continuous line represents the N
obeying the dispersion relation for Bernstein mode at
first harmonic.
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Fig. 8. In the left y-axis: absorbed power density in momen-
tum space w(u,) for a unitary wave electric field at
different radial positions and the same N, = 1.5 as in
Fig. 7. In the right y-axis: perpendicular momentum
u; s obeying the hyperbolic resonance condition at
that radial position, together with the trapping cone at
the last position (continuous thick line). Same plasma
parameters and profiles as Figs. 5 through 8.

not conflict with Eq. (8) since as has already been men-
tioned above, the value of B,,,, is referred to as the max-
imum value of the magnetic field on a given magnetic
surface, and not on the magnetic field radial profile, and
FUSION SCIENCE AND TECHNOLOGY
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thus, u, shows a dependence on 7,4 that in TJ-II can be
fitted as the expression written above. The density and
temperature profiles adopted have been taken as 7, =
T,oexp[—(r/0.08)?] and n, = n,o[1 — (r/a)*]?. The sym-
metry of a circular tokamak has also been considered,
where our normalized radius range represents its equa-
torial plane.

The trapped particle cone and the resonance curve
for different values of |N,|, larger and smaller than 1,
which separates the case where the resonance condition
is an ellipse from the case where it is a hyperbola, can be
seen in Fig. 4. This change in the resonance condition can
be clearly seen as the parallel refractive index increases.
A plasma with the profiles written above, with T,, =
1 keV and n,o =1 X 10" m~3, at r,; = —0.6 has been
considered. In that radial position, a significant differ-
ence in the width of the interval where the resonance
condition is above the trapping limit (u;/u = w,) can be
observed for the different values of N, taken. This means
that a very variable population of resonant trapped par-
ticles is found. This fact is even more evident in the case
in which |N,| > 1. For example, for N, = 2.5 nearly the
whole right arm of the hyperbola is over that limit, and
thus, the population of resonant trapped electrons is far
larger than in the other two cases, where a small interval
of the resonant electrons in momentum space is trapped.

As has been stated above, the contribution of the
trapped electrons to the total absorbed power density can
be estimated, just modifying the integration limits for the
calculation of P(r), in order to exclude those electrons
present in the trapping region in momentum space. The
total absorbed power is given by the integration of Eq. (5):
P, = [w,(u) duy. The absorbed power by trapped parti-
cles is given by Py ;yqppea = 2, J¢, w,(uy) duy, where C;
are the domains of integration in parallel momentum
where the resonance curve is over the trapped particle
cone. This calculation is relevant for estimating the be-
havior of particles that absorb the power and the enhance-
ment of pumpout (see Ref. 25). The change of scenario in
the resonance condition from an elliptically shaped curve
(|Ny| <'1) to a hyperbolic one (|N;| > 1) also makes it
necessary to define cutoff values for the integral limits as
these tend to *co in order to perform a numerical calcu-
lation of Eq. (7), and taking into account that the popu-
lation of electrons beyond those limits is negligible.
The absorption coefficient « is related to the absorbed
power density P, as a(r) = P,(r)wb?, where b is the beam
radius, and which has been considered 2 cm in our
calculations.

Figure 5 shows the absorption coefficient « as a func-
tion of r.y for Ny = 0.2 (elliptical resonance condition),
considering the already mentioned profiles. The absorp-
tion coefficient, taking into account the whole population
of resonant electrons for the Bernstein mode of propaga-
tion at first harmonic (28 GHz), is represented in com-
parison with the absorption coefficient due to the trapped
population «,, and the circulating one «.. In this case it is
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shown that the fraction of the power absorbed by trapped
particles is smaller than the one absorbed by passing
ones for all 7., but it is far from being negligible close to
rep = 0. This contribution of trapped particles to the
absorbed power where the ripple of the device is lower
and the trapped particle cone is narrower can be ex-
plained with the shape of the resonance condition in re-
lation to the trapping cone and the absorbed power density
in momentum space. This can be observed in Fig. 6, for
negative values of the normalized radius in the vicinity of
the center of the plasma (r,; = —0.02), where Fig. 5
shows the maximum contribution of trapped particles to
the absorption coefficient, and the absorbed power den-
sity in momentum space w,(u,) shows a peaked profile
centered between the cuts of its corresponding resonance
curve and the trapping cone. In order to avoid unneces-
sary confusion to the figure, only the trapping cone for
the last of the values of r,; has been represented in Figs. 6
and 8 since its angle does not change noticeably along the
interval.

The absorption coefficient a for N, = 1.5 (hyper-
bolic resonance condition) in Fig. 7 is also shown for
the Bernstein mode at first harmonic (28 GHz). It is
seen that the width of the nonzero absorption coeffi-
cient region is larger than in the former case. It can be
observed that the contribution to the absorption coeffi-
cient by trapped particles becomes the only one to the
total absorption coefficient in the center. Figure 8 shows,
for r,y = 0 and N, = 1.5, the absorbed power density
profile in momentum space whose main contribution
lies between the intersections of the right arm of the
hyperbolic resonance condition and the trapping cone.
This explains why such an important contribution to
the absorption coefficient of trapped electrons takes place
in the center, as Fig. 7 shows.

