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A B S T R A C T   

Microfluidics represents a very promising technological solution for conducting massive biological experiments. 
However, the difficulty of managing the amount of information available often precludes the wide potential 
offered. Using machine learning, we aim to accelerate microfluidics uptake and lead to quantitative and reliable 
findings. In this work, we propose complementing microfluidics with machine learning (MLM) approaches to 
enhance the diagnostic capability of lab-on-chip devices. The introduction of data analysis methodologies within 
the deep learning framework corroborates the possibility of encoding cell morphology beyond the standard cell 
appearance. The proposed MLM platform is used in a diagnostic test for blood diseases in murine RBC samples in 
a dedicated microfluidics device in flow. The lack of plasticity of RBCs in Pyruvate Kinase Disease (PKD) is 
measured massively by recognizing the shape deformation in RBCs walking in a forest of pillars within the chip. 
Very high accuracy results, far over 85 %, in recognizing PKD from control RBCs either in simulated and in real 
experiments demonstrate the effectiveness of the platform.   

1. Introduction 

Today, one of the most challenging frontiers in system engineering is 
the possibility of recapitulating limited parts and activities of the human 
body in ex-vivo environments [1]. This is made possible by microfluidic 
devices. Microfluidic and Lab-on-a-chip (LOC) technologies [2–4] have 
attracted increasing interest in recent years. They deal with the fabri-
cation of silicon/plastic microdevices with channels and chambers, and 
with control of the flow behavior of small volumes of fluids in 

microchannels and micro-chambers, with dimensions from tens to 
hundreds of micrometers. Microfluidic devices allow for the mimicking 
of some crucial biological events such as drug-related cell death 
(apoptotic events) [5], cell-cell interaction (cancer-immune crosstalk) 
[6], cell migration patterns [7] and lack of plasticity of the cell [8–10]. 
LOC systems naturally bring synergy with machine learning approaches, 
leading to a novel multidisciplinary discipline called machine learning 
microfluidics (MLM). The MLM branch comprises several aspects, 
including cell culture, LoC design, time-lapse microscopy, image 

* Corresponding author at: Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Roma, Italy. 
E-mail address: martinelli@ing.uniroma2.it (E. Martinelli).  

Contents lists available at ScienceDirect 

Sensors and Actuators: A. Physical 

journal homepage: www.journals.elsevier.com/sensors-and-actuators-a-physical 

https://doi.org/10.1016/j.sna.2023.114187 
Received 7 September 2021; Received in revised form 27 December 2022; Accepted 17 January 2023   

mailto:martinelli@ing.uniroma2.it
www.sciencedirect.com/science/journal/09244247
https://www.journals.elsevier.com/sensors-and-actuators-a-physical
https://doi.org/10.1016/j.sna.2023.114187
https://doi.org/10.1016/j.sna.2023.114187
https://doi.org/10.1016/j.sna.2023.114187
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sna.2023.114187&domain=pdf


Sensors and Actuators: A. Physical 351 (2023) 114187

2

analysis, and patient stratification [11–17]. 
MLM platform relies on the possibility of using the same platform for 

very diverse experimental scenarios [18–22], leading to the extraction 
of a multitude of quantitative information related to the 
morpho-kinematics of the moving objects (cell, bacteria, inert com-
pounds, etc.) [23]. On the other hand, MLM systems allow paralleliza-
tion of experiments in multiple wells implemented on the same chip 
[24], opening the way to massive high-throughput analysis [25]. 

To validate the MLM approach, a challenging scenario as the iden-
tification of blood diseases in murine red blood cells (RBCs) samples in a 
dedicated microfluidics device in-flow, has been considered. Actually, 
the biophysical properties of RBC provide potential biomarkers for the 
quality of donors or for patient health control as demonstrated in [26, 
35]. To increase the potential of investigating RBC deformability, so-
phisticated microfluidic platforms and optical components have been 
used [27,36–40]. Some works [41,42,43] deal with RBCs in adhesion 
and propose to analyze static morphological aspects by shape feature 
and DL. 

Bulk flow methods measure the deformability of thousands of cells in 
a bulk RBC sample, but cannot detect changes in deformability in a small 
fraction of abnormal cells in a sample containing primarily normal 
RBCs. Traditional single-cell technologies (e.g., micropipette aspiration, 
optical tweezers, atomic force microscopy, etc.), have similar sensitiv-
ities to the bulk flow techniques but suffer from greatly reduced 
throughputs, requiring specialized personnel. Microfluidic techniques 
combine the benefits of traditional bulk and single-cell techniques – 
providing higher throughput with equal or greater sensitivity, as well as 
single-cell measurements. Microfluidics outcomes may be performed 
through blending with imaging and machine learning (ML) techniques 
[28]. 

