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Abstract 

In the last decade, machine learning tools have proved to be very powerful disruption 
predictors in Tokamaks. On the other hand, the vast majority of the techniques deployed 
assume that the input data are independent and are sampled from exactly the same probability 
distribution for the training set, the test set and the final real time deployment. This 
hypothesis is certainly not verified in practice, since the experimental programmes evolve 
quite rapidly, resulting typically in ageing of the predictors and consequent suboptimal 
performance. This paper describes various adaptive training strategies that have been tested 
to maintain the performance of disruption predictors in non-stationary conditions. The 
proposed approaches have been implemented using new ensembles of classifiers, explicitly 
developed for the present application. The improvements in performance are unquestionable 
and the final predictors meet the needs of the next generation of experimental machines, such 
as ITER. Given the difficulties encountered so far in translating predictors from one device to 
another, the proposed adaptive methods from scratch can therefore be considered very good 
candidates for the next generation of devices, particularly at the very beginning of their 
operation.  
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1 Predicting disruptions in non-stationary conditions: present and future devices  

For about two decades, machine learning tools have been applied to the task of predicting 

disruptions in Tokamaks [1]. The main motivations behind these efforts have been the 

potential damage of disruptions to the devices and the lack of physical models even vaguely 

suitable for prediction. The results obtained so far are quite impressive but not entirely 

satisfactory. For example, most of the predictors tend to age quickly, providing very soon 

suboptimal performance.  Moreover, the transfer of predictors from a device to another has 

proved to be very problematic [2]. This is worrying since the gap between the present 

machines and ITER or DEMO is quite large [3].   

In almost all applications of machine learning to disruption prediction, the problem is 

formulated as a classification task. For every time slice, the predictors have to decide whether 

the plasma belongs to the class of the safe discharges or of the disruptive ones. Except for a 

few cases [4-6], all the classifiers deployed on Tokamaks assume that the data are 

independent and identically distributed (i.i.d.). This hypothesis means that the inputs are 

expected to be sampled independently from the same probability distribution function for 

both the training set, the test set and the final real life application. Physically, the i.i.d. 

assumption implies that the properties and the results of the predictors are guaranteed only in 

steady state conditions, not only during discharges but also between them. These assumptions 

are certainly violated in practice. There are indeed strong correlation effects not only between 

subsequent time slices but also between discharges (see Section 3 and 4).  

The fact that the i.i.d. conditions are not met typically results in predictors, which age very 

quickly and provide suboptimal performance. Indeed, as occurred very clearly on JET in the 

last years, the experimental programmes nowadays evolve rapidly, creating often new 

situations different from the ones used to train the predictors. These changes in the plasma 

operation have more severe repercussions with the ITER Like Wall, due to the difficulty of 

predicting the effects of heavy impurities. Quite delicate is the control of tungsten influxes, 

since W can easily cause radiative collapses particularly in the ramp down phase of the 

plasma current.  It should also be mentioned that the robustness of disruption predictors 

performance, which is already a severe challenge on JET, will be even more important on 

ITER, particularly at the beginning of operation, when not enough cases will be available for 

traditional batch training and the experiments will have to explore a large operational space in 

limited time. Indeed it should be remembered that, even if a lot of examples are available, the 

translation of predictors from one device to another has always proved to be a very difficult 

task so far; therefore predictors trained with data of smaller devices could not meet the 
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specifications of larger machines. For all these reasons, adaptive predictors, which require a 

minimum number of examples to be trained and can follow the evolution of the experimental 

programme, would be very useful.   

In this paper, various strategies for adaptive training of disruption predictors are presented 

and their performance assessed with a large database of JET discharges with the ITER Like 

Wall (ILW).  The approaches developed are all compatible with real time applications; they 

also implement a from scratch training, which means that a minimum number of examples, in 

principle one safe and one disruptive shot, is enough for the predictors to start working with 

acceptable performance. The predictors have been optimised for mitigation and their 

application to avoidance will be addressed in a future publication.  

The paper is structured as follows. Next section is devoted to the introduction of the main 

machine learning tools used to obtain the results reported in the paper: Classification and 

Regression Trees (CART) and their ensembles [7,8]. The details about the main strategies of 

adaptive learning, to be deployed between shots, are provided in Section 3 The approach 

implemented to take into account the memory effects during discharges is described in 

Section 4. The large database of discharges analysed is described in Section 5. The results in 

terms of success rates and false alarms are reported in Sections 6, 7, 8 and 9. The conclusions 

and lines of future investigations are the subject of the last section of the paper.  

