
Combustion and Flame 264 (2024) 113433

0
(

Contents lists available at ScienceDirect

Combustion and Flame

journal homepage: www.sciencedirect.com/journal/combustion-and-flame

Edge-flames in circular channels: Multiplicity of steady-state axisymmetric
solutions
Vadim N. Kurdyumov ∗, Carmen Jiménez
Department of Energy, CIEMAT, Avda. Complutense 22, 28040 Madrid, Spain

A R T I C L E I N F O

Keywords:
Edge flame
Diffusion flame
Multiplicity of solutions
Mixing layer

A B S T R A C T

A numerical study of the combustion process occurring after separate injection of fuel and oxidizer through
an end-wall porous plug into a semi-infinite circular channel is presented. The fuel flow is injected into the
center of the channel, surrounded by the oxidizer flow in an axisymmetric manner. It is assumed that the
channel walls and the porous plug are kept at constant (cold) temperature. The study is based on the coupled
Navier–Stokes and transport equations with one-step Arrhenius-type combustion kinetics. The structure of the
combustion field consists of an edge flame located in the reactants mixing layer and a diffusion flame following
it.

The study is limited to finding axisymmetric solutions. It is found that, for certain values of the parameters,
the system can have multiple (up to four) axisymmetric solutions. Particular attention is paid to finding
the bifurcation points bounding these multiple solution regions in parametric space. It is shown that in all
likelihood the effect of the fuel Lewis number, 𝐿𝑒𝐹 , is decisive for the emergence of multiple modes. For
𝐿𝑒𝐹 = 1 only two modes appear, while with a decrease in 𝐿𝑒𝐹 the number of modes can increase to four.
Although the analysis of the stability of the different regimes remains outside the scope of this work, the shape
of the curve relating the flame position to the reaction Damköhler number suggests that only two of them can
be simultaneously stable.

Novelty and significance statement: This paper presents a numerical investigation of the edge flame solutions
obtained after injection of a central fuel jet surrounded by air in a circular channel, showing for the first time
that multiple axisymmetric steady-state solutions can exist. For fuels with Lewis number equal to one two
solutions are generally found, with only one being stable. For fuels with smaller Lewis numbers the number of
solutions is increased up to four solutions, where two of them can be simultaneously stable. This may explain
the alternance of anchored and lifted flames in axial non-premixed burners burning hydrogen reported in
experiments.
1. Introduction

The separate injection of fuel and oxidizer into a combustion cham-
ber has an obvious advantage over injection of a premixed reactive
mixture: the flame cannot propagate upstream along the supply chan-
nel. The possibility of occurrence of this dangerous event known as
the flashback effect must always be taken into account when designing
combustion devices.

When the initially separated streams of fuel and oxidizer come into
contact and are ignited a well-known structure called an edge flame
is formed [1–4]. The study of this structure is of decisive importance,
since it is the leading point of a diffusion flame situated behind, thus
determining the dynamics of the combustion process and the flame
stabilization and extinction conditions.
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One of the most widely studied configurations is the situation where
the streams of fuel and oxidizer are initially separated by a semi-infinite
splitter plate and the edge flame is stabilized downstream the tip of the
plate [5–12]. The structure of steady-state edge flames in the case of
separate fuel and oxidizer injection from a porous plug was considered
in [13], where one-stage kinetics for methane combustion was used.
The structure and dynamics of edge flames with varying fuel Lewis
numbers during injection of fuel and oxidizer from mutually perpendic-
ular porous plugs was considered in [14]. A propagating edge-flame is
another possible configuration, formed after ignition along the contact
surface of the fuel and oxidizer [15–22]. In this case, the edge flame
velocity is an eigenvalue of the problem that needs to be calculated
simultaneously.
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Fig. 1. Sketch of the problem, coordinate system, distributions of the normalized mass
raction of fuel (solid isolines, with an interval of 0.1) and the stream function plotted
or 𝑚 = 10 and non-reacting flow (𝐷 = 0).

A single edge flame was considered in all the above studies. How-
ever, it is obvious that in a more realistic situation, several edge flames
can coexist. An example is the injection of reactants in a combustion
chamber in the form of multiple streams. In this case, the thermal
interaction between neighboring edge flames is inevitable, leading to
new effects thus complicating the understanding of the resulting flame
structure.

