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Abstract: Climate warming is recognized as a factor that threatens plant species in Mediterranean
mountains. Tropospheric ozone (O3) should also be considered as another relevant stress factor for
these ecosystems since current levels chronically exceed thresholds for plant protection in these areas.
The main aim of the present study was to study the sensitivity of four Mediterranean perennial
grasses to O3 and temperature based on plant growth, gas exchange parameters (photosynthesis—A,
stomatal conductance—gs, and water use efficiency—WUE), and foliar macro- (N, K, Ca, Mg, P,
and S) and micronutrients (B, Cu, Fe, Mn, Mo, and Zn) content. The selected species were grasses
inhabiting different Mediterranean habitats from mountain-top to semi-arid grasslands. Plants were
exposed to four O3 treatments in Open-Top chambers, ranging from preindustrial to above ambient
levels, representing predicted future levels. Chamber-less plots were considered to study the effect of
temperature increase. Despite the general tolerance of the grasses to O3 and temperature in terms of
biomass growth, WUE and foliar nutrient composition were the most affected parameters. The grass
species studied showed some degree of similarity in their response to temperature, more related with
phylogeny than to their tolerance to drought. In some species, O3 or temperature stress resulted in
low A or WUE, which can potentially hinder plant tolerance to climate change. The relationship
between O3 and temperature effects on foliar nutrient composition and plant responses in terms of
vegetative growth, A, gs, and WUE constitute a complex web of interactions that merits further study.
In conclusion, both O3 and temperature might be modifying the adaptation capacity of Mediterranean
perennial grass species to the global change. Air pollution should be considered among the driving
favors of biodiversity changes in Mediterranean grassland habitats.

Keywords: Agrostis castellana; Festuca iberica; Festuca indigesta subsp. curvifolia; Stipa tenacissima; gas
exchange; plant growth; plant nutrients; O3-sensitivity; climate warming

1. Introduction

Tropospheric ozone (O3) is one of the most relevant air contaminants due to its high
toxicity, wide distribution, and its greenhouse effect [1–4]. Transportation and industrial
activity are the main anthropogenic sources of O3 precursors. However, these pollutants
are transported by air masses and can react with precursor emissions from natural sources
causing large O3 surface levels in rural and forested areas far away from anthropic activi-
ties [5,6].

The photochemical formation and persistence of O3 is favored under Mediterranean
climatic conditions, causing an important air pollution problem in the Mediterranean
Basin [4,6–8]. The current O3 levels in the Iberian Peninsula chronically exceed the threshold
levels for plant protection established by the UNECE Air Convention [9] and the EU Air
Quality Directive (2008/50/EC) [10]. This problem is even more acute in the Mediterranean
mountains [11,12].
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Normal plant development is greatly impaired due to ozone [13–15]. Its oxidative capac-
ity affects plants at different scales, from metabolic to ecosystem, causing effects on growth
and biomass production [16,17], nutrient imbalances [18–20], or reproductive capacity [3,21],
and finally affecting the structure and biodiversity of plant communities [22,23].

The higher levels of this pollutant in the Mediterranean area contrast with the fact
that the Mediterranean Basin is considered a global biodiversity hotspot [24–26]. At the
Spanish Central System mountain range, the spring–summer snow-free zones above the
tree line harbor high levels of taxonomic diversity [27–29], including plant communities
where grasses are dominant. Furthermore, in the Mediterranean Basin, grasses dominate
large arid or semiarid areas [30].

The experimental evidence on the O3 sensitivity of Mediterranean grassland species
varies greatly between community types. Mediterranean annual pasture species growing
at lower altitudes have been the most extensively explored. In terms of biomass growth,
Fabaceae species are generally more sensitive to O3 than Poaceae [31,32] but tolerant legume
species have also been identified [33]. Annual grasses also responded to O3 by increasing
leaf senescence or decreasing their life-span [34,35]. Regarding perennial grass species,
most studies have been focused on species from more temperate climates [36–38], with less
attention to species characteristics of the Mediterranean area [39]. Alpine and mid-elevation
perennial temperate grass species have shown a wide variety of O3 responses, from tolerant
to carry over O3-effects on above-ground biomass [38,40–42]. However, there has been no
study addressing the O3 effects on Mediterranean perennial alpine species.

Plant communities at the top of Spanish Central System Mountains are very valuable
for their high biodiversity, with a great number of endemic and relict species, and for
being the southern limit of other more widely distributed species. In addition, within these
communities, there are grass species which are of great economic interest in the region,
since they are the basis for livestock feeding, especially during the summer season [43,44].
These summits are characterized by poor acid soils covered by snow during winter and
with a high soil moisture deficit during the summer season, inhabited by the xerophytic
grass species Festuca indigesta subsp. curvifolia (hereafter F. indigesta) [44]. The Cervunal, a
neighboring community dominated by Nardus stricta, occupies patches with higher soil
humidity [44]; Festuca iberica and Agrostis castellana are two other grass species characteristic
of the Cervunal habitat. There is another interesting grassland community dominated by the
esparto grass Stipa tenacissima, that in the Central Iberian Peninsula lives at a lower elevation
but it can be found at 1400 m.a.s.l. in the southern mountain ranges. This “esparto” grass
lives in drier and warmer habitats, facilitates the biological soil crusts and vascular plant
establishment in semiarid habitats, and it is an important species for the local economy due
to its use as raw material for the manufacture of clothing, footwear, basketry, or paper pulp
production [45,46]

In this study, the O3 sensitivity of A. castellana, S. tenacissima, F. iberica, and F. indi-
gesta was tested in an O3 fumigation experiment using Open Top Chambers (OTCs). The
four species, belonging to three different tribes or subtribes within the Pooideae subfam-
ily [47], together with their different habitats and water requirements, make them a good
representation for testing the tropospheric O3-response of Mediterranean perennial grasses.