 

2 Classification trees and ensembles 

As already mentioned, disruption forecasting is considered a classification problem; for each 

time slice, the predictors have to decide whether the plasma conditions are such that the 

plasma is going to disrupt or not. The task to solve can therefore be formalised as follows. 

Given a training sample of n observations, the class variable is indicated by Y and can in 

general take a finite set of discrete values 1, 2, ... , k. In our application, the predictors have to 

discern between safe and disruptive discharges and therefore the classification is binary; 

however, the tools are fully general and can be adapted easily to multiclass problems, such as 

the classification of disruption types. The set of p features used as predictor variables are 

indicated by X1,..., Xp. The goal of the training consists of identifying a model, which can 

predict the class Y from new X values. As will become apparent in the rest of the paper, one 

of the main advantages of the adaptive approaches, proposed in the following, is the 

minimisation of the number of classified examples required for training the predictors.  

The adaptive learning strategies proposed in this work are very general. The machine 

learning tools deployed have therefore to be sufficiently powerful and flexible to allow 
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exploiting the potential of the adaptive procedures to the full. To this end, the methods, 

adopted to implement the various strategies of adaptive learning described in the next section, 

belong to the class of rule-based machine learning (RBML). RBML are machine learning 

methods that derive “rules” for solving a problem directly from the data available.  

In more detail, the basic technologies implemented for the studies reported in this paper are 

Classification And Regression Trees 

(CART). CART extract knowledge 

directly from the available databases 

and formulate it as trees, which are 

their final output [10]. Their approach 

to classification consists of 

recursively partitioning the data space 

and then applying to each partition 

the best rule to fit the data. The 

algorithm is iterated until 

convergence to a solution of 

acceptable performance, quantified in 

terms of misclassification costs. The final classifier is therefore a series of rules that have the 

same representational power as propositional logic.  

RBML classifiers of the CART family present various advantages, such as flexibility and 

interpretability. On the other hand, they are affected by a quite severe weakness; excessive 

sensitivity to the details of the training set. Indeed, the CART models have the unfortunate 

tendency not to be very stable, in the sense that small variations in the examples of the 

training set can affect excessively the final trees and therefore the final classification. A 

typical approach to alleviate this difficulty is based on the so called “weak learners”. These 

are not extremely successful classifiers that, on the other hand, are computationally not too 

heavy to train and deploy. Many of these weak classifiers are therefore pooled in so called 

ensembles and their predictions are then combined to obtain more stable and performing 

results (see Figure 1). The essential element in this combination of classifiers is to achieve 

enough diversity in the classifiers of the ensembles.  Various alternatives are possible and 

two of the most popular are Bagging and Random Forests. They reduce the high-variance of 

CART trees by training many individual classifiers with slightly different sets of examples. A 

CART model is derived for each of the subsets and, for each new example to classify, the 

predictions of the various models are aggregated with a specific decision function, which 
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classifiers.  
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implements one of many possible alternatives. Overfitting the data by individual trees 

becomes a much less serious issue for the members of the ensembles, because the resulting 

high variance is remedied by the aggregation implemented by the decision function. On the 

other hand, the individual trees are so flexible that they present typically a low bias, a 

property, which is then inherited by the final predictor.  

In the case of Bagging, variability is introduced by randomly subsampling the original 

database with replacement. Random Forests (RF), or random decision forests, introduce 

variability not only by sampling the set of examples but also by implementing a random 

choice of the variables in the database. An original complement to these strategies is based on 

the observation that the measurements in Tokamaks are affected by many sources of 

significant noise, which are additive and independent. From a statistical point of view, this 

situation satisfies the validity conditions of the central limit theorem. It can therefore be 

assumed that the statistical distribution of the noise is Gaussian of zero mean. This fact 

suggests building different sets of data, for training the predictors in the ensembles, by 

summing random noise to the measurements. The natural choice for the statistics of the noise 

is a Gaussian distribution with variance equal to the error bar of the measurements. This 

method will be indicated with the name Noised-based Ensemble in the following sections.  

To improve the variability of the training sets, it has proved advantageous to apply the noise 

before building the Bagging and Random Forests ensembles, as detailed in Section 6. It 

should be noted that systematic errors in the measurements cannot be handled in the same 

way as random ones and should be addressed at the level of the individual diagnostic. On the 

other hand, if they remain consistent, systematic errors may have a very low impact on the 

performance of predictors, even if course can strongly impact the interpretation of the 

physics.  

