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Abstract
In this work, we have compared different linear methods to estimate the electron
Bernstein current drive (EBCD). The expressions for the current drive efficiency
have been plugged into the ray tracing code TRUBA, which was used in previous
works for electron Bernstein wave (EBW) heating studies in the TJ-II stellarator.
This device is taken here as an example for this comparison.

The driven current is calculated for different densities and temperatures,
as well as launching directions of the heating beam, which is a critical issue
in the O–X–B mode conversion scenario considered in TJ-II. The range of
applicability of each model is discussed. The influence of the Ohkawa,
relativistic and frictional trapping effects on the total current generated is studied
by comparing the results obtained by pairs of models that include and neglect
those effects. The Ohkawa effect has resulted in being the least important.
Although the relativistic effects are not negligible, the main disagreement
between the results arises from including or not momentum conservation and
neglecting frictional trapping effects. The total EBCD current drive efficiency
calculated is in all cases greater than the experimental ECCD one, previously
measured in TJ-II. The results presented in this work are the guideline for future
experiments in this device.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Current generation in plasmas by launching waves in the range of the electron cyclotron
frequency has been widely studied theoretically and experimentally. This wave-induced
current plays an important role in the plasma stability and confinement in stellarators,
enabling deleterious plasma currents compensation, rotational transform profile shaping and
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magnetohydrodynamic instabilities control. It is also expected to contribute to overcome
the pulsed operation in tokamaks. A description of the progress made in these directions,
the physics of electron cyclotron current drive (ECCD) itself and a recent benchmarking of
codes are reviewed in [1–5]. On the other hand, the density cut-off of the electromagnetic
modes of propagation prevents heating and current drive at high density regimes. For this
reason, electron Bernstein waves (EBWs) [6] become necessary to attain non-ohmic heating
of overdense plasmas and the subsequent current generation. EBWs electrostatic nature makes
them achieve a parallel refractive index larger than unity. This feature expands the resonance
condition domain and displaces it to further suprathermal values of parallel momentum, not so
strongly affected by the proximity to the trapping cone and collisions. Thus, the deterioration
of the current efficiency due to the intersection of the resonance curve and the trapping cone,
or the counteracting Ohkawa contribution to the current, is expected not to be as strong as in
the case of EC waves [7]. For EBWs as source for plasma heating, diagnostic and current drive
see [8, 9].

In the TJ-II stellarator [10], where electron density can reach up to 8.0 × 1019 m−3, ECR
heating is limited by the second harmonic (53.2 GHz) X-mode cut-off density, 1.7×1019 m−3.
For this reason an EBW heating system is necessary for electron heating above that density.
Bernstein waves are expected to be excited through the O–X–B mode conversion process [13]
at first harmonic (28 GHz) with up to 300 kW of available power. The lack of available injection
ports and the need for low field side launching inherent to the O–X–B scenario require the use
of an internal mirror. Moreover, the optimum beam for maximum O–X conversion efficiency
is such that its wavefront curvature, close to the LCFS, matches the plasma surface curvature
and therefore an elliptical focusing mirror is needed. In order to achieve the experimental
optimization of the O–X mode conversion, the mirror is also steerable around the optimum
theoretical position and the changes in the focal length for different launching directions are
expected to be of minor importance in the O–X mode conversion. For details on the design of
the EBW heating system see, e.g., [11, 12].

This work aims at the estimation of the electron Bernstein current drive (EBCD) expected
in the TJ-II EBW-heated plasmas using different linear models for the current drive calculation.
Since the different physics underlying each calculation model provides noticeable variations
in the final results, a comparison between them is carried out. Although the calculation is
performed using the TJ-II magnetic configuration, the conclusions regarding the usage of each
model varying the electron density and temperature can be extrapolated to any other device
where EBCD is being considered. The wave propagation and absorption properties used in
the EBCD calculation have been obtained with the ray tracing code TRUBA [14].

The rest of the paper is organized as follows: section 2 briefly describes the ray tracing
code TRUBA, while section 3 deals with the current generation mechanisms and models
considered; section 4 shows results of current drive efficiency, where section 4.1 focuses on
the results for a single-ray simulation, while sections 4.2 and 4.3 are devoted to exploring, using
multi-ray simulations, the current generated under different plasma parameters and launching
mirror positions, respectively. Finally a summary, conclusion and future work are presented
in section 5.

2. The ray tracing code: TRUBA

For a given frequency ω, the TRUBA code solves the standard ray tracing equations

dR(σ )

dσ
= −

[
∂H
∂N

]
R(σ ), N(σ )

dN(σ )

dσ
=

[
∂H
∂R

]
R(σ ), N(σ )

, (1)
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where R(σ ) are the space coordinates of the ray, N(σ ) is the normalized wave vector and
σ is the arc parameter of the ray. The ray Hamiltonian for a given wave mode, H(R, N), is
usually taken to be proportional to the real part of the mode-pertinent eigenvalue �(m) of the
plane-wave dispersion tensor Λ. This allows expressing H(R, N) as [15]

H = f
∏

j=1,2,3

Re �(j) = f det(ΛH), (2)

where f = f (R, N) is an arbitrary non-vanishing real function and ΛH is the Hermitian part
of the dispersion tensor. To a first-order infinitesimal of inhomogeneities, the power transfer
equation corresponding to the ray tracing equations (1) with the Hamiltonian (2) is

dP

dσ
= −2

ω

c
Pχ

[
f Im(det(Λ) − det(ΛA))

]
R(σ ), N(σ )

. (3)

Here, P is the total wave power flux, proportional to |E|2[∂Re �(m)/∂N ]R(σ ), N(σ ), E is
the local quasi-plane wave field, ΛA is the anti-Hermitian part of the dispersion tensor and
χ = [Im �(m)]R, (c/ω)∇(arg E)/[Im �(m)]R, N . Within this approximation the value of χ is very
close to unity.