The main aim of the present study was to assay the O3-effect on Mediterranean
perennial grasses according to plant growth, gas exchange (photosynthesis (A), stomatal
conductance (gs), and water use efficiency (WUE)), and leaf composition considering macro-
(N, K, Ca, Mg, P, and S) and micronutrients (B, Cu, Fe, Mn, Mo, and Zn). Based on previous
results on the O3-response of Mediterranean annual grasses growing at lower elevations,
we hypothesize that Mediterranean perennial grasses would present some tolerance to
the pollutant based on growth parameters. However, we expected more subtle effects at a
physiological scale on gas exchange parameters and foliar nutrients that might challenge
their competitive capacity and compromise their tolerance to other stresses frequent in
their habitat.
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Taking advantage of the OTC experimental design, the effects of temperature increase
were also tested at the same time as the O3 effect following [48]. Climate warming is one
of the most important threats for plant species from the Mediterranean basin mountains,
including the Spanish Central System mountain range [49]. We expect that species adapted
to drier environments (S. tenacissima and F. indigesta) will be more tolerant to both, O3 and
temperature increase, than species from moister areas. Specifically, we aimed to answer
the following questions: (i) can we find any indicator of O3 effects on Mediterranean
perennial grasses considering plant growth, leaf nutrients, or gas exchange?; (ii) might any
of the O3 and temperature sensitive parameters compromise the long-term survival of the
species under the global change scenarios for the Mediterranean Basin?; (iii) is water stress
tolerance linked to O3 tolerance or temperature resistance?; and (iv) is the O3 sensitivity of
species more related to water deficit tolerance or to their phylogenetic signature?

2. Results
2.1. Ozone Exposure and Temperature Increase

Accordingly with the experimental design, the lowest O3 concentration (nL L−1) was
found in the CFA treatment (Table 1), with an O3 filtration efficiency of 47.5% compared
with NFA. Non-filtered air OTCs and AMB plots showed comparable O3 levels throughout
the fumigation period, the pollutant levels inside the OTC being only 5% lower than the
AMB plots. Plants under the NFA++ treatment were the most exposed to the pollutant,
with average O3 concentrations 37.5% higher than NFA levels, which caused the highest
AOT40 values close to 15,000 nL L−1 h, above 10,000 nL L−1 h higher than AMB and
NFA. NFA+ O3 concentration values fell in between NFA and NFA++ treatments, with
cumulative AOT40 values in the range of 8500 nL L−1 h. During the daylight hours from
7:00 to 15:00 (GMT), OTCs compared with AMB plots presented an increase in the mean air
T by 20.6% which implied an increment of around 5 ◦C inside the OTCs, also a reduction in
RH by 4% was found; both caused an increase in the water Vapor Pressure Deficit (VPD)
by 30.5% (Table 2).

Table 1. Ozone exposure during the whole experimental period for the different grasses: accumulated
O3 exposure index AOT40 and O3 8h-mean. DaS, days after the start of the O3 exposure.

AOT40 (nL L−1 h) O3 8h-Mean (nL L−1)
DaS AMB CFA NFA NFA+ NFA++ AMB CFA NFA NFA+ NFA++

S. tenacissima 68 5780 189 4285 9340 16,677 43.4 21.1 40.7 50.8 63.3
A. castellana 63 4622 187 3399 8466 15,807 42.3 20.9 39.8 50.7 64.1

F. iberica 62 4456 187 3286 8349 15,692 42.2 20.8 39.7 50.8 64.4
F. indigesta 57 3964 187 2951 8072 15,321 41.9 20.9 39.8 51.6 66.2

Mean 63 4705 187 3480 8557 15,875 42.5 20.9 40.0 51.0 64.5

Table 2. Mean meteorological conditions during the experimental assay for the 8-h daylight period
7:00–15:00 (GMT) inside the OTCs and in the AMB plots. Mean and maximum air temperature (mean
T, max T), air relative humidity (RH), photosynthetic active radiation (PAR) and vapor pressure
deficit (VPD, kPa).

Mean T (◦C) Max T (◦C) RH (%) PAR (µmol m−2 s−1) VDP (kPa)

AMB 20.4 37.2 49.4 1149 1.21
OTCs 25.7 43.2 47.4 991 1.74

2.2. Vegetative Growth

The vegetative growth of all the species was relatively O3 tolerant (Figure 1A). Table
S3 shows the lineal effect (LE), quadratic effect (QE), and cubic effect (CE) contrasts for
each species. A marginally CE of O3 was found in F. indigesta (t6 = 2.22, p = 0.07) where
NFA and NFA++ had the highest growth. However, in A. castellana (t66 = −1.18, p = 0.24 for
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a QE), S. tenacissima (t64 = −1.12, p = 0.27 for a LE), and F. iberica (t6 = 0.37, p = 0.48 for a QE)
no significant O3 effect was detected. The temperature increase did not affect vegetative
growth for either F. indigesta (F1, 2 = 0.11; p = 0.77), F. iberica (F1, 2 = 0.01; p = 0.94), or S.
tenacissima (F1, 32 = 0.1; p = 0.76) (Figure 1B, Table S4). However, the vegetative growth was
marginally higher in NFA than AMB in A. castellana (F1, 32 = 3.95; p = 0.055). The structure
of the random part of the model for each variable and species is presented in the Table S5.
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Figure 1. Vegetative aboveground growth response to O3 (A) and temperature increase (B) for A.
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marginally significant trends. Grey asterisk denotes marginally significant differences.