 

3 Adaptive training strategies between discharges  

Adaptive methods for learning in non-stationary environments basically adopt one of two 

main strategies: active or passive training. In active training, the predictors actively try to 

determine the shift in the conditions and react accordingly. Passive approaches periodically 

update the models independently from the detection of changes in the system. Both passive 

and active approaches provide up-to-date models and can be very effective. There are no 

principled reasons to prefer a priori one method or the other. Moreover, in theory, combining 

the two approaches could be advantageous. Unfortunately, passive strategies for training are 

not viable in the present application at least for two reasons. First, the resulting training set 
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would be too imbalanced, since in normal operating conditions the disruptive discharges are a 

small fraction of the safe ones. Moreover, the computational time scales quite badly with the 

number of examples in the training set and therefore there is also the need not to widen the 

training set unnecessarily. In the following therefore only active learning methods are 

considered and investigated.  

In the context of updating the predictors between shots, the adaptive strategies proposed in 

the paper can be conceptually divided in two main categories. The first one consists of 

techniques, which react to individual errors and changes in the performance of the predictors. 

These approaches mainly consist of a suitable updates of the training set, as described in 

detail in subsection 3.1. The second class comprises strategies, which consider the entire 

history of the predictor performance up to the present time and act on the decision function 

and the training set, as discussed in subsections 3.2 and 3.3.  

 

3.1 Basic adaptive learning: retraining after errors 

This first part of the adaptive training is meant to react to errors and in particular to missed or 

tardy alarms. In this perspective, the last trained predictor, starting with the one obtained after 

the first training “from scratch”, is deployed on the following discharges until the first missed 

or tardy alarm. When the predictor misses a disruption or gives a tardy alarm, the shot not 

properly classified is included in the training set. In this way a new model is derived, which is 

deployed to analyse the following discharges until the next error, which provides an example 

for a new retraining. Therefore, as far as the disruptions are concerned, the models are refined 

every time they commit an error, by missing an event or providing a late alarm. 
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The case of the false positives, the false alarms, 

is more delicate. In closed loop operation, indeed, 

it is not necessarily the case that false alarms can 

be always recognised, after the discharge has 

been terminated prematurely or, in any case, 

interfered with following the false alarm. Of 

course off line analysis investigations can 

indicate that the discharge was shut down 

without any good reason, but this cannot be 

guaranteed to take place systematically. On the 

other hand, retraining based only on disruptive 

examples typically results in an unacceptable 

level of false positives. Such an issue becomes 

particularly evident during long campaigns 

and/or when the scenarios evolve rapidly, 

exploring completely new regions of the 

operational space. This has become a quite severe 

problem in the last years, particularly since the 

installation of the ILW. On JET, the experimental 

programme tends to vary quite quickly and, at the 

same time, the metallic wall renders the 

configurations more sensitive to small changes in 

the operational parameters. The predictors need 

therefore to adapt rapidly to the variations of the 

experimental programme. On the other hand, as 

already mentioned, passive training, after each 

safe discharge, is not a viable option, at least because it would lead to a training set too 

unbalanced.  Therefore a more targeted criterion has to be devised to include new safe cases. 

The approach tested is based on the observation that one should include in the training sets 

the safe shot that precede a disruption. Typically, subsequent discharges are indeed quite 

similar since the exploration of the operational space is performed with great caution. 

Therefore an efficient way to update safe shots in the training set consists of adding the safe 

shot preceding any alarm triggered by the predictor. In this way, the models can follow the 

evolution of the safe operational space reducing the number of false alarms. The details of the 

 

 

 
 

Figure 2.Examples of the locked mode 
time evolution. Top; disruption 

preceded by increasing mode locked 
amplitude. Bottom:  a discharge in 

which the disruption occurs during the 
decaying phase of the locked mode 

signal.  A predictor based only on the 
amplitude of the LM would be 

certainly suboptimal.  
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algorithms to update the training sets as just discussed are provided in Section 6. In case of 

more abrupt changes in the sequence of experiments, of course additional automatic checks 

on the plasma configuration (such as current, field additional heating etc.) could be 

performed. Even manual updates of the training set could be envisaged but none of these 

additional precautions have proved necessary for the campaigns investigated in the present 

work.  

 

3.2 Updating the decision function  

The adaptive training strategies described in the previous subsection are based on the 

idea of updating the training set once a classification error has occurred or an alarm has been 

triggered. Alternative methods can try to take advantage of the entire history of the predictor 

performance. To this end, 6 different decision functions have been implemented, to decide 

whether a certain time slice is disruptive or safe, on the basis of the outputs of the individual 

weak predictors described in Section 2. All these predictors are then run in parallel even if 

only one can be in feedback loop at any point in time. Between shots, the track records of the 

various decision functions since the beginning of the campaign, or from any suitable starting 

point, are compared. The most performing prediction function, according to the chosen 

metric (see Section 7), is the one to be selected and included in feedback loop for the next 

discharge. The process is then repeated after each new discharge. In the case of the offline 

analysis presented in this paper, the preferred predictor at any point in time is the one used to 

calculate the global performance, since it is the one which would have been in feedback loop. 