The potential of using ML in combination with microfluidics is the 
possibility of enriching the robustness of the analysis and its repeat-
ability. ML allows not only processing massive numbers of cells and, 
therefore, providing more statistically reliable results, but also, through 
dedicated preprocessing, to increase the robustness of the analysis to 
unpredictable variations and inter-experiment heterogeneity due to set- 
up changes. Furthermore, ML allows to combine the results acquired at 
single-cell level in a cooperative logic, mimicking the ability of a panel 
of human experts to take decisions. 

More specifically, the main scope of our work is to design a general- 
purpose MLM system capable of dealing with the non-stationarity of the 
video sequences acquired and maintaining high diagnostic performance 
in biological case studies. In particular, with respect to the results shown 
in [9], here we introduced several modifications to the analysis to 
address the problems and limitations that occurred in previous work. 
Techniques such as background subtraction and image sequence 
equalization were implemented to increase the recognition perfor-
mance, in addition to inpainting image analysis algorithm required to 
digitally remove structural parts of the chip, such as pillars, that may 
confound the cell localization. Furthermore, we proposed a novel 
learning paradigm based on a two-threshold strategy, to combine the 
classification label assigned to each single cell in a whole label for each 
single experiment. Finally, to demonstrate the capability of the MLM 
platform to distinguish RBCs with lack of plasticity from healthy ones, 
we first ran artificial experiments with generated frames of moving RBCs 
applying rotation and deformation models from the literature and esti-
mated the classification accuracies for the different levels of plasticity 
simulated. 

The proposed approach has been validated in an automatic diag-
nostic test for Pyruvate Kinase Disease (PKD), a hereditary metabolic 
disorder caused by the lack of pyruvate kinase activity specifically in 
RBCs [29–32]. PKD constitutes a disease model in which microfluidics 
could constitute a valid tool to better understand the variability among 
patients as well as their response to splenectomy by helping on finding 
new mechanical biomarkers of the disease [33]. In this work, PKD RBCs 
have been analyzed versus Wild Type (WT) RBCs from murine samples 

[34]. 

2. Methods 

The proposed MLM platform of analysis consists of several steps (see  
Fig. 1), from sample preparation to the final classification result for a 
given experiment. First, cells are cultured, and then they are injected 
into the LOC and put inflow. After cells are forced to deform to pass the 
slit barriers (dimensions in order of capillaries), they cross the forest of 
pillars that serve as soft obstacles for RBCs, introducing a less stressed 
source of deformation. We believe that such a minor source may pre-
serve the plasticity study from bias due to the suck effect and related 
slipstream that appears when the barrier is completely plugged by a 
multitude of passing RBCs. The forest of pillars, designed to avoid 
microchannels collapsing when PDMS is bonded to glass, also mimics 
the reticular mesh of the spleen that anticipates the area of splits (the 
fence-like barrier). 

Through time-lapse microscopy, a video sequence of the moving cells 
through the compartment containing the pillars is then acquired and 
stored in a PC for offline analysis. The data processing step (right section 
of Fig. 1), based on image processing and machine learning algorithms, 
aims to provide a diagnostic result for RBCs from comparative biological 
conditions, healthy vs. unhealthy. Peripheral blood was collected from 
the tail vein of AcB55 recombinant (PKD) or C57BL/6 (Wild Type, WT) 
adult mice, and RBCs were obtained after centrifugation to separate 
them from plasma. Further details can be found in the Supplementary 
material. The microfluidic device was fabricated using photo- and soft- 
lithography. The master mold was obtained from a silicon wafer by 
patterning polymeric structures using photolithographic techniques. 
The LoC consisted of eight parallel microchannels containing each a row 
of funnel-shaped micro-constriction to mimic the filtering function of 
the red pulp’s spleen and a matrix of pillars all along to mimic the 
reticular mesh of the spleen. Additional information on the microfluidic 
devices used in this experiment can be found in the Supplementary 
material and in ref [9]. 

A schematic view of the chip and a focus on the portion between the 
barrier and the pillars are shown in Fig. 2. 

2.1. RBCs perfusion 

The Precision Pressure Control System (P2CS, Biophysical Tools 
GMBH) was used to regulate the flow pressure in the microfluidic de-
vice. The pump and microfluidic chip were connected by a 1 mm flexible 
plastic tubing (Tygon) at the inlet hole. A constant pressure of 150–200 
mbar was applied at room temperature. 