2.3. Gas Exchange

Table S3 shows the lineal effect (LE), quadratic effect (QE), and cubic effect (CE)
contrast for each species. Considering the O3 effects on net photosynthesis (Figure 2A),
a marginally significant LE was observed in A. castellana (t20 = 1.93, p = 0.07). However,
F. indigesta presented a marginally significant CE with maximum values under NFA+
(t16 = −2.03, p = 0.06); a similar response was found in F. iberica although it was not
significant (t26 = −1.29, p = 0.21). The observed response of A in S. tenacissima was neither
significant (t30 = 1.61, p = 0.12 for a QE).

Regarding gs (Figure 2B), three of the four species presented a similar concave trend
in response to O3, with a greater stomatal opening under the lowest and highest O3
concentrations (CFA and NFA++ treatments). In A. castellana, NFA and NFA+ treatments
were marginally lower than CFA and NFA++ (t20 = 1.79 p = 0.09); but even though S.
tenacissima and F. indigesta showed the same concave pattern, they were not significant
(t30 = 1.42, p = 0.17; t16 = 1.52, p = 0.15, respectively, for a QE). Contrary to conductance
response in the other species, a marginally CE was observed in F. iberica (t26 = −1.75,
p = 0.09).

Consistently with gs values, the most observed WUE response pattern to the increased
O3 levels was a convex QE (Figure 2C). In A. castellana WUE was higher in NFA and NFA+
than in CFA and NFA++ (QE t20 = −2.22 p = 0.04); a similar effect was observed in F.
indigesta (t16 = −2.37, p = 0.03). Although in S. tenacissima the observed trend approached a
convex response, the CE obtained the lowest p-value and was not significant (t30 = −0.97,
p = 0.34). As happened with gs, the WUE behavior in F. iberica was different from the rest
of species with a significantly increasing LE (t26 = 2.26, p = 0.03).
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Figure 2. Ozone effect on gas exchange parameters: photosynthesis (A, µmol CO2 m−2s−1) (A),
stomatal conductance (gs, mol H2O m−2s−1), (B) and water use efficiency (WUE, µmol CO2 mol−1

H2O) (C) for A. castellana, S. tenaccissima, F. indigesta, and F. iberica. Bars denote mean ± SE. O3

treatments: charcoal-filtered air (CFA), non-filtered air (NFA), non-filtered air + 20nL L−1 of O3

(NFA+), and non-filtered air + 40nL L−1 of O3 (NFA ++) treatments. Solid and dotted lines denote
significant and marginally significant trends, respectively.

The temperature increase caused different effects on the gas exchange parameters
depending on the species (Figure 3, Table S4). Photosynthetic activity was reduced in S.
tenacissima plants grown inside the NFA OTCs compared with the AMB plots (F1, 7 = 7.24,
p = 0.02), but no temperature effect was detected in F. iberica (F1, 7 = 1.73, p = 0.23) and A.
castellana (F1, 9 = 0.53, p = 0.48). Regarding gs, there was no difference between AMB and
NFA in F. iberica (F1, 7 = 1.75, p = 0.23) and S. tenaccissima (F1, 14 = 0.17, p = 0.69). However,
in A. castellana gs was marginally higher under the lower temperatures of the AMB plots
(F1, 9 = 3.59, p = 0.09). On the contrary, in the latter species, WUE was larger in NFA under
the higher temperature values than in the AMB plots (F1, 9 = 5.65, p = 0.04). No differences
due to temperature were found for WUE in F. iberica (F1, 7 = 0.75, p = 0.41) and S. tenacissima
(F1, 14 = 0.49, p = 0.49). The structure of the random part of the model for each variable and
species is presented in the Table S5.
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2.4. Nutrients and Nutrient Ratios

Nutrients (including C and H content) and nutrient ratios were differentially spatially
distributed among the treatments following MNDS (Non-metric multidimensional scaling).
MNDS results are presented for A. castellana and S. tenacissima in Figure 4, and for both
Festuca especies, F. indigesta and F. iberica, in Figure 5. The statistical differences among
treatments that are shown below are based in PERMANOVA analyses (Table S6). Regarding
foliar nutrient content, A. castellana plants grown under the lowest O3 exposure, the CFA
treatment, had more Mn and P than plants grown under the highest O3 exposure of the
NFA++ (F3, 19 = 2.46, p = 0.02). In S. tenacissima, the concentration of S, Ca, Mg, Mn, B,
and Zn was higher in CFA than NFA (F3, 19 = 2.34, p = 0.03). PERMANOVA analysis
also found significant differences among treatments in F. iberica (F3, 12 = 1.86, p = 0.048),
with NFA having lower Fe, Mg, and Mo values than CFA. Although NFA+ was also
significantly different from NFA, the dispersion of the three NFA+ points calls for caution
in the interpretation of these results. However, there were no differences among treatments
in F. indigesta for foliar nutrient concentration (F3, 14 = 0.81, p = 0.64).
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results. Arrows denote significant correlations of nutrient or nutrient ratios with the NMDS axis.
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P/K and P/S nutrient ratios were different in CFA compared with the rest of the O3
treatments in A. castellana (F3, 19 = 3.02, p = 0.01). In S. tenacissima, only CFA and NFA were
marginally different (F3, 19 = 2.06, p = 0.07) due to different P/S, N/K, P/K, Ca/Mg, C/N,
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K/Ca, and K/Mg ratios. NFA had lower Ca/Mg and K/Mg ratios than NFA+ in F. iberica
(F3, 12 = 2.8, p = 0.01). There were no differences among O3 treatments in F. indigesta due to
nutrient ratios (F3, 14 = 0.7, p = 0.68).