Section 7 provides the essential details about the decision functions implemented and the 

results obtained.   

 

3.3 De-learning: discarding old examples 

The adaptive strategies, introduced in subsection 3.1 result in a continuous increase in the 

training data set. The switching from one decision function to another, as described in 

subsection 3.2, does not reduce the training set either. In addition to posing computational 

issues in the long term, this situation can lead to non-optimal results, because old and 

obsolete examples can remain in the training set. A possible improvement would consist of 

discarding too old examples. The main issue is the identification of the shot number from 

which the examples become obsolete. To this end, suitable performance indicators have been 

defined to determine automatically how to update the training set without retaining too old 

examples. The details about this point are provided in Section 9.  
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4 Handling memory effects during discharges: trajectory learning  

As mentioned in Section 1, the plasma status at a certain point in time is not completely 

independent from the previous history. Therefore, the features sampled at various time slices 

are strongly correlated and in particular depend on the past evolution of the discharge. This is 

a clear violation of the i.i.d. hypothesis. In the case of disruption prediction, this situation 

renders predictors based on the simple absolute value of a measured quantity, such as the 

locked mode, clearly suboptimal. A relevant example is reported in Figure 2, where it is 

shown how disruptions can occur during phases when the locked mode amplitude is either 

increasing or decreasing.  Unfortunately, during the discharges there is not enough time to 

implement complex active learning strategies, which are on the contrary deployed between 

shots (see Section 3). The time scales of plasma disruptive instabilities  are in the ms range 

and indeed the cycle time of JET real time system is 2 ms. The only viable alternative is 

therefore “trajectory learning” [11]; the approach consists of training the predictors with 

series of subsequent time slices so that they can learn these correlation effects occurring 

during the discharge.  Time series of various lengths have been tested for the case of the 

analysed data base as described in detail in Section 8. The proposed solutions extend the 

approach already pioneered in [12]. In any case, it should be emphasized that all the 

techniques presented in this paper allow implementing an approach “from scratch”, which 

means that the developed tools can in principle start predicting with one single example of 

each class, a disruptive and a non-disruptive discharge. The first model can therefore be 

trained with the first useful discharges at the beginning of a campaign. 

 

5 JET Databases with the ILW and definition of the statistical indicators  

To test the various adaptive training strategies, described in the previous sections, a large 

database of JET discharges with the ILW has been considered. The set of discharges covers 

the interval of campaigns C28-C32. This database is particularly interesting, for the purpose 

of assessing the potential of adaptive learning strategies, because C28 is the first campaign of 

JET with the new ITER Like Wall. The discharges included in the DB are therefore well 

suited to simulate the learning process of predictors at the beginning of the life of a device.  

As far as the definition of disruption is concerned, the traditional JET threshold has been 

retained, i.e. discharges with a current decay faster than 5MA/s are considered disruptive. 

The disruption time is taken as the beginning of the current quench. Moreover, again for 

coherence with the past, only discharges, whose plasma current exceeds 750 kA, have been 
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included. On the contrary, intentional and mitigated disruptions have not been considered. 

Overall the database comprises 2428 discharges, 430 disruptive and 1998 non disruptive 

shots. Plots showing the operational space covered by the database are reported in Figure 3. 

For all the discharges of the DB, all the signals have been resampled at 1kH frequency and 

the predictions have been performed every ms.  

In terms of the classification criteria, alarms, which are launched 5 ms or less from the 

beginning of the current quench, are considered tardy, since 5 ms is approximately the 

minimum time required on JET to undertake mitigation action. Alarms triggered more than 3 

s before the beginning of the current quench are considered early; this is a conservative 

choice because many disruptions on JET are due to impurity accumulation, which can be 

detected even earlier than 3 s before the beginning of the current quench. The false positive 

plus the early alarms are summed to obtain the total rate of false alarms in the tables 

presented in the rest of the paper.   