2.2. Artificial video generation 

To verify the capability of the platform to detect the lack of plasticity 
in RBCs under rotations in the 3D environment, we generated simulated 
video sequences containing a deformed/rotated artificial RBC (see some 
examples in Fig. 3 panel A). 

2.3. Red blood cell mathematical description 

To generate the phantom images containing an RBC under defor-
mation, we have first modelized an undeformed RBC as a surface in the 
3D (x,y,z) Cartesian space, using the following formula: 

z = ±D0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
4(x2 + y2)

D2
0

√ [

a0 + a1
(x2 + y2)

D2
0

+ a2
(x2 + y2)

2

D4
0
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(1)  

where D0 represents the mean diameter of the cell, a0, a1, and a2 
represent shape factors obtained during the 2D nonlinear fitting. In 
particular, the quantity D0a0 represents the minimum thickness of the 
biconcave model at the center of the cell, whilst a1 and a2 regulate the 

A. Mencattini et al.                                                                                                                                                                                                                             



Sensors and Actuators: A. Physical 351 (2023) 114187

3

convexity and relate to the maximum thickness of the disc. Values D0 =

7.82μm, a0 = 0.052, a1 = 2.003 and a2 = − 4.491 were set according to 
the literature [44–46]. 

2.3.1. Deformation model 
Let us denote with x the direction along which the fluid drags the 

RBC and with y the orthogonal direction (i.e., that of constriction). We 
also assume that the cell is not rotated when it passes through the 
constriction because of the short height of the channel and the imposed 
laminar flow condition. This hypothesis has been qualitatively verified 
in the real image analysis section. 

When the RBC passes through a constriction, it squeezes along the 
y-axis. Since the cell quickly goes beyond the obstacle, due to the local 
increase of fluid velocity, we can assume that the same amount of lon-
gitudinal strain εl = εy =

Δy
y is applied to every part of the cell. With this 

assumption, we can calculate εl by imposing that the RBC’s diameter 
(7.82μm) is reduced to the minimum distance between the constrictions 
(1.5μm) only along the y-axis. 

Under an assumption of incompressibility of RBC [47,48], the Pois-
son ratio of RBC is calculated to be equal to 0.5. Given the magnitude of 
ν, we can calculate the transverse strain εt = εx = εz by multiplying the 
longitudinal strain by the Poisson ratio. 

Once the strain is applied, the viscoelastic properties of the RBC 
avoid the cell restoring its initial state immediately. To describe this 
phenomenon, we have used the Kelvin-Voigt model [49,50]. By 
applying that model to our case study, it resulted in an exponential strain 
relaxation model, characterized by a time constant τ, which depended 

on the health condition of the cell [44] as follows: 

ε(t) = ε0e− (t− t0)/τ (2) 

ε0 is the initial strain applied by the funnel in a given direction and t0 

is the relaxation starting time. In our study, the latter is always set to 
zero. The values of τ are randomly generated from two distinct Gaussian 
populations with average values equal to 25 (σ = 5) and 8 (σ = 2) for 
unhealthy and healthy conditions, respectively (see Fig. 3 panel B). 
Mean and variance of the time constant τ are extrapolated by a first 
analysis of the acquired videos. As expected, we used a lower τ average 
value for healthy RBCs to simulate their ability to restore their original 
shape faster. On the contrary, a higher τ average value represented a 
slower restoring of the original shape, therefore lower plasticity. The 
higher the standard deviation simulated, the higher the morphology 
heterogeneity of the unhealthy cells. During its relaxation time, the cell 
could be subjected to external forces that could alter the initial orien-
tation of the cell. The forces are essentially due to the non-uniformity 
flux given by the numerous constrictions, to the interaction with the 
other cells, and, especially, to a slightly uneven application of stress by 
the constriction. However, under the quasi-planar assumption and the 
progressive levelling out of the flux velocity, the angle oscillations are 
bounded in a reduced range. 

To simulate this effect, we have rotated the deformed geometry at a 
certain time after the stress application using specific rotation matrices. 
Mathematical details of the rotation matrices can be found in the Sup-
plementary material. 