The code gives the possibility to use a non-relativistic (see e.g. [16]) or a weakly
relativistic [17] hot Maxwellian plasma dispersion tensor. This latter is valid for N2

⊥ �
(mec

2/Te)(ωce/ω)2, and thus suitable for EBWs at low cyclotron harmonics. A comparison
between the results obtained for the EBWs propagation and absorption in TJ-II considering
both expressions of the dispersion tensor is discussed in [12]. Since the goal of this paper
is the calculation and comparison of the current drive obtained using different models, the
non-relativistic dispersion tensor has been used. Although it is not explicitly shown, the
difference between the results provided by each current drive model is larger than or similar to
the difference obtained with and without considering the relativistic effects in the ray tracing
code, that is in the calculation of N‖ and P .

In the computation of the O–X–B1 scenario, the ray tracing procedure is forced to
reasonably describe the transmission of O wave power (if any) through the opacity region,
whose boundaries in the cold-plasma limit are qe = 1 and qe = (1 +

√
ue)(1 − N2

‖ ), where
qe = (ωpe/ω)2, ue = (ωce/ω)2, and ωpe, ωce are the electron plasma and cyclotron frequencies.
This tunnelling makes possible the subsequent O–X mode conversion, provided that the plasma
is dense enough to ensure the condition qe = 1 + ue[(1 − N2

‖ )/2N‖]2. The TRUBA code
proceeds with the expected tunnelling applying the following technique. If the reflection point
is revealed along the ray trajectory of the incident O wave, and the width of the opposed
evanescent layer is small enough, the launching point of the transmitted ray is to be found by
moving from the reflection point towards the direction of density gradient until the dispersion
relation is fulfilled again. It was shown in [18] that the ray trajectory continued from this
latter point is asymptotically equivalent to the limiting central trajectory of the transmitted part
of the wave packet. The wave vector of the launching ray has to be equated with its value
at the reflection point. The transmission efficiency η (i.e. the fraction of the power which is
transmitted) is calculated using the one-dimensional O mode tunnelling theory [19] as follows:

η = exp

{
−π

ω

c
L

(√
ue

2

)1/2 [
2
√

ue(1 − N‖/N
opt
‖ )2 + N2

⊥
]}

, (4)

where L is the density gradient scale length and the optimum parallel refraction index for
transmission is N

opt
‖ = (

√
ue/(1 +

√
ue))

1/2, with all the parameters taken at the reflection
point.

In the calculations with many rays, the Gaussian beam is simulated with rays
perpendicularly distributed over the wave front surface. The ray tracing method has a
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Figure 1. One ray simulation with transmission efficiency of 0.90. Density and temperature radial
profiles are given by ne(ψ) = 5.0(1 −ψ2)7 in units of 1019 m−3 and Te(ψ) = 0.4(1 −ψ7)10 keV.
On the left, the launched, reflected and transmitted rays trajectories projected on the toroidal TJ-II
plane φ = 57◦. Contour lines of the magnetic field strength with a separation of 0.05 T are also
represented. On the bottom right, a side view of these rays, and on the top right, the absorbed
power, temperature and density profiles as a function of the normalized radius ρ.

fundamental limitation when it is applied to the O–X conversion process because it cannot take
into account the beam spectrum, which is a critical issue for the O–X conversion efficiency of
a Gaussian beam. It has been demonstrated [20] that the optimum O–X conversion efficiency
is obtained when the beam curvature matches the curvature of the O mode cutoff layer.
Moreover, if this condition is true, the simulation with rays perpendicularly distributed over
the matched wavefront surface provides the best estimate of the O–X conversion problem [12].
For the optimum launching direction only the central ray has maximum conversion efficiency.
Any other ray has a lower conversion efficiency, which depends on its particular direction.
Therefore, the total conversion efficiency of the beam is lower than 100%. This is directly
included in the ray tracing calculation, and thus in the final current drive calculation. As
an example of one ray simulation see figure 1, where 90% O–X conversion efficiency takes
place.

3. Current drive models

Two mechanisms take part in the current drive by EC waves. On the one hand, the preferential
heating of resonant electrons in one particular direction along the magnetic field lines, modifies
asymmetrically the electron resistivity (Fisch–Boozer mechanism [21]). And, on the other
hand, the diffusion of electrons from the passing to the trapping region in momentum space,
leads to an asymmetry in the number of current-carrying electrons (Ohkawa mechanism [22]).
The contributions to the current resulting from each of these mechanisms have opposite
directions, the latter being important for large inverse aspect ratio (ε) in tokamaks and for
large magnetic ripple in stellarators.