 

6 Results obtained by updating the training set in case of errors at specific time slices 

JET database with the ILW, described in Section 5, has been analysed first by applying the 

basic adaptive training introduced in Subsection 3.1. The first model has been obtained with 5 

safe discharges and the first disruption. For the safe shots the training times are four averages 

over 10 ms randomly chosen during the flat top. For the disruptions, three averages of 5 ms 

each, in the last 15 ms before the beginning of the current quench, have been provided as 

inputs to the classifiers. When updating the training set, for the missed and tardy alarms the 

same points are selected (three averages of 5 ms each, in the last 15 ms before the beginning 

of the current quench). To follow the evolution of the safe discharges, as discussed in Section 

 

 
 

Figure 3.Overview of the databases for the ILW- A characteristic point for each shot in the 
database has been reported. The green triangles identify the disruptive shots.  
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3,  after each alarm, four points averaged over 10 ms are chosen on the previous safe 

discharge in the 40 ms before the alarm time of the current discharge.   

With regard to the architecture of the ensembles, eleven noise realisations have proven 

sufficient to obtain good results. The bagging and Random Forests classifiers,  applied to 

these eleven databases with noise, consist of 40 trees each. Therefore, the ensemble 

classifiers, described in the rest of the paper, are the combination of 440 individual trees. This 

is the level of complexity of all the classifiers used to obtain the results reported in the 

following. In terms of aggregation, to derive a unique decision from the outputs of the 

various predictors in the ensembles, a simple threshold, in the percentage of the weak learners 

detecting a disruption, has been adopted at this stage (DF1 functions described in the next 

section). 

As a preliminary step, the single CART tree and the ensemble classifiers have been 

used to explore the database and to identify the most relevant global variables for mitigation. 

With this goal, they have been trained with a series of global quantities as inputs, with the 

aim of determining the ones providing the best results. Only individual time slices have been 

provided to the predictors in the traditional way (no trajectory learning at this stage). Also 

only signals routinely available in real time have been considered in the perspective of future 

deployment in JET real time network. The quantities analysed as candidate inputs have been: 

the vacuum toroidal magnetic field B, the plasma current Ip, the amplitude of the locked 

mode LM, the amplitude of the internal inductance li, the safety factor at 95% of the plasma 

radius q95 and the edge density n. Confirming previous analyses and common knowledge 

widely reported in the literature, the locked mode and internal inductance signals have proved 

 
Table I Performance of the single CART tree and the ensembles by updating the training 

set in case of errors at specific time slices.   
 

Method Success 
Rate 

Missed Early Tardy False Mean 
[ms] 

Std 
[ms] 

Single 
CART 

93.24  
(400/429) 

0.47  
(2/429) 

3.50  
(15/429) 

2.80  
(12/429) 

14.39  
(289/2008) 

 
385 

 
397 

 
BAG 

89.04  
(382/429) 

0.70  
(3/429) 

6.53  
(28/429) 

3.73  
(16/429) 

11.13  
(225/2021) 

 
369 

 
407 

 
RF 

95.10  
(408/429) 

0.93  
(4/429) 

0.93  
(4/429) 

3.26  
(14/429) 

8.37  
(167/1996) 

 
371 

 
401 

Noise+RF 94.87  
(407/429) 

1.17  
(5/429) 

0.47  
(2/429) 

0.47  
(2/429) 

7.17  
(143/1995) 364 397 

Noise+BAG 95.10  
(408/429) 

0.70  
(3/429) 

0.70  
(3/429) 

3.73  
(16/429) 

7.97  
(159/1996) 374 400 
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to be the most informative [13-20]. These two quantities not only allow reaching good 

performance on JET but adding additional global quantities typically does not improve the 

outputs. Therefore, this preliminary analysis confirms various studies reported in the past 

showing the importance of these two quantities in predicting disruptions not only on JET but 

also on other devices. Overall the performance obtained by applying the ensembles to 

individual time slices of the locked mode and internal inductance signals are reported in 

Table I. To interpret the numerical results of this and the following tables, it should be 

mentioned that the single disruption and the 5 safe shots used to train the first predictor are 

not included in the statistics.  

 

7 Results obtained by updating the decision function  

The performance of the noise based ensembles, reported in Table I, are reasonable and quite 

competitive with traditional predictors, particularly if one takes into account the adaptive 

nature of the approach adopted. On the other hand, there are still margins for improvements.  

First, it has been tested whether other decision functions can fare better than the simple 

threshold in the percentage of the weak learners detecting a disruption. To this end 6 different 

decision functions have been tried, comprising all the most widely formulas typically used to 

aggregate the results of ensembles. The mathematical details are provided in Table II.  

As expected, there is no individual decision function which always outperforms all the others. 