The lower temperature of AMB compared with NFA resulted in a higher P, Ca, Mg,
and Fe content for A. castellana (F1, 9 = 3.68, p = 0.01). AMB had higher amounts of Mg,
Ca, Mn, and Zn than NFA (F1, 10 = 5.15, p = 0.01) in S. tenacissima. Temperature caused
no difference in nutrients content between AMB and NFA for either F. iberica (F1, 8 = 2.31,
p = 0.12) or F. indigesta (F1, 9 = 1.68, p = 0.18). AMB plants presented higher ratios of P/K,
P/S, and N/K and lower N/P than NFA plants in A. castellana (F1, 9 = 5.53, p = 0.01). In S.
tenacissima, AMB was significantly different from NFA due to different ratios of N/K, P/K,
K/Ca, and K/Mg (F1, 10 = 5.24, p = 0.02). There were no differences between AMB and NFA
treatments in nutrients ratios in F. iberica (F1, 8 = 1.68, p = 0.21) and F. indigesta (F1, 9 = 1.57,
p = 0.23).

2.5. Correlations

Figure 6 summarizes the significant correlations (p < 0.05) of nutrients content (Figure 6A)
and nutrient ratios (Figure 6B) with gas exchange parameters (A, gs, and WUE) and
aboveground vegetative biomass (leaf DW) for the four grasses studied. Photosynthetic
activity was positively correlated with Mn and Mg, and gs increased with the amount of K.
WUE was correlated positively with Zn, N/P, K/Ca, and K/Mg. On the other hand, higher
K, Ca, Mg, Mn, and S were correlated with lower WUE values. Leaf DW was positively
correlated with C/N, N/P, and K/Ca, but negatively with N, K, Ca, Cu, Fe, Mn, P, S, N/K,
P/K, P/S, K/Mg, Ca/Mg.
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3. Discussion

The present study reproduced the current and foreseen O3 levels and temperature
increases on the pasture habitats of Mediterranean mountains. Ozone concentrations
recorded at a mountain summit of the Spanish Central System yielded AOT40 values,
cumulated over a 3-month period, ranging from 13,900 to 19,100 nL L−1 h depending
among years [12]. These values greatly exceeded the current objectives for plant protection
established in the EU directive of air quality (2008/50/EU), and the critical levels of the Air
Convention for perennial pastures [9]. The equivalent estimated 3-month AOT40 index for
NFA+ and NFA++ treatments in the present assay, comprising a 63-day fumigation period,
would be about 12,000 and 22,000 nL L−1 h, respectively. Therefore, the O3 treatments
in the experiment captured the interannual variability of O3 in the Iberian mountains.
Furthermore, O3 concentrations in the NFA++ were also in the range of expected future O3
levels in Mediterranean mountain areas by 2050 [24].
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Regarding the increase in temperature, previous studies have detected a temperature
increment in the Central System of 0.5 ◦C in the last decade, and projected temperatures
in the Mediterranean mountains for 2085 could rise 5 degrees [50,51]. Therefore, the
increase in temperature reached in the OTCs with respect to the AMB plots mimicked the
expected increase caused by climate warming in the area. Nonetheless, the mean daylight
temperatures in this study are within the range of the maximum values recorded in the
natural environment of the species tested in the same year of the experiment (25.6 ◦C; [51,52].
The effect of the temperature increase found in this study could be slightly affected by the
small differences between OTC and AMB in the other meteorological factors.

The O3 and temperature sensitivity of the Mediterranean perennial grass species tested
in this study does not present a single response or pattern. Alternatively, response patterns
between species will be discussed in the light of their phylogenetic proximity and their
adaptation to drought.

3.1. Effects on Plant Growth and Gas Exchange Parameters

As expected, the vegetative growth of Mediterranean perennial grasses showed a
tolerant response to O3 except in F. indigesta. This general lack of response to O3 in growth
parameters is consistent with previous results with grasses from natural ecosystems. Both
Mediterranean annual and temperate perennial grasses have shown none or minor effects
on growth under increasing O3 exposure, as compared with O3 sensitive legumes and
forbs [31,33,34,41,42,53]. Despite this fairly widespread O3-tolerance of perennial grasses,
some species such as Nardus stricta responded negatively to the pollutant [54]. In the present
study, F. indigesta responded to the O3 increase following a non-linear pattern: plants
developed the highest biomass under the NFA and NFA++ treatments while minimum
values were registered in the NFA+ with biomass reductions of 30% compared with CFA. F.
indigesta showed a greater O3-sensitivity than its close phylogenic relative, F. iberica, despite
the larger growth observed in the latter. F. iberica shows preference for wetter soils under
natural conditions which would have been favored, as compared with F. indigesta, by the
growing conditions in this study, where plants were kept with full water availability. A
higher growth rate is usually associated with more intense physiological activity, greater
gas exchange rates, and O3 uptake [9]. Therefore, this study shows that the growth is
not a reliable indicator of O3 sensitivity for Festuca species. Interestingly, the O3 levels in
the natural mountain habitats of the Festuca species at the Spanish Central System during
the spring season, when plants do not suffer drought stress and are fully physiologically
active [12], are closely reproduced by the NFA+ conditions. Therefore, these results should
warn of the current potential risk of O3 negative effects in F. indigesta-dominated natural
habitats, which are widespread in the Spanish Central System [28,55].