4
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The calculation of the current involves the resolution of the linearized Fokker–Planck
equation for the perturbed distribution function of electrons, including self-collisions, collisions
with ions and the wave-induced flux Sw. Techniques based on Langevin equations or
Green functions have established a fast route for numerical simulations avoiding the usage
of computational time-consuming Fokker–Planck codes. The high speed limit (hsl) has also
been traditionally considered for the expansion of the self-collision operator in powers of vth/v,
where vth ≡

√
2Te/mec2 is the electron thermal velocity, with Te the electron temperature

in energy units, me the electron mass and v the velocity of the current-carrying electrons.
Although the models based on the hsl assumption work acceptably well in most cases, its
applicability is doubtful for small values of the parallel refractive index N‖. Furthermore, the
hsl approximation prevents the models from fulfilling momentum conservation requirements.

3.1. Adjoint approach formalism

Under the adjoint approach formalism [23] three different choices for the Spitzer function
K(u), thus for the response (Green’s) function χ(u, λ) (see equation (8)), can be taken into
account. The parameters u = p/mc and λ = u⊥/u2b are the normalized momentum and
the normalized magnetic moment, respectively, with b = B/Bmax the local magnetic field
normalized to the maximum value in a flux surface.

First, and assuming the hsl approximation, the non-relativistic expression for the Spitzer
function proposed by Taguchi in [24] is

KT(u) = fc

Zeff + 1 + 4fc
u4, (5)

Zeff being the effective ion charge and fc the fraction of circulating particles in a given flux
surface (see equation (9)). Secondly, the relativistic generalization of the Taguchi expression,
formulated by Lin-Liu et al in [25],

KL(u) =
[

γ (u) + 1

γ (u) − 1

]ρ̂/2 ∫ u

0
du′

[
u′

γ (u′)

]3
[

γ
(
u′) − 1

γ (u′) + 1

]ρ̂/2

, (6)

where γ = (1 + u2)1/2 is the Lorentz factor and ρ̂ ≡ (Zeff + 1)/fc.
Finally, the weakly relativistic model with momentum conservation [26, 27], denoted

as the wr–mc model hereafter, provides the Spitzer function Kwr–mc(u) as the trial function
K(u) = (u/γ )

∑4
i=1 diu

i that minimizes the functional

S[K] =
∫

d3u

[
K

feM
Ce

1 (KfeM) − ftr

fc

K

feM
νe(u)K

−2ν0e
u‖
γ

K − 2ζ

(
u‖Ce

1 (KfeM) − ftr

fc
νe(u)K − 2νe0

uu‖
γ

feM

)]
, (7)

which represents the collisional entropy production, where Ce
1 = Ce

1,µ=∞+µ−1Ce
1,1+µ−2Ce

1,2+
O(µ−3) is the expansion of the collision operator in a power series in µ−1, µ = mec

2/Te,
feM = µ

2K2(µ)
e−µγ is the relativistic Maxwellian, with Kn(x) the modified Bessel function of

the second kind and order n, νe0 = e4ne ln(�)/(4πε2
0m

2
ev

3
th) is the thermal electron collision

frequency with e andne the electron charge and density, � stands for the Coulomb logarithm and
ε0 the vacuum permittivity, and νe(u) ≡ νee(u)+νei(u) is the total electron collision frequency
given by the sum of the electron–electron plus the electron–ion collision frequencies. See [27]
for the details of the calculation for the coefficients di and ζ and the extension of this weakly
relativistic mc model for arbitrary collisional regimes, as well as [28, 29] for the application of

5
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the model to the ECCD calculation for ITER conditions. The applicability range of this model
is 0.5 < u/uth < 4, although the relativistic expansion of the collision operator is bounded by
a maximum momentum established by the inequality umax/µ � 1, which in the case of the
TJ-II typical electron temperature covers the whole momentum space. For the rest of the text
the non-relativistic version of this model, originally proposed by Romé [26], will be denoted
as the nr–mc model.

For any of the expressions for the Spitzer function written above, the response function in
the low collisional regime (lmfp regime), νe � τ−1

b with τb the bouncing time, is expressed in
terms of K(u) as

χ(u, λ) = −sign(u‖)
1

fc
H(λ)K(u), (8)

where fc and H(λ) are expressed as

fc = 3

4
〈b2〉

∫ 1

0

λdλ

〈√1 − λb〉 , H(λ) = 1

2
� (1 − λ)

∫ 1

λ

dλ′

〈√1 − λ′b〉 , (9)

denoting 〈. . .〉 the flux surface averaging operation and �(x) the Heaviside function. �(x) = 1
for passing particles (x � 0) and �(x) = 0 for trapped particles (x < 0). In the high
collisional regime (νe � τ−1

b ) the effective circulating particle fraction fc = 1, and the
function H(λ) = |u‖|/u.