The best alternative therefore consists of switching to the most performing decision function 

dynamically during the evolution of the campaigns. In this perspective, the main difficulty is 

always the definition of suitable indicators to reliably implement the switching between the 

decisions functions. Theoretical methods to guide in this task do not exist and empirical 

solutions have to be found on a case-by-case basis. In our application, a quite systematic 

investigation of possible alternatives has shown that the following two indicators are very 

effective in determining when to switch between the individual classifiers:  

 

𝐼𝐼𝐼𝐼𝐼𝐼1 = 𝑉𝑉𝑉𝑉𝑉𝑉1 − 𝑉𝑉𝑉𝑉𝑉𝑉2
%𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇ℎ𝐴𝐴𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝐴𝐴𝑜𝑜 

               (1) 

 

 

𝐼𝐼𝐼𝐼𝐼𝐼2 = 𝑉𝑉𝑉𝑉𝑉𝑉1
𝑉𝑉𝑉𝑉𝑉𝑉2

− 30∙𝑉𝑉𝑉𝑉𝑉𝑉2 
%𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇ℎ𝐴𝐴𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝐴𝐴𝑜𝑜 

                 (2) 
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VAR1 is a counter, which is increased by one unit every time a predictor in the ensemble 

does not trigger any alarm for an entire safe shot. In its turn, VAR2 is increased by one unit 

every time a predictor in the ensemble misses a disruption or triggers a tardy alarm. So 

basically the two indicators are increased by right predictions and decreased by wrong ones. 

It is worth mentioning that the two versions of the numerical indicators are quite robust, in 

the sense that reasonably small variations in the constants do not affect significantly the final 

performance, at least for the database analysed in this paper. On the other hand, the 

deployment of the two indicators IND1 and IND2 on the existing database has not provided 

 
Table II The basic features of the families of decision functions applied to the JET database 
with the ILW. The percentage of disruptivity mentioned in the table is to be understood as 

the percentage of trees detecting a disruptive behaviour.  
 

Decision 
Function  Basic mathematical description Colour 

DF1 

Percentage threshold: the classification decision is given when 
exceeding a threshold in the percentage of the 440 total models 
detecting a disruption. The votes that the time slice is 
disruptive are transformed into a percentage and if it exceeds 
the 80% threshold then an alarm is triggered.  

Blue 

DF2 

Tree majority voting: the classification decision is given by the 
majority voting of the 40 trees, one for each noise realisation. 
For each tree the percentage of disruptivity is calculated and if 
the percentage is below 30% or above 70% the tree is retained 
in the final majority voting.  

Tan 

DF3 

Tree percentage threshold: the classification decision is given 
by the percentage over the 40 trees, one for each noise 
realisation. If this percentage exceeds the 80% threshold then 
an alarm is triggered. For each tree the percentage of 
disruptivity is calculated and if the percentage is below 30% or 
above 70% the tree is retained in the final majority voting. 

Gold 

DF4 

Ensemble majority voting: the classification decision is given 
by the majority vote of the 11 ensembles. For each ensemble, 
all the votes of the related trees (40) are considered (majority 
voting). 

Dark Olive 
Green 

DF5 

Ensemble majority voting with filtering: the classification 
decision is given again by the majority vote of the 11 
ensembles as for DF4 but only the ensembles, whose 
percentage of disruptivity is below 30% or above 70%, are 
retained in the calculation of the majority voting. 

Turquoise 

DF6 

Ensemble majority voting with filtering: the classification 
decision is given again by the majority vote of the 11 
ensembles as for DF4 but only the ensembles, whose 
percentage of disruptivity is below 30% or above 70%, are 
retained in the calculation of an average; if the disruptivity is 
above the 80%threshold then an alarm is triggered . 

Purple 
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very significant improvements in performance, which is only marginally better than the 

values reported in Table I. The reason, for the very limited impact of switching between 

different decision functions, resides in the data provided as inputs to the predictors, which 

constitute a too limited description of the plasma. Selecting dynamically the best decision 

function provides much better results if applied after trajectory learning, as described in the 

next section.  

 

8 Results obtained by taking into account the history of the individual discharges 

Given the outputs of Section 6, the approach of trajectory learning has been applied only to 

the locked mode and internal inductance signals. A series of systematic tests has been 

performed to identify the most appropriate lengths of the signals to be used as inputs for the 

ensembles to best learn the history effects during the discharges. The best results have been 

obtained using, in addition to the locked mode and internal inductance amplitudes at the 

beginning of the current quench, two additional samples for each of the two signals: the 

 
Table III. Performance obtained by implementing the trajectory learning to the noise based 

ensembles with Bagging and Random Forests.  
 