Only A. castellana responded positively to temperature increases. Considering the
absence of soil moisture limitation in the present study, a higher growth under warmer
conditions for all species could be expected [56]. During daylight hours, the mean tem-
perature inside the OTCs was 26 ◦C during the experimental period, which is a common
value for the natural habitat of this species in late spring and summer months. However,
during the last 10 days of the fumigation experiment, temperatures rose inside the OTCs
reaching values up to 40 ◦C. This late condition could hardly have affected the growth
responses, since most of the growth occurred before the heat wave, and plants remained
healthy without symptoms of heat stress. Therefore, A. castellana could potentially benefit,
in the absence of water limitation, from the expected warming in its natural habitat in terms
of aboveground biomass growth.

Gas exchange parameters were more sensitive to O3 than biomass yield. F. iberica, F.
indigesta, and A. castellana were affected differently according to the gas exchange parameter
considered, while S. tenaccissima showed no effect. Previous studies have found that O3
frequently inhibits A as a broad physiological response to the pollutant [57–59], response
that has also been reported for grass species, and similarly this pollutant can also induce
stomatal closure in O3-sensitive species [13,22,54,60,61]. In agreement with biomass growth
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responses, no species showed reductions of A in response to O3 except F. indigesta and
a marginal increase was even recorded in A. castellana. Both Festuca species showed a
similar non-linear response pattern, but this effect was only marginally significant for
F. indigesta. Strikingly, the highest A values measured in NFA+ were associated with
the maximum growth loss in F. indigesta. A possible explanation is that photosynthate
production under NFA+ was allocated to oxidative damage repair and defence [62–65],
below ground biomass, or reproductive output [60,66]. However, similar A values in the
NFA++ treatment would again be allocated to aboveground biomass growth. This kind of
hormetic trend has been studied as an O3-triggered biphasic response under an oxidative
stress [67]. A marginally linear positive response was found in A. castellana, not associated
with higher aboveground biomass. In this case, like in F. indigesta, results suggest that
higher amounts of photosyntates may have been allocated to other sinks under increasing
O3 stress.

The O3 tolerance of plant species have been frequently related with stomatal behavior,
since higher gs favors O3 absorption and greater oxidative damage [68–70]. Of the species
analyzed here, S. tenacissima and F. iberica would be the species with the maximum potential
gs (based on CFA values). However, both species were tolerant in terms of growth and
A. The O3-tolerance of the assayed grasses could then be related with a greater plant
capacity for detoxification and repair, or a greater allocation to aboveground biomass,
which has been considered among the main mechanisms underlying the tolerance of some
species [60,66,71].

WUE was the gas exchange parameter most significantly affected by O3 exposure in
the present study. Ozone can unbalance WUE by inducing changes of different intensity
in A and gs [72,73]. Ozone affected WUE in both Festuca species, although with different
patterns. In F. iberica, the pollutant induced a reduction of stomatal opening maintaining
A, resulting in a significant increase in WUE with increasing O3 exposure. F. iberica can
be classified as a “water use opportunistic” species [74], based on high gs and low WUE
observed under the CFA treatment. However, under scenarios of high O3 pollution, F.
iberica would turn on a more “conservative” water use strategy. Therefore, the physiological
response of F. iberica to O3 levels expected in the future could help to simultaneously limit
the effects of drought. Moreover, the WUE of this species was not affected by temperature.
Therefore, the results would point towards a good performance of F. iberica under future
combined scenarios of warming and O3 pollution. F. indigesta showed the highest WUE
under current O3 levels in mountain areas (NFA+ treatment) of the species tested in this
study, which is in concordance with its better adaptation to low soil water availability
growing conditions [44]. However, increasing O3 levels might affect the plant adaptation to
these growing conditions, as O3 induced a quadratic (hormetic) response in WUE, with the
lowest WUE found under NFA++. The observed response of WUE to O3 in A. castellana can
also be explained as another hormetic response explained by effects on gs: first the rise of O3
would induce a stomatal closure and then the excess of oxidative stress by higher O3 levels
would increase this parameter. This pattern of response could be related with a sluggish
response of the stomata under O3 stress [13,67,69]. The WUE response of A. castellana and
F. indigesta pointed out in the same direction: both species maintained elevated A values
under higher O3 exposure, but at the cost of losing efficiency in the gas exchange process.
Thus, the projected O3 concentrations in mountain areas [24] could limit the tolerance of
these species to the expected increases in drought [49] in these areas.

Contrarily to O3 effects, the increase in temperature improved WUE rate in A. castellana
because of the decrease in gs while maintaining A. The higher WUE was in agreement
with a greater biomass growth. S. tenacissima, an O3 tolerant species in terms of biomass
growth and gas exchange, was the only species that lowered A values when grown at
higher temperatures. S. tenacissima was sensitive to warming despite the fact that this
species usually inhabits the driest and hottest environments of all the species tested [45,46].
Frequently, under well-watered conditions, a moderate increase in air temperature is
accompanied by an increase in A [75,76]. However, the opposite response observed in S.
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tennaccissima could be more related with the hot temperatures reached at the late exposure
period which can be affected the functioning of the photosystem II, accordingly with [77]
for some herbaceous forbs.