Finally, the current efficiency ηCD in terms of the response function is given by

ηCD = 〈j‖〉
Pabs

= evth〈b〉
νemec2

∫
du‖

[
Dql�̂(fe)�̂(χ)

]
γ=γres∫

du‖
[
Dql�̂(fe)

]
γ=γres

, (10)

where γres = Ys +u‖N‖ is the Lorentz factor for resonant electrons, Ys = sωc/ω with ωc and ω

are the electron cyclotron and wave frequencies, Dql = u2
⊥|�s |2 is the normalized quasi-linear

Kennel–Engelmann diffusion coefficient for the harmonic s [30], with the polarization factor
�s = e−Js−1(k⊥ρe) + e+Js+1(k⊥ρe) + ez(u‖/u⊥)Js(k⊥ρe), �̂ = (∂/∂γ + N‖∂/∂u‖), ρe the
electron Larmor radius, k⊥ the perpendicular wave vector and Jn the n-order Bessel function.
Differently from the electromagnetic mode propagation, the EBWs are characterized by the
fact that their perpendicular wave vector can present large values. Therefore, the argument of
Bessel functions k⊥ρe can be larger than 1, thus invalidating the Larmor radius expansion and
making it mandatory to estimate the Bessel functions without any approximation.

3.2. Langevin equations formalism

The relativistic response function introduced by Fisch is based on the Langevin equations for
the test particle [31]. This expression was corrected including the Ohkawa effect, thus taking
into account the trapping through diffusion of initially passing particles, and it was applied to
the estimation of ECCD in TJ-II [32]. The relativistic response function, without this trapping
effect, is given by

χF(u) =
[

γ (u) + 1

γ (u) − 1

](1+Zeff )/2 ∫ u

0
du′

[
u′

γ (u′)

]3
[

γ
(
u′) − 1

γ (u′) + 1

](1+Zeff )/2

. (11)

The Ohkawa-corrected response function is obtained by following the trajectories of
the electrons in momentum space, and removing the contribution of those that starting with
momentum u become trapped with momentum uT, and stop contributing to the current,

χF+O(u) = χF(u) − χF(uT), (12)

6
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where the parallel component and module of uT are given by

uT,‖ = sign(u‖)µtuT; uT = 2
√

g(u)

1 − g(u)
and g(u) = γ + 1

γ − 1

(
µtu

|u‖|
)2/(Zeff +1)

(13)

µt = (1 − b)1/2 being the trapping parameter. This value of the momentum uT at which the
particle becomes trapped is obtained by estimating the intersection of the loss cone and the
particle trajectory in momentum space under the effect of cyclotron resonance heating and
collisions. Note that equation (11) corresponds to the response function using the Lin-Liu
model after ignoring the frictional trapping effects, i.e. fc = 1, and taking H(λ) = |u‖|/u.
Therefore, this model provides an upper bound to the parallel current value applicable in the
collisional limit [33].

In order to obtain this upper bound to the current calculation as well as the estimation of
the possible Ohkawa contribution to the current, this model is also present in the calculation in
next sections. Finally the current efficiency ηCD differs from expression (10) in the preceding
constant, which in the present case is A = e/νe0mc, due to a different definition of the
dimensionless response function in the adjoint approach and Langevin equations formalisms.
The contribution of trapped particles (u‖/u � µt) is also removed from the current integral.

4. Numerical results

The calculation of the parallel current drive efficiency ηCD has been carried out adapting the
different models reviewed in section 3 to the ray tracing code TRUBA. The parallel current
generated at a given point is assumed to be distributed uniformly on the magnetic surface
where it was generated or equivalently the parallel transport is assumed to be infinite. The
current carriers are assumed not to leave the flux surface where they were created and to
distribute quickly on that surface. Although this point of view does not take into account the
radial transport, whose analysis is out of the scope of this paper, note that it does not affect
the comparison between the models since all results are obtained under the same assumption.
Furthermore, the contributions to the same flux surface must be summed whenever a given ray
comes across it more than once.

The total toroidal current element between two flux surfaces separated by �ρ and
enclosing a surface �S(ρ) is expressed in terms of the parallel current density J‖(ρ) as
�ICD(ρ) = J‖(ρ)〈Bφ/B〉(ρ)�S(ρ). The parallel current density J‖ is weighted by 〈Bφ/B〉
for experimental reasons: since the measurement of the toroidal current, in particular in the
TJ-II, involves the presence of a Rogowski coil surrounding the plasma at a given toroidal
plane, the relevant quantity to be measured is the projection of the parallel current density
on the toroidal surface. This requirement is necessary for a 3D magnetic structure, since the
parallel direction varies strongly from one point to another of the same flux surface. The usage
for this purpose of the value of Bφ/B at the point where the wave interacts with the electrons
would break the dependence of �ICD on only the flux surface, thus the integration over ρ be
doubtfully evaluated. Hence, the presence of the flux surface averaging acting on Bφ/B. The
value of 〈Bφ/B〉(ρ) in TJ-II monotonically grows from 0.85, at ρ = 0, to 0.95, at ρ = 1, thus
it corrects by approximately 10% the current value obtained without taking it into account.