Perhaps the first systematic attempt to study the interaction of
multiple edge flames was reported in [23], where the interaction of
two edge flames was investigated within the framework of a constant
density model for a planar jet injection configuration. As an extension,
thermal expansion was taken into account in [24], a study based in
the full Navier–Stokes equations (including heat expansion effects) also
for the planar injection case. The main result obtained in [23,24] was
the discovery of a multiplicity of combustion modes under the same
values of the control parameters and corresponding to different flame
structures. It was also found that several modes can be simultaneously
stable and the actual implementation of each of them depends on the
initial ignition conditions.

The investigation of steady-state combustion modes for injection of
a circular fuel jet based on the numerical simulation of the Navier–
Stokes equations is proposed in the present work. Since modeling a 3D
process is rather expensive from the point of view of computation, the
present study is limited to axisymmetric cases. Experimental evidence
of the existence of a multiplicity of steady-state regimes in a system
ressembling this one was recently demonstrated in [25]. The main
emphasis is on detecting the existence and studying the boundaries
of the multiplicity regions, which requires the calculation of both
stable and unstable solutions. Despite the limitations caused by the
axisymmetric assumption, this investigation can be considered as a first
step towards studying more general three-dimensional flame structures.

2. Formulation

Fuel and oxidizer are injected in separate streams through a porous
plug at the end of a cylindrical semi-infinite channel of radius 𝑅. The
fuel is injected through a circular section of radius 𝑅0 located at the
center of the porous plug, and the oxidizer is injected through the
2

remaining porous surface. It is assumed that the fuel and oxidizer
do not mix inside the porous plug. The gas streams emerge from
the porous surface with the same uniform normal velocity 𝑈 . In this
tudy, we are looking for axisymmetric solutions exclusively, so that
ll distributions of variables depend only on the longitudinal variable
along the channel axis and the radial variable 𝑟. The sketch of the

problem for a situation without combustion is given in Fig. 1, where the
solid contours show the fuel mass fraction distribution and the dashed
contours represent the stream function. It can be seen that despite the
uniform injection of gas, a boundary layer is formed near the channel
wall due to the no-slip velocity condition on it.

The thermal conductivity of the plug volume is assumed to be
sufficiently high so as to maintain the gas temperature at the porous
plug exit uniform and equal to 𝑇0. The impermeable channel walls are
kept at the same temperature, 𝑇0. At the exit of the plug the reactants
mass fraction fluxes are specified. An axisymmetric mixing layer, along
which the reactants interdiffuse, is produced downstream the porous
plug surface.

In this study we model the chemical reaction by a global one step
irreversible reaction of the form: F + 𝑠O → (1 + 𝑠)P, where F and O
denote fuel and oxidizer, P denotes combustion products and 𝑠 is the

ass-weighted stoichiometric coefficient. The fuel consumption rate
er unit volume is assumed to be first order in the concentrations of
he two reactants, (𝜌𝑌𝐹 ∕𝑊𝐹 ) and (𝜌𝑌𝑂∕𝑊𝐹 ), and to obey a standard

Arrhenius law, 𝛺 = 𝜌2𝑌𝐹 𝑌𝑂 exp(−∕𝑇 ), with a preexponential
actor  (containing the molecular weights) and an overall activation
nergy  . Here 𝑌𝐹 and 𝑌𝑂 are the mass fractions of fuel and oxidizer,
espectively, 𝑇 and 𝜌 are the temperature and density of the mixture,
nd  is the universal gas constant.

In writing the dimensionless governing equations below, the initial
adius of the fuel stream, 𝑅0, was chosen as a unit of length, the
haracteristic velocity 𝑇 ∕𝑅0 as a unit of speed and 𝑅2

0∕𝑇 as a unit
f time; here 𝑇 is the thermal diffusivity of the mixture. The mixture
ensity 𝜌 and the mass fractions 𝑌𝐹 , 𝑌𝑂 were normalized with respect

to their values in the supply streams, 𝜌0 and 𝑌𝐹0 , 𝑌𝑂0
, and a non-

imensional temperature 𝜃 = (𝑇 − 𝑇0)∕(𝑇𝑎 − 𝑇0) was introduced, where
𝑇𝑎 = 𝑇0 + 𝑄𝑌𝐹0∕[𝑐𝑝(1 + 𝜙)] is the adiabatic temperature with 𝑄 the
heat release rate (per unit mass of fuel), 𝜙 = 𝑠𝑌𝐹0∕𝑌𝑂0

is the global
fuel-to-oxidizer equivalence ratio and 𝑐𝑝 is the specific heat.