3.2. Ozone and Temperature Effects on Foliage Nutrient Content

The sensitivity of foliar nutrient content and nutrient ratios to O3 and temperature
varied among the species and nutrients, or the nutrient ratios considered, in agreement
with the results already published in the literature. A. castellana and S. tenacissima were
the most sensitive species based on the number of affected nutrients (Figures S2 and S3),
although O3 sensitivity in S. tenacissima was based on the small increase in O3 from CFA
to NFA. A. castellana and S. tenacissima shared the same P/S, P/K, N/K, Ca, Mg, and Mn
responses against the rise of O3 and/or temperature. Among Festuca species, only F. iberica
showed some response to O3 in terms of nutrient content (Figures S4 and S5). Beyond the
species-specific responses, the lack of similarity in the sensitivity of A. castellana and F.
iberica to O3 and temperature do not support the hypothesis that species sharing the same
habitat would respond similarly to the abiotic factors tested in this study. On the other
hand, the lack of effects on nutrient content and ratios in the Festuca species suggest that
temperature sensitivity is phylogenetically related. Nevertheless, more studies involving
more species are needed to unravel whether the nutrient response to O3 and temperature
is related to habitat adaptation or phylogeny.

Some of the responses found in the present work have been previously described for
other species. Subtle effects of O3 on the foliar C/N ratio in S. tenacissima and the absence of
effects in the other species tested, contrast with O3-induced effects in foliar N observed in
trees, pastures, and crop species, with both increasing and decreasing foliar N trends with
O3 exposure [16,78,79]. However, this result is in agreement with other studies reporting
no effect in foliar N [80,81]. Beta vulgaris plants showed reductions in leaf Fe content in
response to O3 [18], like in F. iberica. Again, the O3 effect on S. tenacissima promoting an
increase in K/Ca, was also observed in the stomatal guard cells of the O3-injured leaves
of Betula pendula [82]. Ozone induced decreases of foliar Mg and changes in the K/Mg
ratio in F. iberica and S. tenacissima have also been described for Solanum tuberosum and
Beta vulgaris [18,19,83]. Other studies, however, do not show O3 effects on foliar nutrient
concentration in species such as Lolium perenne or Trifolium repens, or a mixture of Trifolium
pratense, Phleum pratense, and Festuca pratensis [80,84] Temperature effects on foliar P and
Fe in A. castellana have also been described in Coffea canephora and in plants from a dwarf
shrub-dominated ecosystem [85,86]. However, the negative temperature effect on Mg in
A. castellana was not found in Mediterranean scrub [87]. These results show that O3 and
temperature effects on foliar nutrient content and ratios seem to be species-specific and
variable between nutrients. More studies would be needed for understanding general
response patterns.

Nutrient and nutrient ratios were more correlated with vegetative growth than with
gas exchange parameters. The influence of O3 and temperature on leaf nutrient concentra-
tion and the relationship with vegetative growth, A, gs, and WUE constitute a complex web
of interactions (Figures S2–S5). Considering all four species together, the vegetative growth
was negatively correlated with most of the macro- and micronutrients and the different
ratios considered (Figure 6). The dilution of nutrient content related with biomass growth
has been shown for N, P, and K [88,89]. These nutrients are directly or indirectly related to
plant development [90,91]. In general, N- and P-deficiency inhibits leaf growth and Fe is
mostly located in the chloroplast of growing leaves [90,91]. In A. castellana, the temperature
effect on leaf nutrients could be explained by a dilution effect due to increases in vegeta-
tive growth under the warmest treatment. The N/P ratio was also positively correlated
with vegetative growth in this species, which is in agreement with temperature-induced
increases in this ratio. None of effects of O3 on foliar nutrient content could be related with
effects on biomass growth in any of the four species. However, O3 effects on foliar nutrient
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contents in A. castellana, F. iberica, or S. tenacissima found in this short-term exposure study
may indicate that effects on plant growth could appear under long-term high O3 exposures.

In the present study, Mn and Mg were positively correlated with A. In fact, Mn and
Mg act synergistically in the basal metabolism of electron transport reactions in photosyn-
thesis [92,93]. An ozone-induced decrease in foliar Mg has been related with chlorophyll
loss and A decline [18,19,83]. In contrast to this, O3 exposure increased A in A. castellana
associated with a decrease in leaf Mn content (Figure S2). However, in S. tenacissima the
decrease in Mn and Mg under the high temperature treatment could be associated with
the decrease in A (Figure S2). Foliar K was positively correlated with gs across species.
This correlation is in accordance with the stomatal hydration regulatory function of K that
produce the stomata opening due to increased turgor in guard cells [90,92]. Despite O3 and
temperature effects found on the gs of A. castellana and F. iberica, leaf K content was not af-
fected by the experimental treatments in any of the four species studied (Figures S2 and S5).
Previous studies neither found significant effects on the K-levels of potato or wheat exposed
to increased levels of O3 [19,94]. S, Ca, K, Mg, and Mn foliar concentrations were nega-
tively correlated with WUE while Zn and N/P, K/Ca, and Ca/Mg ratios were positively
correlated (Figure 6). These relationships can be explained through the importance of some
of these elements on A or gs processes. Stomatal opening by K accumulation is promoted
by Ca signaling [90–92] which could result in decreased WUE. Zn-mediated stability of
membrane integrity [91,93] may explain the higher WUE under high foliar Zn levels while
decreases in foliar Mg could reduce WUE via reductions in A. The O3-induced decreases
in Mn and P and in the P/K and P/S ratios in A. castellana can be associated directly or
indirectly with the observed quadratic effect on WUE. However, the quadratic effect of O3
on WUE in F. indigesta was not associated with any significant change in foliar nutrient
concentration. With respect to the temperature effects in A. castellana, the increase observed
in WUE was associated with decreases in Ca and Mg concentration and a reduction in the
N/P ratio.