The 3D geometry of the TJ-II is also taken into account by considering the 3D VMEC
coordinates Jacobian, required for flux surface averaging, and it is provided by a numerical
library [34]. This library makes use of 50 flux surfaces between ρ = 0 and ρ = 1. The volume
enclosed by a given flux surface is fitted by V (ρ) ≈ 1.107ρ2 for the standard TJ-II magnetic
configuration, which is the one considered in this work. Thus, a numerical inaccuracy for the
volume arises, not from the volume estimation itself, but for the estimation of ρ at any point of

7
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Figure 2. Current drive efficiency ηCD for the models considered in this work, and absorbed power
density, as functions of the length travelled by the mode-converted Bernstein ray. F denotes the
Fisch model, F+O the Ohkawa-corrected version of the model, T denotes the Taguchi model, L the
Lin-Liu one, while wr–mc and nr–mc are, respectively, the weakly and non-relativistic models based
on momentum conservation. The central density and temperature in this case are 5.0 × 1019 m−3

and 0.4 keV.

the ray expressed in Cartesian coordinates. This error provokes, in the estimation of the volume
enclosed between two consecutive ray steps (�V ), a noise that is of the same order of magnitude
as �V when the ray is almost tangent or is close to the magnetic axis. In order to remove the
noise, �V is smoothed, and a lower bound for �V is established, �Vmin = 2 × 10−4 m−3,
which corresponds to the volume enclosed by the flux surface ρ ≈ 0.13.

As noted above, the calculation has been performed considering the standard TJ-II
magnetic configuration, and the optimum beam injection in terms of maximum O–X
transmission efficiency [12]. A total injected power of 300 kW before O–X conversion is
simulated. The shapes of the density and temperature profiles are given byne(ψ) = n0(1−ψ2)7

and Te(ψ) = T0(1−ψ7)10, respectively, with n0 and T0 the central values and ψ the normalized
magnetic flux. These profiles are similar to those measured experimentally by Thomson
scattering in the NBI high density regime of TJ-II. Note that since one ray simulations do
not take into account the refractive index spectral density and the width of the beam, it
is assumed that they will not provide either the most realistic absorbed power density or
current density profiles. In any case, they can be used for studying the current drive models
validity ranges and checking the resonance condition domain in momentum space along one
ray. This is what is done next in section 4.1 before the results for multi-ray simulations are
presented.

4.1. Current drive efficiency and density for one ray calculation

Figure 2 shows the absolute value of the current drive efficiency |ηCD(l)| for each model and the
absorbed power density Pabs(l) as a function of the length l travelled by the mode-converted
ray. The total toroidal current ICD resulting from each model is shown in the legend. The
figure corresponds to the single-ray simulation represented in figure 1, thus T0 = 0.4 keV and
n0 = 5 × 1019 m−3. The corresponding parallel current density along that ray is plotted in
figure 3. First, the Fisch and Ohkawa-corrected Fisch models curves are almost overlapped,
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Figure 3. Parallel current density J‖ as a function of the distance travelled by the transmitted ray
corresponding to the models considered in figure 2.

Figure 4. In the left y-axis, Ys=1, normalized radius ρ and parallel refractive index N‖
corresponding to the case represented in figure 2. Referred to the right y-axis, the area delimited by
the continuous line represents the u‖ resonance condition domain along the ray path, normalized to
the thermal momentum uth. The two non-delimited stripes represent the mc models validity range.

which indicates that the Ohkawa contribution is negligible. This is due to the high value of
|N‖| where power is deposited, in the range of 0.5. Fisch models also estimate a current density
higher than the Taguchi and Lin-Liu models, since the latter take into account the frictional
reduction in the circulating electrons with the trapped population. The difference between
the Taguchi and Lin-Liu models comes from the relativistic effects, which the latter includes,
and that can be observed also comparing the weakly and non-relativistic mc models. Finally,
independently of the collisional regime considered by the hsl models, these provide a lower
value than the mc models.

Figure 4 represents the normalized radius ρ, Ys=1 and N‖ along the ray path, as well
as the corresponding resonance condition domain in u‖ (the area delimited by the black
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thick line). The mc model validity range is also represented by the horizontal non-delimited
stripes. Strictly speaking, a non-zero current drive efficiency value is obtained, as long as
the resonance condition exists, and this value increases with the momentum of the resonant
electrons. This can be observed comparing |ηCD| in figure 2 and the resonance condition
domain in figure 4 just before/after the resonant condition offset/onset, or between l = 0.25 m
and l = 0.3 m. On the other hand, the absorbed power density in such intervals in momentum
space is negligible, if not identically zero, since there are almost no resonant electrons, and
the current drive efficiency, although non-zero, does not result in any current. Thus, focusing
on the region where the beam power is deposited, from l = 0.3 m onwards (see figure 2)
and concerning the validity of each model in the same interval (see figure 4), it is shown that
the efficiency of the mc models is estimated slightly out of its validity range just before the
resonance appears. Despite this fact, the result provided by the model is still valid, since in
that region the power deposited is low. Once the calculation is carried out within its range
of validity, and comparing it with the Taguchi and Lin-Liu results, the mc (weakly or non-
relativistic) and hsl models (Taguchi, Lin-Liu and Fisch) agree in the same descending trend
for the efficiency along the ray length. At the end of the power density deposition profile, and
concerning the usage of the hsl-based models, it can be observed how low energetic electrons
(|u‖| � 2uth) are involved in the current generation, and thus the hsl-assumption may not be
fulfilled. Finally, comparing the Fisch and Lin-Liu models, the total toroidal current value
(see legend of figure 2) shows approximately 10% difference, while comparing Lin-Liu and
weakly relativistic mc models this difference is around 20%. Thus, the choice of the model
type, hsl or mc, seems to be more important than the collisional regime in TJ-II. In this
particular case, when both hsl and mc models come up against the limits of application, the
power density is low, and thus no significant deviation from a coherent value is expected.
But it should be noted that, although hsl and mc models may step inside a region where their
applicability is dubious, uth/u � 1 and 0.5 < u/uth < 4, respectively, the mc models are better
positioned, since the result is weighted by the electron population, which over 4uth is almost
negligible.