Fig. 1. A sketch of the MLM platform proposed for the RBC plasticity analysis. Panel A. Sample preparation and equipment description. Panel B. Data processing 
steps for video analysis and machine learning classification. 
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2.4. Real dataset 

2.4.1. Time-lapse microscopy video acquisition 
Video sequences were made up of around 1000 frames with a camera 

speed of 85 fps. Before recording the videos, RBCs were pumped for 
1 min to stabilize the microfluidic unit conditions. Optical measure-
ments were performed using a microscope (Zeiss) and Zeiss Axiocam 
503 mono camera. While RBCs were perfused through the chip, several 
videos were recorded for analysis. A total of 54 videos were collected (41 
videos from healthy donors and 13 from PKD subjects). 

2.4.2. Data processing 
The data processing step is composed of several blocks (Fig. 1 B)-G)) 

aimed at preprocessing the video sequence, localizing and tracking ob-
jects of interest (RBCs), and extracting that information relevant for the 
automatic recognition of pathological cell behavior with respect to the 
source of deformation induced by pillars, i.e., the so-called lack of 
plasticity of cells.  

i) Video Processing 
Each frame is cropped in order to confine the analysis in the 

region between the barrier and pillars (Fig. 1 panel B). To elim-
inate pillars from the frame, we applied an inpainting procedure 
[51,52] with the aim of restoring the targeted regions in a given 
image using neighboring information. Pillars are located by using 
the Circular Hough Transform (CHT) [53] with radius tolerance 

[10–20] px and a sensitivity parameter value equal to 0.90. The 
circular regions corresponding to the six pillars are then used as 
targeted regions for inpainting, as shown in the right picture in 
the video processing step (panel B Fig. 1), where pillars have been 
removed from the image.  

ii) Cell localization and tracking 
Each frame is then processed again using the CHT with radius 

tolerance (4− 10) px tuned according to a manual estimation of 
the diameter of the RBC. RBCs located at each frame are then 
processed using a modified version of proprietary cell-tracking 
software, i.e., Cell Hunter [6,7,54] (Fig. 1 panel C). The modifi-
cations introduced here are related to the flow direction 
constraint over the set of linkable cells in the assignment matrix. 
In this work, we limit the instantaneous turning angle [55] of the 
trajectory in the range [ − π/6,π/6]. Thanks to this, the method is 
robust to cell velocity variability or to cell density increasing that 
is slightly observed during the experiment.  

iii) ROI Sequence (ROI-S) extraction and equalization 
In order to finely characterize the morphology of each RBC 

during its motion in the chip, the algorithm extracts a Region Of 
Interest (ROI) around the located cells for each time point, 
therefore generating what we call ROI sequence (ROI-S). To avoid 
the introduction of heterogeneity in luminance from one frame 
and another, we applied an adaptive histogram equalization 
procedure [54] by improving the contrast in the first frame using 
histogram stretching techniques and using histogram matching 
procedures [56] to gradually adapt the contrast of the frames to 
the first one. An example of equalized ROI-S is shown in Fig. 1 
panel D, where an RBC slowly passes from a circular shape to an 
oblong shape while approaching the pillars. As it can be noted, 
the ROI-S still maintains the overall original appearance and the 
general contrast appears uniform along the sequence.  

iv) Filtered ROI-S extraction 
To account for the confounding effect of background illumi-

nation, we extracted the derivative of each ROI-S along the two 
dimensions by progressively applying the Laplacian of Gaussian 
(LoG) [56] filter in each frame. In this way, only the shape of the 
cell is highlighted to characterize the changes in shape during the 
video sequence. An example of the LoG filtered ROI-S is shown in 
Fig. 1, panel E. Mathematical details of the LoG filter used can be 
found in the Supplementary material. As it can be seen, the dif-
ferential sequence contains only the information related to parts 
of the cells, thus reducing the effect of background conditions. It 
is important to note that this step is relevant regardless of the fact 
that cells move, but is crucial for any TLM application involving 
morphological cell characterization.  

v) Deep Learning differential ROI-S encoding 
Transfer-learning represents an alternative to solve the prob-

lem of insufficient labeled training data in deep learning archi-
tecture [57–60]. Among various transfer learning strategies [61], 
we focus our attention on the so-called deep network-based 
transfer learning, in which the front layers of the network can 
be treated as a feature extractor, and the extracted features are 
versatile. More specifically, in [60], the authors demonstrated 
that pre-trained networks such as AlexNet [62] and ResNet-101 
[63] are good choices in deep transfer learning based on net-
works. To expand the plethora of networks for transfer learning 
purposes, we also compared the recently added NASNetLarge 
[64] network. For each network, we resized the differential ROI-S 
frames to specific dimensions (see Table 1) and selected a specific 
layer for feature extraction. To adapt the frame size to the 
requested dimension, we used a bilinear interpolation technique. 
From the observation of the network’s characteristics, it resulted 
that the number of features extracted may be very different for 
each network. 