4. Material and Methods
4.1. OTC Experiment

Plant exposure to O3 treatment levels was performed in an NCLAN-type OTC facility
(adapted from the original design by [95]) located in central Spain (450 m.a.s.l., 40◦3′ N,
4◦26′W). Plants were exposed to four O3 treatments: charcoal-filtered air (CFA), non-filtered
air (NFA) reproducing ambient levels, non-filtered air supplemented with 20 nL L−1 of
O3 (NFA+), and non-filtered air supplemented with 40 nL L−1 of O3 (NFA++). Each O3
treatment was replicated 3 times in 12 equally built OTCs randomly distributed in 3 lines
(blocks) avoiding shading effects between OTCs. One chamber-less plot (AMB) per block
was considered to control the chamber effect and to study the consequences of temperature
increase on species.

Ozone was produced from pure O2 through an O3 generator (A2Z Ozone, Inc.,
Louisville, KY, USA) and supplied to the NFA+ and NFA++ plots 8 h day−1 (7:00 to
15:00 GTM) and 7 days week−1. Ozone concentrations inside each chamber and AMB plots
were monitored continuously above plant canopy using a UV-absorbance O3 monitor (ML®

9810B, Teledyne, Thousand Oaks, CA, USA) with an automated time-sharing system sam-
pling all the OTCs and AMB plots of each line sequentially. Another O3 monitor within the
fumigation system registered continually ambient O3 levels to contrast with the NFA and
AMB treatments, as a double check of the accuracy of O3 values. Both O3 monitors were
calibrated at the start of the fumigation treatments following the recommended company
protocols. More information about the facility can be found in [22]. Figure S1 shows a
picture of the OTCs and AMB plots.

The AOT40 index (nL L−1 h) was used to describe the O3 exposure. This index was
calculated as the accumulated hourly O3 concentration over the threshold of 40 nL·L−1

during daylight (PAR > 100 µmol·m−2 s−1) hours through the O3-fumigation period [96].
The 8h-mean O3 concentration (nL·L−1) from 7:00–15:00 h GMT was also considered. Air
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temperature (T, ◦C), air relative humidity (RH, %), and photosynthetic active radiation
(PAR, µmol·m−2·s−1) inside one OTC were continuously measured above canopy using
AM2315 (T and RH; Adafruit Industries LLC, New York, NY, USA) and Apogee SQ 110
(PAR; Apogee Instruments, Inc., Logan, UT, USA) sensors. Ambient T, RH, and PAR were
continuously measured using STH-5031 (T and RH; GEONICA, S.A., Madrid, Spain) and
LI-200SZ (PAR; GEONICA, S.A., Madrid, Spain) sensors situated in the meteorological
station of the OTC facility.

4.2. Plant Material

Established seedlings of A. castellana, S. tenacissima, F. indigesta, and F. iberica grown
from seeds collected from natural populations of Spanish Central System area were trans-
planted to 2 L pots during 2017 spring. A mix of peat, vermiculite, and perlite (60:20:20)
was used as plant substrate. The total number of plants varied among species, with 90, 88,
77, and 51 for A. castellana, S. tenacissima, F. iberica, and F. indigesta, respectively. Plants were
kept outdoors since transplantation. They were frequently irrigated and fertilized to meet
plant demand, until the start of the experiment. On 15 April 2018, 3 days prior to the start of
the O3-exposure, plants were cut to 5 cm from the substrate. These species, adapted to cattle
browsing, present a good regrowth after biomass cut. On 18 April, plants were randomly
allocated to OTCs or AMB plots to start the O3 fumigation experiment. The 4 species were
exposed to the same O3-treatments that lasted 68, 63, 62, and 57 days after the start of the
exposure (DaS) for A. castellana, S. tenacissima, F. indigesta, and F. iberica, respectively.

4.3. Vegetative Growth

At the end of the O3-fumigation period, plants were cut again to 5 cm from the
substrate to obtain the final aboveground biomass. Samples were dried at 60 ◦C until
constant weight. The O3 effect on the dry weight biomass (biomass DW, g) was considered
to discuss the O3-effect on the vegetative growth of the species. The number of samples per
treatment and species are shown in Table S1.

4.4. Gas Exchange

Leaf-level net photosynthesis (µmol CO2 m−2s−1) and stomatal conductance to water
vapor (mol H2O m−2s−1) were measured using a portable LICOR-6400 infra-red gas
analysis system (LiCor Inc., Lincoln, NE, USA). The Water Use Efficiency (WUE; µmol
CO2 mol−1 H2O) was calculated from the A/gs ratio. In order to increase the leaf area for
the gas exchange measurements, a group of intact leaves was introduced in the LICOR
chamber. Each individual measurement was corrected per projected leaf area based on the
scanned image of leaf sections measured with ImageJ software [97]. The number of samples
per treatment and species are shown in the Table S1. Gas exchange measurements were
evenly distributed between 9 and 13 h (GMT) among all treatments, from 28 to 35 days
after the start of the fumigation date depending on the phenological stage of each species
(Table S2). Air humidity and temperature during the measurements ranged 36–49% and
20–25 ◦C, respectively, and PAR was maintained at 1000 µmol m−2 s−1, allowing maximum
gs according to previous measurements (Table S2). One measurement per plant was taken
on the representative biomass of the plant, avoiding the youngest leaves in growth and the
oldest senescent leaves. The arrival of a heat wave towards the end of the ozone fumigation
experiment prevented the measurement of gas exchange on ambient F. indigesta plants.