Although the example illustrated in figures 2 and 4 does not allow drawing any general
conclusion, the previous analysis provides an idea of the phenomenology that each model
can find in momentum space, and how their applicability is threatened in some regions,
although absorbed power density is low. Nevertheless, such detailed analysis in the case
of multi-ray simulation, which is mandatory for a correct current estimation, would result in
a tedious task outside the scope of this work. Figure 5 highlights the necessity of multi-ray
simulations in order to reach the convergence of the current density profile J‖(ρ) and, hence,
to get a correct total toroidal current value. The figure shows the parallel current density
profile J‖(ρ) calculated using the weakly relativistic mc model for a different number of rays
used for the beam simulation. In the top right quadrant of the figure the convergence of the
current density profile is shown quantitatively. The array of the number of rays considered is
N = (1, 5, 17, 41, 81, 121), so that the distance between two profiles with consecutive number
of rays Ni and Ni−1 can be defined as d(J‖Ni

, J‖Ni−1) = ∫ 1
0 dρ|J‖Ni

(ρ) − J‖Ni−1(ρ)|. This
distance is normalized to the distance between the profiles provided by the runs launching 1 and
5 rays, i.e. d(J‖N2 , J‖N1), to define what is actually plotted: Di = d(J‖Ni

, J‖Ni−1)/d(J‖N2 , J‖N1).
As can be observed, 121 rays simulation reduces in a factor of 10 this normalized distance
Di between profiles, which together with the good convergence of the total current value
(see legend) makes this choice suitable for a convincing simulation. For simplicity, the
trajectories of 20 of these 121 rays are plotted in figure 6. The thick lined ray represents the
central ray.
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Figure 5. Radial profile of the parallel current density J‖(ρ) provided by the relativistic mc
model, for different number of rays traced, and for the same plasma temperatures and density
profiles as those used in figures 2 and 4. The inset in the top right quadrant represents the distance
between the profiles provided by consecutive runs sorted in ascending order by the number of
rays used, d(J‖Ni

, J‖Ni−1 ), normalized to the distance between the first two, d(J‖N2 , J‖N1 ) =
d(J‖5, J‖1).

Figure 6. Trajectories of 20 of the 121 rays used for the beam simulation that provides the
corresponding current density profile shown in figure 5(left). The arrow represents the launching
direction. The upper hybrid resonance layer, the O mode cut-off layer, the last closed magnetic
surface (LCFS) and constant B field layers are also represented. The power deposition, density and
temperature profiles are shown in the top right figure and a side view of the same rays is plotted in
the right bottom panel.
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Figure 7. Total toroidal current (ICD) obtained with the Lin-Liu model as a function of the central
electron temperature (T0) and density (n0), keeping the analytical profiles as ne(ψ) = n0(1−ψ2)7

and Te(ψ) = T0(1 − ψ7)10, with ψ = ρ2 the magnetic flux.

4.2. Multi-ray simulation scanning n0 and T0

In this section, a comparison of the total toroidal current ICD varying the central value of the
profiles written above for the electron temperature and density is discussed, as well as the
importance of considering a relativistic model, and the contribution of the Ohkawa mechanism
to the driven current. For each run, the beam is simulated with 121 rays. For each map eight
values of T0 between 0.2 and 1.6 keV and twenty one in n0 between 2.0 and 7.0 in units of
×1019 m−3 have been taken into account.

The first of these maps (see figure 7) shows the total toroidal current ICD using the Lin-Liu
model, while figure 8 shows the same for the relativistic mc model. Contour lines every 2 kA
are also represented. Both models manifest a clear increasing behaviour of the driven current
with the temperature up to T0 = 1 keV. After that central temperature the current decreases
up to negative values. This is due to the change in the radial profile of power deposited and
current generated. Up to T0 = 1 keV, the current density is localized in central and mid-
values of ρ, where positive contributions to the total current are found. From T0 = 1 keV on,
the central contribution disappears, and the total current is a result of the positive mid-radial
contribution and an external negative one, which becomes the main contribution to the current
as T0 increases. This behaviour is shown, using the weakly relativistic mc model, in figure 9,
where the parallel current density profiles are represented for different central temperatures
and a constant central density of n0 = 4.0 × 10−19 m−3. The reason why a negative current
contribution does not appear in the edge for low temperatures is due to the fact that in the first
part of the transmitted ray, the resonance condition extends to momentum values where there
are almost no electrons, thus no damping nor power absorption and current. As the temperature
increases the resonance condition moves towards the centre of momentum space, where a larger
electron population leads to an appreciable power deposition and subsequently negative current
generation, since N‖ > 0 and ηCD < 0. The evolution of the resonance condition with the
temperature, as well as the power deposition at the entrance of the transmitted ray, can be
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Figure 8. Total toroidal current ICD obtained with the mc model as a function of the central electron
temperature (T0) and density (n0), and same profiles as in figure 7.
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Figure 9. Current density radial profiles, J‖(ρ), for different values of T0, and constant central
density of n0 = 4.0 × 10−19 m−3. The weakly relativistic mc model is used.