Decision 
Function 

Success 
Rate Missed Early Tardy False Mean 

[ms] Std [ms] 

1 RF 95.10  
(408/429) 

2.56  
(11/429) 

0.23  
(1/429) 

2.10  
(9/429) 

4.91  
(98/1994) 335 355 

1 BAG 94.41  
(405/429) 

3.73  
(16/429) 

0.23  
(1/429) 

1.63  
(7/429) 

4.01  
(80/1994) 339 355 

2 RF 97.44  
(418/429) 

1.86  
(8/429) 

0.23  
(1/429) 

0.47  
(2/429) 

5.57  
(111/1994) 343 354 

2 BAG 97.44  
(418/429) 

1.40  
(6/429) 

0.00  
(0/429) 

1.17  
(5/429) 

3.81  
(76/1993) 338 357 

3 RF 95.34  
(409/429) 

2.80  
(12/429) 

0.00  
(0/429) 

1.86  
(8/429) 

4.21  
(84/1993) 338 364 

3 BAG 96.97  
(416/429) 

1.86  
(8/429) 

0.23  
(1/429) 

0.93  
(4/429) 

4.46  
(89/1994) 319 335 

4 RF 96.97  
(416/429) 

1.17  
(5/429) 

0.23  
(1/429) 

1.63  
(7/429) 

6.37  
(127/1994) 349 358 

4 BAG 97.90  
(420/429) 

0.93  
(4/429) 

0.23  
(1/429) 

0.93  
(4/429) 

6.32  
(126/1994) 342 360 

5 RF 97.67  
(419/429) 

0.70  
(3/429) 

0.47  
(2/429) 

1.17  
(5/429) 

7.07  
(141/1995) 377 402 

5 BAG 97.67  
(419/429) 

1.63  
(7/429) 

0.23  
(1/429) 

0.47  
(2/429) 

5.52  
(110/1994) 348 353 

6 RF 96.97  
(416/429) 

1.40  
(6/429) 

0.23  
(1/429) 

1.40  
(6/429) 

4.76  
(95/1994) 335 351 

6 BAG 96.27  
(413/429) 

1.86  
(8/429) 

0.23  
(1/429) 

1.63  
(7/429) 

4.61  
(92/1994) 336 352 
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locked mode amplitude at 40 and 50 ms before the beginning of the current quench and the 

internal inductance amplitude at 20 and 40 ms before the beginning of the current quench.  

In the course of this analysis, the issue of the assertion time has been investigated in detail. 

Given the fluctuations of the various plasma parameters, triggering an alarm after the first 

time slice, when a disruptive behaviour is detected, could not necessarily be the best choice. 

In the interest of reliability, it might be better to wait for the ensembles to identify an 

abnormal situation for two or three subsequent time intervals. In the present application, 

particularly after the implementation of the trajectory learning, the best performances have 

been obtained by triggering an alarm immediately after the predictors detect a disruptive 

behaviour. With this choice of the signals as inputs, and implementing also the switching of 

the decision functions as described in the previous section, the results are significantly better, 

particularly in terms of false alarms, as can be seen from the statistics of Table III. From the 

RANDOM FOREST RANDOM FOREST 

  
Success Rate 99.53 Success Rate 99.53 
False 1.05 False 2.45 
BAGGING BAGGING 

  
Success Rate 99.3 Success Rate 98.37 
False 0.85 False 1.80 
 

Figure 4. Performance obtained with implementing de-learning by retaining only the last 10 
discharges in the training set and zeroing the indicators IND1 and IND2 after each switch of 
the decision function. Top: results obtained with IND1. Bottom: results obtained with IND2. 

The red line and the left vertical axis report the success rate; the black line and the right 
vertical axis report the number of false alarms. 
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results reported, it can be concluded that trajectory learning improves noticeably the 

performance. On the other hand, there is clear trade-off between success rate and false 

alarms; increasing performance in one of these two fundamental indicators produces a 

significant degradation in the other. This fact is not remedied by including information about 

the signals trajectories. The observation that the performances tend to decrease toward the 

end of the C32 campaign, after being significantly better earlier on, suggests that the oldest 

examples could be obsolete and could be profitably discarded, as investigated in the next 

section.   

 

9 De-learning to manage obsolescence 

Discarding old examples is an important aspect of any form of learning in non-stationary 

conditions. JET programme is now evolving very quickly and therefore data of past 

discharges can become quickly misleading and reduce the performance of the predictors. 

Therefore adaptive strategies, which do not include effective forms of de-learning, can give 

very rapidly suboptimal performance. On the other hand, it is quite difficult to find effective 

criteria to discard old examples. General theories are not available and this is another typical 

aspect of developing predictors which has to be addressed empirically.  