4.5. Macro- and Micronutrient Composition

Total aerial biomass DW from the different plants was individually milled and pooled
to obtain a minimum of 2 independent samples (no plant was repeated in the mixtures)
per OTC and AMB plot for elemental content analysis. The number of samples per treat-
ment and species are shown in Table S1. Total carbon and hydrogen content (C and H),
macronutrients (N, K, Ca, Mg, P, and S) and micro-nutrients (B, Cu, Fe, Mn, Mo, and Zn)
were analyzed and the ratios C/N, N/K, N/P, P/K, P/S, K/Ca, K/Mg, and Ca/Mg were
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also calculated. The total content of C, H, and N were determined by combustion using
an elemental analyzer. Samples were digested under controlled conditions for putting
quantitatively into solution these macronutrients (K, Ca, Mg, P, and S) and micronutrients
(B, Cu, Fe, Mn, Mo, and Zn). Concentrations of these elements were determined by induc-
tively coupled plasma optical emission spectrometry (ICP-OES). More details on sample
preparation and elemental analyses are provided in the suplementary information.

4.6. Statistical Analysis

To analyze the effect of O3 and temperature factors separately on vegetative growth,
A, gs, and WUE, two sets of linear mixed models (LMM) were performed. The first set of
LMM considered the O3 treatments (CFA, NFA, NFA+, and NFA++). In the second set, the
comparison between AMB and NFA was considered to study the effect of temperature. For
each species, the individual plants were the units of replication. Moreover, to control the
possible influence of the experimental design in plants growth, A, gs, and WUE responses
to the fixed factors (O3 and temperature), block (line), and O3 treatment nested within
line were considered as random factors. For each analysis, the AIC (Akaike information
criterion) value was used to choose the most parsimonious option between the models
including only line as a random factor or the nested model. Linear O3 effects were evaluated
using linear a priori contrasts to test the stated hypothesis. Moreover, quadratic and cubic
responses were also tested. A priori contrasts in linear mixed models were based on [98].
Linear mixed models were performed using lme function (nlme package; [99]). To test the
hypotheses of a linear, quadratic, or cubic effect the contr.poly function [100] was used. The
model with the lowest p-value was chosen among lineal, quadratic, and cubic options for
each analysis. Temperature effects were tested using ANOVA function.

To evaluate the O3 and temperature effect on leaf nutrient composition, PERMANOVA
and Non-Metric Multidimensional Scaling (NMDS) analyses were performed using leaf nu-
trient concentration and nutrient ratios as a multivariate trait among treatments. To prevent
PERMANOVA from being largely influenced by the high levels of some elements, the data
were transformed using the square root, and a similarity matrix was made by Bray–Curtis
approximation [101]. A total of 9999 permutations were chosen, and PERMANOVA was
performed using vegan package (Oksanen et al., 2020). Pairwise analyses were performed
when PERMANOVA found differences among O3-treatment using pairwise.adonis2 func-
tion (package pairwiseAdonis; [102]). Two-dimension NMDS were used to represent the
elemental composition multidimensional data. Function metaMDS was used to perform
the NMDS (vegan library; [103]). Correlations of nutrients and nutrient ratios with vege-
tative growth, A, gs, and WUE were also performed using vegan package [103]. All the
statistical analyses described were carried out in R software [100]. Significant statistical
differences were considered at p-values lower than 0.05. Marginally statistical differences
were considered at p-values from 0.1 to 0.05.

5. Conclusions

Gas exchange parameters, in particular WUE, and leaf nutrient concentration were
more sensitive to O3 and temperature increases than aboveground biomass growth in the
Mediterranean perennial grass species assayed in this experiment.

The O3 sensitivity classification of grasses based on growth and gas exchange does
not match with that based on foliar nutrients. S. tenaccissima was the most tolerant to O3 in
terms of growth and gas exchange. However, A. castellana were the most sensitive to the
pollutant in terms of nutrients. In both Festucas, gas exchange, growth, and leaf nutrient
content had different responses to O3. The O3-effects on foliar nutrients and their ratios,
although substantial, did not have an early impact on plant growth. Longer term exposures
will be needed to understand the potential consequences of these changes for the growth
and survival of these species.

S. tenacissima and A. castellana were the two most sensitive grasses to temperature
increase. S. tenacissima was the only one that decreased A at high temperatures, despite the
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fact that it usually inhabits the driest and hottest environments of all the species tested. A.
castellana was the only species that responded positively in terms of aboveground biomass
and WUE when grown in a warmer environment. This species could benefit from climate
warming when water is not a limiting factor. However, it was the most temperature-
sensitive in terms of foliar nutrients, so the long-term effects may differ from the ones
found in this experiment. Only leaf nutrient content responses to temperature seem to be
phylogenetically constrained in Festuca species.

The results showed that responses to O3 and temperature can have different species-
specific effects on plant physiology, potentially altering the ability of plants to cope with
environmental stresses and changing the relationships among species that share the same
habitat. Therefore, climate warming and O3 pollution should be considered as two impor-
tant threats to Mediterranean perennial pastures in the framework of the Global Change.
More experimental work would be needed to better understand the behaviour of these
complex Mediterranean pastures in response to combinations of stress factors.
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www.mdpi.com/article/10.3390/plants12030664/s1, Figure S1: Picture of two OTCs and one AMB plot
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determitaion; Table S1: Number of samples per treatment and specie for Vegetative growth (dry weight),
Gas Exchange (A, gs and WUE) and Nutrient (contents and rates) measurements; Table S2. LICOR
measurements conditions for photosynthesis and conductance; Table S3: A priori contrast results of
the lineal effect, quadratic effect and cubic effect for each specie in vegetative growth, A, gs and WUE;
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