observed in the set of figures 10. For this figure, the temperatures considered are the same as
those for the current density profiles represented in figure 9, i.e. T0 = {0.4, 0.8, 1.2, 1.6} keV.
The resonance condition domain is represented by the area delimited by a solid line. The
effective radius ρ and N‖ are also plotted. It can be noted for the case T0 = 1.6 keV that,
although the power deposition at the first part of the transmitted ray path is lower than in the
more internal second deposition area, at the former, the negative current drive efficiency ηCD

is larger in modulus than in the latter, and that is why the total current turns out to be lower
than zero. This can be observed in figure 11, where the current drive efficiency along the
central ray of the multi-ray simulation used for the case T0 = 1.6 keV in figure 9 is represented
using the weakly relativistic mc and Lin-Liu models. Returning to figures 7 and 8, the Lin-Liu
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Figure 10. Referred to the left y-axis, N‖ (dashed line), effective radius ρ (dotted line) and ray
normalized power (solid line), as a function of the length travelled by the central transmitted ray
of the simulations that provide the current density profiles represented in figure 9. Same central
temperature values as in figure 9 are considered, 0.4, 0.8, 1.2 and 1.6 keV. The power carried by the
transmitted ray is normalized to the launched power, thus the initial value corresponds to the O–X
conversion efficiency of the ray. The resonance condition domain is represented by the delimited
areas and is referred to the right y-axis.

model shows a less peaked and slightly lower profile than the mc model. In the TJ-II, where
the electron temperature is not expected to exceed several hundred eV in the NBI discharges
where the EBW heating system will operate, both models indicate the possibility of a toroidal
current generation between 1 and 10 kA.

Regarding whether or not a relativistic model should be used, figure 12 shows the total
current drive efficiency as a function of T0 for different central densities, and comparing the
weakly relativistic and non-relativistic mc models. The total current drive efficiency is defined
as ICD〈ne〉R0/PEC, where 〈ne〉 is the line electron density, R0 = 1.5 m is the TJ-II major radius
and PEC is the injected power, 300 kW as said above. It is intuitively clear that the relativistic
effects become more important as the temperature increases, and this is what figure 12 shows
below T0 = 1.0 keV. Again, since ICD is a composition of contributions with different signs at
higher temperatures, as figure 9 shows, the increasing difference with the temperature between
the current density profiles provided by each model is concealed in the value of ICD. Despite
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Figure 12. Total current drive efficiency, ICD〈ne〉R0/PEC, as a function of the central temperature,
for different central densities and comparing the results under the weakly relativistic and non-
relativistic models.

this effect, appreciable differences in the results exist. Respecting the total current efficiency
value itself, and focusing in the TJ-II, even the lowest value of total EBCD efficiency shown
in figure 12 is higher than the one measured in ECCD experiments: ICD〈ne〉R0/PEC ≈ 0.001
in units of 1020 A m−2 W−1 (see [35]), and shows how efficient EBWs can be for generating
current.

Finally, the same scan in T0 and n0 of the toroidal current ICD is represented for the
Ohkawa-corrected Fisch model in figure 13. As observed, it is the less peaked of these maps,
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Figure 13. Total toroidal current (ICD) obtained with the Ohkawa-corrected Fisch model as a
function of the central electron temperature (T0) and density (n0), and same profiles as in figures 7
and 8.

and ICD deviates from the values provided by the Lin-Liu and weakly relativistic mc models
noticeably. The highest contour line in the figure corresponds to the value of 16 kA, while
in the figure corresponding to the Lin-Liu model (figure 7) it has the value of 14 kA. The
separation between contour lines is 2 kA. Therefore, comparing figures 7 and 13, a difference
of around 2 kA exists in the bottom half part of the maps, while in the upper part of figure 13,
the high density of contour lines observed shows that at high temperature the disagreement can
reach about 10 kA. This disagreement is due to ignoring the frictional reduction in the current.
In the high collisional regime, assumed in the Fisch model, the circulating particle fraction is
taken as fc = 1. And, at high temperature, where the current generation is localized at external
radial positions (see figure 9), this particle fraction deviates strongly from the value of one.
Concerning the Ohkawa contribution, this is negligible, as can be seen in figure 14, where
the total toroidal current efficiency is represented as a function of temperature, comparing the
Fisch model with and without the Ohkawa effect. Previously, in the legend of figure 2 this
small difference was expressed for a single-ray simulation in the total current drive value. This
negligible influence is due to the high value |N‖| at which Bernstein waves interact with the
electrons (see figure 4), which displaces the resonance condition away from the trapping cone
and provides the electrons with a high parallel momentum that prevents them from becoming
trapped.