 Among the various alternatives tested, the ones providing the best results, with reasonable 

computational efforts, are the two described in the following. First, at each retraining only the 

last 10 discharges in the training set are retained (with obvious clerical checks to make sure 

that at least a disruptive and a safe shot are included in the set). The second form of de-

learning implemented is the simple zeroing of the indicators IND1 and IND2 after each 

switching of the decision function. This is of course a form of de-learning; old examples are 

discarded and do not enter into the calculation of the various decision functions performance. 

The obtained results are summarised in the plots of Figure 4. The improvement is very clear 

and the overall performance reach unprecedented levels in terms of both success rates and 

false alarms for the case of Bagging combined with IND2. The errors, in terms of both 

success rate and false alarms, are in the range of a few cases per thousand. Particularly the 

case of the bagging using IND2, which is always the most performing alternative, achieves 

success rate in excess of 99 % and false alarms less than 1 % (see bottom left plot of Figure 

4). For this predictor, only two disruptions are detected late and one early (out of 429) and the 

false alarms are only 15 discharges (out of 1993). Such levels of accuracy are particularly 

relevant if one considers that the method is adaptive and therefore the predictors have to learn 

as the campaigns evolve [13-20]. Moreover, in the statistics of the errors are included various 



17 
 

cases, for which it is either very doubtful that the predictors really made a mistake or that 

could have been avoided by considering in advance the 

objectives of the experimental sessions. In particular of 

the 15 false alarms, at least 10 occur in the ramp down 

phase of the plasma current and are triggered by minor 

disruptions. A couple of representative cases are reported 

in Figure 5. Of course with more experimental time, 

strategies could be devised to avoid such situations by 

designing better ways to terminate the discharges. Once 

optimised the exit rom the H mode and the ramp down 

of the current,  if necessary specific predictors could be 

developed for the detection of actual disruptions in the 

final phases of the discharges, which can reasonably be 

expected to have even better performance.  

 

10 Conclusions and further developments 

The adaptive techniques developed in this work are the 

most sophisticated ever applied to Tokamak signals. 

They have been implemented with a quite powerful set 

of ensemble classifiers, which have proved more than 

adequate to the task of predicting disruptions for 

mitigation using a large database of JET discharges with 

the ILW. All the steps of the developed adaptive training are compatible with real life 

implementation, either during or between discharges. The proposed approach is also from 

scratch and therefore the various tools can be deployed after the first disruption. On the other 

hand, it should be stressed that implementing adaptive strategies from scratch does not mean 

that no prior information is required. The proposed methodology needs indeed to set some 

parameters, in particular the length of the training data sets for de-learning and the amount of 

time points to be retained for trajectory learning. These quantities have been derived by a first 

analysis of the last campaigns of JET with the carbon wall.  

The obtained performances are unprecedented both in terms of success rate and false alarms, 

being in the range of a few per thousand. Even more importantly, the performance are always 

well in excess of ITER requirements. During the entire range of campaigns investigated, 

indeed, the success rates of the best predictors developed always hover above 99% and the 

 

 

 
 

Figure 5. Examples of false 
alarms during the current 

decay phase of the discharge. 
The vertical dashed lines 

identify the beginning of the 
current quench. 
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false alarms rates remain well below 2%. Therefore, in the light of these results, the approach 

of adaptive learning is expected to be very important at the beginning of operation of the next 

generation of devices, especially at the beginning of their operation. ITER in particular will 

have to increase the current to 15 MA in a relatively short time. Moreover, to prepare DT 

scenarios, various isotopic compositions will have to be investigated. Previous experience in 

JET shows that different fuel mixtures can alter significantly various aspects of the 

discharges, which can affect their disruptivity. Good examples are the ELMs, the emitted 

radiation and detachment. It is not at all evident that all these effects can be taken into 

account from the beginning without any need for retraining of the predictors. Therefore some 

form of adaptive predictors, not necessarily exactly deploying the same technologies 

investigated in this paper, will probably be important for ITER. Another important issue to 

consider is avoidance. Also in this perspective, adaptive strategies could prove to be essential 

to cope with the great variety of potentially disruptive situations, particularly at high fusion 

power when also the alpha particles could strongly influence the stability of the 

configurations. For avoidance, of course, additional signals, and in particular profiles, will 

have to be included in the list of features to be provided as inputs to the predictors; indeed 

quantities such as the radiation profiles are considered essential to obtain early warnings of 

problems in integrated scenarios [21,22]. 
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