In addition, the diffusion in momentum space can
produce that circulating particles become trapped, which
is known as the Ohkawa effect,?® and thus, the efficiency
function takes the following form'6:

w1+ 2g(w) <,U«tu)
|u”| [1—g(u)]2\/g(u)

8X(uT)<7—1>
>< [
dur \y+1

1 u, \?
X = 2+Y,—uyNy\| — )
u u,

where yr(u) = yr(u) — y(uz) is the modified response
function. Being the response function the total contribu-
tion of a single particle to the current

nr(w) = n(u)

|”n|

(10)

x(u) = _% fooo”u(t,u)dt ) (11)
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and uy is the momentum at which a circulating particle
becomes trapped, with the module and parallel compo-
nent given by

u 24/g(u)
Ury = — Mg and  up = L (12)
' |”||| 1—g(uw
with
gm>=(“”)111 (13)
|u”| v +1 '

and the derivative of the response function that appears
in Eq. (10) is calculated as follows

ax (ur Ur 2
“)=MP&J——mwﬂ.
duy Yr Yr

The results of parallel current density as a function
of the frequency, considering the efficiency as in Eq. (10),
are shown in Figs. 9 and 10. As can be seen in Fig. 9, for
constant parallel refractive index N, = 1 and different
values of w,, the sign of the current can be changed
because of the effect of particle trapping. A frequency
range of flat and null current grows with w, as well,
which shows a deterioration in current production. Fur-
thermore, the changes of the current sign are more stressed
in the case when the maximum of the current is larger, as
Fig. 10 shows for N, = 0.4. In Figs. 9 and 10, the peaks
with maximum absolute value of current J; are moving
away from each other as w, and N, increase, with the
dependence of this fact being stronger on the latter
parameter.

(14)
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Fig. 9. Parallel current density dependence on the wave fre-
quency for fixed values of N, = 1, and varying u,, for
T.=1keV,n,=1x10" m=3 and B=0.95T. On the
right y-axis the values of N, that satisfy the dispersion
relation for Bernstein mode at first harmonic.
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g. 10. Parallel current density dependence on the wave fre-
quency (thick lines) for fixed values of u, = 0.4, and
varying Ny =1, for T, =1 keV, n, =1 X 10'” m~3, and
B =0.95T. On the right y-axis the values of N, that
satisfy the dispersion relation for Bernstein mode at
first harmonic (thin lines).

Finally, Fig. 11 shows the integration of J; along the
equatorial line of a circular tokamak cross section, in
order to obtain the total parallel current generated /, as a
function of the parallel refractive index in a typical TJ-1I
plasma. Although this integration path would not be a
real ray trajectory, some conclusion can be drawn from
this approach. The same profiles as those described above

I [KA]
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Fig. 11. Total parallel current /; dependence on N, obtained
integrating Jj along a ray trajectory crossing a plasma
along its equatorial plane for different values of den-
sity and temperature at the core and the profiles al-
ready mentioned in the text. Temperatures in kilo-
electron-volts and density in units of 10'” m~3,
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for Figs. 4 through 8 have been considered for the mag-
netic field, trapping parameter, electron density, and tem-
perature, varying the central values of these last two
parameters. Figure 11 also shows the existence of an
optimal value of N, for current generation, typically around
Ny = 0.2, as well as a growth of the current with the
temperature, which comes from the fall of collisionality
with it, in contrast with the opposite behavior with the
density.

IV. CONCLUSIONS

An estimate of the EBCD has been calculated for
arbitrary values of N, and trapping parameter u,, assum-
ing a TJ-1I-like circular tokamak. The results show a
dependence of current efficiency and current density on
both parameters, stronger on the first of them. A larger
value of N, causes a broadening of absorption in fre-
quency, or equivalently in magnetic field values at a
fixed frequency, and thus, current generation at any po-
sition along the beam trajectory takes place more easily.
In contrast, the efficiency and current density decrease
from an optimal parallel refractive index on. More de-
tailed work on exploring the advantage that can be taken
from the existence of this optimal parallel refractive
index value is of interest since after conversion has
taken place, the ray trajectories of the Bernstein wave
are highly unpredictable, and for that reason the benefit
becomes difficult to exploit. It is left as an immediate
task the implementation of this tool into the ray-tracing
code TRUBA, currently in use in TJ-II, for a deeper
understanding under real ray paths and operational con-
ditions in a complex stellarator. More accurate results
than those presented here are expected to be obtained,
since the absorbed power density is calculated by the
code, and the only quantity needed for the current drive
calculation will be the global efficiency &cp, which does
not require any estimation of the electric field modulus
since it does not depend on it. Another task could be the
comparison between the current density provided by
the TRUBA code?” and that using Eq. (5). The estima-
tion of the electric field amplitude needed for the latter
method could be solved using the antihermitic part of
the dielectric tensor, calculated by the ray-tracing code,
and the application of its relation with the wave energy
density U and its electric field amplitude E for Bern-
stein waves.?® Also of interest for future work concern-
ing pumpout studies is the method here used to quantify
the contribution of trapped particles on the total ab-
sorbed power, changing the integral limits of w(u,).
This shows how the relative positions of the resonance
condition, trapping cone, and absorbed power density
in momentum space play a decisive role in the trapped
particle contribution, despite the fact that we look into
a zone with low ripple.
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