4.3. Multi-ray simulation varying the launching direction

Finally, in order to count on a complete characterization of the current generated at the different
launching directions that the TJ-II EBW heating system covers, in this section, a scan in the
positioning angles of the focusing mirror of the system is studied. The angles αθ and αφ that
fix the mirror position define the poloidal and toroidal launching directions, respectively. The
optimum mirror position, in terms of the maximum O–X transmission efficiency, see [12], is
expected to lie between −34◦ and −32◦ for αθ , and for αφ between −31.5◦ and −29◦. In
the previous section, the positions of the mirror angle values taken for the simulation were
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for different central densities, and comparing the results using the Fisch model with and without
the Ohkawa effect.
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Figure 15. Total toroidal current (ICD) obtained with the weakly relativistic mc model as a function
of the position of the EBW heating system mirror, determined by the angles αθ and αφ .

αφ = −31.1◦ and αθ = −33◦. Around this position it is theoretically expected to get a
maximum O–X conversion efficiency, although the exact one depends on the height and shape
of the density and temperature profiles. The calculation of the toroidal current has been
performed, tracing 121 rays per beam, and scanning each angle along 20 values in the vicinity
of the optimum position. The profile is shaped as in previous sections, and the central values
are the same as those taken for figures 2 to 6: T0 = 0.4 keV and n0 = 5.0 × 1019 m−3.

Figures 15 and 16 show the total toroidal current generated using the weakly relativistic
mc and Lin-Liu models, respectively. The value provided by the former is again greater
than in the Lin-Liu model, and in both cases, as expected, the O–X conversion efficiency
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Figure 16. Total toroidal current (ICD) obtained with the Lin-Liu model as a function of the position
of the EBW heating system mirror, determined by the angles αθ and αφ .
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Figure 17. Total toroidal current (ICD) obtained with the Ohkawa-corrected Fisch model as a
function of the position of the EBW heating system mirror, determined by the angles αθ and αφ .

determines the value with maximum toroidal current, localized at the theoretically optimum
launching angles. The weakly relativistic mc model is again more peaked than the Lin-Liu
model, whose contour lines are spread out to the left of the figure. The current maximum
values are, respectively, 4.5 kA and 3.5 kA. Finally, figure 17 represents the same map for the
Fisch Ohkawa-corrected model that, compared with the Lin-Liu model, shows a difference
of around 2 kA, again resulting from the lack of frictional trapping effects in the former
model.
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Once the heating system is under operation, a comparison of the experimental current
with these results will be mandatory to know how far we are from the low (e.g. Lin-Liu or wr-
mc models) or high collisional regimes (Fisch models). Since these limits provide lower and
upper bounds to the current value, in principle it cannot be assured how close the experimental
result will be from one value or the other. It looks like that at high temperature the models
applicable in the lmfp regime are supposed to provide more accurate current values than the
Fisch model. As a matter of fact the Fisch model gives an abnormally high current value at
high temperatures (see figure 13). But as long as the collisional regime is not quantitatively
established no choice can be made in this direction.

5. Summary and future work

The implementation of a tool for the EBCD efficiency calculation by means of different linear
models in the ray tracing code TRUBA has been successfully carried out. The analysis in
momentum space along one ray simulation shows how the changing EBW parallel refractive
index may impact on the correctness of the application of these models, as occurs with the mc
model when N‖ is high enough to include in the current integral electrons with u > 4uth, or
in the hsl models when |N‖| is low and the wave heats almost bulk electrons. In principle, the
mc models are better positioned than the hsl models, not only for self-consistency but also for
the weight of the distribution function in the momentum space region where its application is
restricted, in contrast to the case of the models based on the hsl assumption.

Concerning the electron temperature and density that the EBW heating system is expected
to encounter, a scan in their central values has been made, considering typical profiles of NBI-
heated TJ-II plasmas. It is important to note that the current value does not depend only
on the height of the profiles but also on the change in the radial power deposition [12] and
the sign of N‖ where absorption takes place. The total EBCD shows decreasing behaviour
with the density. Concerning the temperature, the trend is rather more complicated, since
the current density profile changes strongly with this parameter, becoming the total EBCD
obtained from summing up contributions with opposite sign, and even becoming negative.
Thus an increasing value of the total current with T0 is obtained below 1 keV, and for higher
temperatures the current decreases up to negative values as the negative contribution becomes
the most important.

The conclusions that can be drawn from the model comparison are summarized as
follows: first, by comparing the Fisch model with and without the Ohkawa effect included,
the contribution of this effect to the total EBCD is negligible in the TJ-II. Although this fact
depends on the device, it is also a feature of the high value of |N‖| archieved by the Bernstein
waves. Secondly, the comparison between the results provided by the weakly relativistic and
non-relativistic mc models has shown that the relativistic effects, although considerable, are not
decisive in the toroidal current value. The main difference between the toroidal current values
provided by each model appears when the frictional reduction in the current is included or not
(Lin-Liu and Fisch models, respectively), as well as by demanding momentum conservation
or not (see the comparison between weakly relativistic and Lin-Liu models). In both cases
the difference found between the current drive values can be of the order of magnitude of the
current value itself.

Finally, the toroidal current is not strongly affected by the launching direction, apart
from the change in the transmission efficiency with the distance from the mirror position
that optimizes it. This kind of map can provide a tool for the optimization of the electron
heating without inducing a current that may damage the magnetic configuration, unless another
procedure for inducing current in the plasma is provided.
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Future work will cover the comparison of the results here presented with the experimental
data obtained when the heating system is operating, and will enable an experimental test of
the models here studied and the hypothesis assumed.
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