Fig. 2. A schematic layout of the chip used for the in-flow measurement. (A) 
top view. (B) A zoom of the microchannels and the barriers. (C) A zoom of the 
pillars (top-right) and barrier (bottom-left) in the channel. 
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vi) Cooperative classification 
The extracted features are subjected to a feature selection 

procedure based on the individual ability to discriminate PKD 
and healthy RBCs in a validation set extracted for the scope of the 
artificial and real datasets. A restricted number of features is then 
used in a standard classification task by means of Linear 
Discriminant Analysis (LDA) [53]. As indicated in Fig. 1 (panels F 
and G), a label is generated for each frame along the trajectory of 
a single cell (see the sequence of green and red bars). In order to 
account for confounding phenomena, i.e., projection of 3D shape 
over a 2D domain, dis-uniformity of PKD cells that may not be 
affected in the same manner by the disease, and lastly, not less 
relevant, the path of each individual cell that may be not sub-
jected to deformation, we designed a decision-making strategy 
based on cooperative learning. In particular, we applied two 
distinct decision strategies: at the track level and at the 

experiment level (used only for the real dataset). In a first step, 
the software evaluates the percentage of positive frames along the 
same track, and secondly, it evaluates the percentage of positive 
tracks in the same experiment. Such percentages are compared 
with the threshold. In this way, the platform may act in a more or 
a less conservative attitude by switching to higher sensitivity (we 
accepted false positives but not false negatives, high recall rate, 
low precision) or to higher specificity (we preferred false nega-
tives to false positives, high precision, low recall rate). The 
two-threshold strategy was inspired by the standard protocol to 
assess a final diagnosis by using a pipeline of subtasks (e.g., if a 
given number of clinical tests resulted in positives, then the 
subject is assigned a certain diagnosis).  

vii) Statistical analysis 

With the aim to demonstrate the effectiveness of the proposed plat-
form, we considered here 54 experiments, 13 related to PKD and 41 to 
healthy RBCs (see Results section). A leave-one-experiment-out cross- 
validation strategy was used for the scope of evaluating the classification 
accuracy. The results were summarized in terms of balanced classifica-
tion accuracy (ACC), that is, the average value of sensitivity (true pos-
itive rate) and specificity (true negative rate). The effect of the selection 
of the threshold values th1 and th2 were also investigated by exhaustive 
analysis over a reasonable range of values. 

Fig. 3. A sketch of the RBC plasticity analysis in simulated experiments. (A) Some examples of rotated and deformed RBCs. (B) Distribution of the time constant τ 
used to simulate the different level of plasticity (blue healthy, red unhealthy). (C) Timing distribution of the two kinds of classification errors (false positives, i.e., 
healthy classified as unhealthy, and false negatives, i.e., unhealthy classified as healthy). (D) Two examples of healthy (upper) and unhealthy (lower) simulated RBC 
sequences along with the assigned class (red, unhealthy, green healthy). To the right the final class assigned by the majority voting. 

Table 1 
Deep learning neural networks selected for the transfer learning step: size of the 
input frames, and layers used for the image encoding and related number of 
features are also indicated.  

Deep Learning 
Network Name 

Size of input 
frame 

Layer used for transfer learning N. of features 
transferred 

AlexNet 227 × 227 ‘pool5’ 9216 
ResNet-101 224 × 224 ‘pool5’ 2048 
NasNetLarge 331 × 331 ‘avg_pool5 4032  
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2.5. Detection of lack of deformability in artificial frames 

To apply the platform to the simulated experiments, we artificially 
generated 50 K frames containing an artificially rotated/deformed RBC. 
A general idea of the simulated experiments is sketched in Fig. 3 (panels 
A-D). The entire frame sequences generated and the source code to 
generate the sequences of tracks can be found at the following link: htt 
ps://cloudstore.bee.uniroma2.it/index.php/s/8NnRRn2ZeFpDzG9, 
PW: RBC2_SAA. 

2.5.1. Images generation 
Once the surface representing the RBC is described, deformed, and 

rotated by a triplet of angles, generated randomly by a normal distri-
bution with zero mean and 30◦ variance (thus letting the surface be 
rotated mainly for small angles), a track of 50 images from the top view 
is generated. By repeating the procedure, we generated approximately 
500 tracks for each condition (healthy and unhealthy), thus leading to 
about 50 K frames in total. Fig. 3 Panel A shows some examples of RBCs 
generated with different rotation angles and degrees of deformability. 
Fig. 3 Panel B shows the two distributions used for the two classes of 
RBC. 

2.5.2. Image sequence analysis 
The platform for the analysis described in Section 2 is applied with 

slight modifications to the artificial images. In particular, only steps (E)- 
(G) in Fig. 1 are applied due to the fact that cell localization and tracking 
are intrinsically already available after video sequence generation. 
Therefore, first, the differential ROI-S is calculated (step E Fig. 1) to 
make the system robust to general luminance conditions. Then, each 
ROI-S is passed in input to the deep learning algorithm and coded into 
deep features (step F Fig. 1). Provided a classification label at a single 
frame level for each ROI-S, a single-threshold strategy is here applied 
(only th1) since we did not simulate any inter-experiment heterogeneity 
to motivate the use of a second threshold value. 

2.5.3. Classification in artificial images 
Fig. 3 Panel C shows the distribution of the classification errors at 

frame level (false positives and false negatives, that is, healthy RBC 
assigned to unhealthy and unhealthy RBC assigned to the healthy class) 
with respect to the timing of the errors. As it can be noted, most of the 
false positive frames occur at the beginning of the track of healthy cells 
in the presence of very big rotation angles. On the contrary, most false 
negatives occur at the end of the path of unhealthy cells when a too- 

small value has been used for unhealthy RBCs. Anywhere, Fig. 3 Panel 
D shows that the use of the majority voting procedure at the track level 
allows compensating such errors when the percentage of the positives 
frames exceeds a threshold value (the majority corresponds to using a 
threshold value equal to 0.5). 

Fig. 4 shows the accuracy matrices obtained after the analysis of the 
artificial images. From left to right, results at the single frame level using 
a majority voting procedure (threshold value on the percentage of 
positive instances equal to 0.5), thresholding result with adaptive 
threshold optimized in a validation subset of frames. 

3. Results 

Hereby, we present numerical results from the real case study for the 
classification of PKD versus healthy RBC cells using the described 
platform. 

3.1. Cell frames and tracks analyzed 

Due to the long-time experiments and the fast camera, a very high 
number of cell tracks were analyzed. In particular, we acquired 54 ex-
periments (13 from PKD and 41 from healthy donors) for a total number 
of 135631 single cell frames (55457 for PKD and 80174 for healthy). A 
total number of 3236 tracks were analyzed, out of which 1408 came 
from PKD and 1828 from healthy donors. The huge number of data 
analyzed is a further demonstration of the reliability of the proposed 
platform. 

3.2. ROI differentiation (LoG ROI-S) to improve deep-feature 
discrimination capability 

Deep-transfer learning has enormous potential to avoid retraining 
the network and the consequent need to acquire a large dataset for the 
retraining step. On the other hand, it is crucial that the features 
extracted in this way are totally robust to a change in luminance to avoid 
the introduction of a bias that may impair the classification results. In 
light of this, one of the key aspects of the proposed platform is the dif-
ferentiation step of the ROI sequence by means of LoG filtering. To 
demonstrate the effectiveness of such a procedure over the discrimina-
tion capabilities of the deep features extracted for the task of classifi-
cation, we performed a specific simulation. For all 3 K tracks considered 
in the experiments, we applied a brightening/darkening procedure by 
randomly summing a luminance level in the uniform range [− 0.5, 0.5] 

Fig. 4. Accuracy matrices for the artificial experiments. From left to right. Results at single frame level, results after majority voting (equivalent to use a threshold 
value over the percentage of positive instances equal to 0.5), and adaptive thresholding with optimization performed over a validation subset of images. 
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to the entire ROI-S (negative values indicate darkening and positive 
values indicate brightening) where 0 indicates no degradation. Such 
kind of setting is related to the fact that thanks to the sequence equal-
ization procedure applied, we may always balance the luminance among 
frames in the same sequence. We then compare the discriminative 
capability of deep features extracted over the modified sequences of 
frames without differentiation (i.e., standard ROI-S) and with the 
application of LoG filtering (i.e., LoG ROI-S). To evaluate the discrimi-
native power of the 30 most significant deep features extracted using the 
AlexNet network, we computed the so-called Discriminant Power (DP) 
index defined as 

DP = max(1 − AUC,AUC) (5)  

where AUC is the Area Under the roC curve [62] of each individual 
feature. Being AUC in the range [0,1], DP is in the range [0.5, 1], where 
0.5 indicates no capability to discriminate and one denotes perfect 
capability. Fig. 5 (A)-(B) illustrate for any level of degradation in the 
range [–0.5, 0.5] the maps of the corresponding DP for the 30 features. 
The colorbar is also indicated. It can be noted that the discrimination 

capabilities of deep features using the LoG filters operation (A) are 
remarkably higher than those obtained using the standard mode (B). 
Moreover, it can also be observed that, as expected, deep features are 
influenced by brightening/darkening, since the maximum performances 
are achieved when the level of degradation is zero. However, as also 
shown in the boxplot in panel C of Fig. 5, the worsening of the DP values 
in relation to the degradation level is much more limited in the LoG 
ROI-S condition than in the standard mode. 

This simulation not only confirmed the high values of DP for the 
extracted features but also demonstrated the importance of performing 
the preprocessing of the ROI-S to limit the effect of unpredictable 
degradation processes occurring during the experimental session when 
using deep transfer learning in dynamical system investigation. 

3.3. Visual cue of deep features 

Deep features were extracted by the inner layer of a given pretrained 
CNN architecture. The nonlinear high complex network structure makes 
it so difficult to have a direct understanding of which image portion 
features represent. On the other hand, it could be very informative to 

Fig. 5. Discriminant Power (DP) maps of the 30 highest performing AlexNet features computed for (A) LoG ROI-S sequences and (B) standard ROI-S, by varying (y- 
axis) the level of degradation for brightening/darkening in the range [− 0.5,0.5]. (C) Boxplot of the DPs obtained over the 30 features for the different levels of 
degradation using (left) the LoG ROI-S approach and (right) the standard mode. 
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have at least a visual cue of the feature maps selected for the task of 
classification. To do this, we extract for two different ROI-S the corre-
sponding feature maps extracted at layer ‘pool5’ of AlexNet CNN for 
those features that exhibited higher discriminative capabilities in terms 
of DP (Eq. 5). Fig. 6 shows two examples of sequences of feature maps of 
two LoG ROI-S in which the RBC changes shape during motion. 

It is interesting to note that the most activated features in these maps 
correspond to the most deformed shapes. This evidence supported the 
assumptions that the selected features were sensitive to cell morphology 
and shape deformation and, therefore, were more suitable to discrimi-
nate pathological from physiological lack of plasticity. 

3.4. Best classification performance of comparative deep learning 
networks 

We compared the classification results obtained by exploiting three 
distinct deep learning neural networks for transfer learning. By opti-
mizing the threshold values, th1 and th2, we obtained the best perfor-
mance listed in Table 2 in terms of ACC values at a single frame level 
without thresholding (first column), using a single threshold setting 
computed over the percentage of positive frames over the entire video 
(second column), and using the two threshold strategy (third column), 
one for the positive frames in each track (th1) and one for the positive 
tracks in each video (th2). As it can be seen, the networks achieved 
almost very similar results demonstrating the robustness of the approach 
and the acceptable independence of the networks from the data. 

In addition, despite its old dating, it is also evident that AlexNet, as 
elsewhere demonstrated [65], is one of the top approaches for transfer 
learning, exhibiting a high capability of image encoding. The reduced 
number of layers and consequently the simpler network architecture of 
AlexNet make it the optimal solution for our approach, representing an 
acceptable trade-off between complexity and accuracy. 

3.5. Multi-threshold decision-making strategy results 

To demonstrate the effect of varying threshold values in the coop-
erative strategy of two thresholds, we computed the ACC metric for any 
combination of threshold values in a predetermined range [0.2, 0.6]. 
This range has been selected to avoid limited conditions occurring. Fig. 7 
shows the ACC results for different combinations of the threshold values 
for the three networks. 

As demonstrated by the three maps, accuracy values are very high for 
a large set of threshold combinations, especially for AlexNet and Nas-
Netlarge architecture. This finding again proves the reliability of the 
approach as well as the robustness to different network architectures.  

4. Discussion and further developments 

Techniques available for the study of plasticity force cell deformation 
of RBCs using strong stress, such as that provided by the barrier, and 
thus emulating the travel through capillaries. Traditional bulk flow, 
single-cell deformability measurements, and microfluidics devices- 
based platforms standardly present experimental scenarios based on 
the working principle of measuring the stress induced by some form of 
force in order to quantitatively evaluate the deformability capability of 
each cell [9,25]. However, this implies the use of a pump and inflow 
modalities that may alter the physiological movement of cells resulting 
in being invasive and costly. In this case, information extracted through 
quantitative assessment is at risk of being related to the overall experi-
mental conditions rather than to the individual cell motility morpho-
dynamic aspects. 

To reduce this variability and confer more stability and uniformity 
on the experiments carried out in this context, we proposed some 
solutions. 

To demonstrate the capability of the proposed platform to discrim-
inate the lack of plasticity in PKD cells from healthy RBCs also under 
rotations in the environment, we preliminarily presented simulation 
results by generating artificial frames of 3D rotated/deformed RBCs with 
different degrees of plasticity, also with the aim of stressing the device 
working principle. 

In the real scenario, we focused the analysis on the deformation- 
induced under non-stress conditions, such as that provided by the for-
est of pillars zoomed in Fig. 2 panel C and the prepared carrier solution. 
In this case, cells physiologically moved towards pillars and deformed to 
overcome the obstacles. 

In addition, to reduce the influence of the environmental condition 
(optical properties of the medium and of the material used for the chip) 
on the video and ML analysis, we applied a specific preprocessing to the 
acquired video sequence. In particular, after trajectories were extracted, 
we reformulated the analysis on the differential sequence of ROIs, LoG 
ROI-S, extracted around the cell track in order to reduce the influence of 
change in illumination over the discrimination capability of the deep 
features extracted. 

Third, by exploiting ML cooperative decision strategies, inspired by a 
blind multi-expert clinical evaluation procedure, we implemented a 
two-level decision-making procedure: a single track (namely a single 
ROI-S) was assigned a unique label by comparing the percentage of 

Fig. 6. Two visual examples of ROI-S for two distinct cells and related feature 
maps from ‘pool5’ of AlexNet CNN. It can be noted that the selected maps 
mostly activate when the cell changes shape, demonstrated to be sensitive to 
cell deformation. False colours are used for the sake of better visualization. 

Table 2 
Best performance accuracy values for single-frame classification, single- 
threshold at frame level over the video, and two-thresholds strategy.  

ACC Single-Frame Single-Threshold Single-Thresholds 

AlexNEt  81 %  85 %  88 % 
ResNet101  81 %  80 %  82 % 
NasNetLarge  79 %  84 %  85 %  
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frames assigned to the positive class at single frame level with a given 
threshold, th1. The same procedure was then applied at the experiment 
level, using the threshold th2. In this way, the platform acted as a team 
supervisor who had the task of assigning a diagnosis to the patient after 
collecting the independent opinions of his/her collaborators. Such a 
paradigm allowed modulating the recall and the precision rate for a 
given task, moving from screening to diagnostic purposes (i.e., high 
sensitivity vs high specificity). 

The main assumption behind such a procedure is that the evidence of 
a single RBC disease may be obscured by its movement (rigid rotation 
instead of deformation) and by acquisition conditions (spatial resolu-
tion, frame rate). Moreover, it is expected that along with the move-
ment, the cell presents an oblong shape only in some frames, passing 
from being round shaped to elongated and back to round shaped. On the 
other hand, if the percentage of frames in which the cell is visualized and 
assigned a positive label is sufficiently high, then we may conclude that 
the cell track is labeled as positive. The same reasoning is applied at the 
experiment level. 

The presented modifications go in the direction of improving the 
generalizability of the platform for the analysis of deformability, 
allowing the consideration of many different sources of influence that 
can be encountered in real applications [25]. The joint action of 
microfluidics, low-cost video analysis, and robust machine learning 
techniques gives the platform robustness to the calibration transfer 
problem and the possibility of readjustment to different diagnostic 
scenarios (other cell types, other diseases, presence of external stimuli). 

5. Conclusions 

We present here a novel platform for the biological investigation of 
ex-vivo experiments called machine learning microfluidics. Thanks to 
the fruitful cooperation of artificial intelligence and microfluidic de-
vices, the platform is able to capture the cell morphodynamic aspects 
during its motion in a preconfigured environment. In this regard, to 
demonstrate the relevance of the proposed solutions designed, we 
simulated a scenario with generated RBCs framed under different 3D 
rotations/deformation conditions and verified the capability of the 
platform to discriminate RBCs with lack of plasticity from healthy RBCs 
in critical scenarios. Then, we validated the platform in the identifica-
tion of RBCs Pyruvate Kinase Disease (PKD), highlighting very high 
classification results. Future works will expand the present approach in 
new directions. First, cell morphology and related temporal variation 
could be studied using time-varying deep features and related cross- 
dependencies. Finally, and not less relevant, the same platform would 
also be used for drug testing in relation to the effect of treatment on cell 
phenotyping or to identify and/or diagnose different diseases that affect 
the membrane integrity of the RBC. 
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