For the sake of simplicity of the formulation, all the thermodynamic
and transport coefficients are assumed to be constant. Assuming a low-
Mach number approximation, the standard (dimensionless) steady-state
governing equations become

∇ ⋅ 𝜌𝐯 = 0, (1)

(𝜌𝐯 ⋅ ∇)𝐯 = −∇𝑝 + 𝑃𝑟(∇2𝐯 + ∇(∇ ⋅ 𝐯)∕3) , (2)

𝜌𝐯 ⋅ ∇𝜃 = ∇2𝜃 + (1 + 𝜙)𝜔, (3)

𝜌𝐯 ⋅ ∇𝑌𝐹 = 𝐿𝑒−1𝐹 ∇2𝑌𝐹 − 𝜔, (4)

𝜌𝐯 ⋅ ∇𝑌𝑂 = 𝐿𝑒−1𝑂 ∇2𝑌𝑂 − 𝜙𝜔, (5)

𝜌 (1 + 𝑞𝜃) = 1 , (6)

where 𝐯 = 𝑢𝐞𝑥+𝑣𝐞𝑟 is the velocity vector with 𝑢 and 𝑣 the corresponding
axial and radial velocity components. The heating effect due to viscous
dissipation is neglected due to its insignificance compared to the heat
released by combustion in the above equations.

The boundary conditions at the porous plug exit surface, 𝑥 = 0, are

𝜌 = 1, 𝜃 = 0, 𝑢 = 𝑚, 𝑣 = 0 ,

𝑚𝑌𝐹 − 1
𝐿𝑒𝐹

𝜕𝑌𝐹
𝜕𝑥

=
{

𝑚, 𝑟 < 1
0, 𝑟 > 1

,

𝑚𝑌𝑂 − 1 𝜕𝑌𝑂 =
{

0, 𝑟 < 1.

(7)
𝐿𝑒𝑂 𝜕𝑥 𝑚, 𝑟 > 1
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Here it is assumed that injection occurs in the direction normal to the
porous surface. Downstream of the channel, at 𝑥 → ∞, we impose for
the temperature, species mass fractions and velocity components the
following conditions,

𝜕2𝜃
𝜕𝑥2

=
𝜕2𝑌𝐹
𝜕𝑥2

=
𝜕2𝑌𝑂
𝜕𝑥2

= 𝜕𝑢
𝜕𝑥

= 𝑣 = 0 . (8)

hese conditions, which are typical soft boundary conditions, were
pplied at the outlet boundary of the numerical domain. It was verified
hat they are not affecting the results (by changing the length of the
omputational domain).

The channel wall, at 𝑟 = 𝑎, is isothermal, impermeable for fuel and
xidizer with no-slip conditions for the gas velocity

= 0,
𝜕𝑌𝐹
𝜕𝑟

=
𝜕𝑌𝑂
𝜕𝑟

= 0, 𝑢 = 𝑣 = 0 . (9)

The dimensionless parameters in Eqs. (1)–(7) are the Prandtl num-
ber 𝑃𝑟 = 𝜈∕𝑇 , where 𝜈 and 𝑇 are the kinematic viscosity and
the thermal diffusivity, the scaled injection velocity of the gas 𝑚 =
𝑈𝑅0∕𝑇 , the channel radius 𝑎 = 𝑅∕𝑅0, the Lewis numbers associated
with the fuel and oxidizer 𝐿𝑒𝐹 = 𝑇 ∕𝐹 and 𝐿𝑒𝑂 = 𝑇 ∕𝑂, where
𝐹 and 𝑂 are the molecular diffusivities of the fuel and oxidizer,
respectively, and the thermal expansion parameter 𝑞 = (𝑇𝑎 − 𝑇0)∕𝑇0.

The dimensionless Arrhenius reaction rate is given by

𝜔 = 𝐷𝛽3𝜌2𝑌𝐹 𝑌𝑂 exp
[

𝛽(𝜃 − 1)
(1 + 𝑞𝜃)∕(1 + 𝑞)

]

, (10)

where 𝛽 = (𝑇𝑎 − 𝑇0)∕𝑇 2
𝑎 and 𝐷 = (𝑅2

0∕𝑇 ) ⋅ 𝜌0𝑌𝑂0
𝛽−3 exp [−∕𝑇𝑎]

are the Zel’dovich and Damköhler numbers, respectively.
When choosing dimensionless parameters for a combustion process,

the dimensionless activation energy, 𝑁 = ∕𝑇0, is often used instead
of the Zel’dovich number. Because 𝛽 = 𝑁𝑞∕(1 + 𝑞)2, an increase in the
Zel’dovich number occurs with a decrease in 𝑞 (at a fixed activation
energy ), that is, for leaner mixtures. Due to the significant number
of parameters appearing in the problem, we fix the values 𝑞 = 5 and
𝑃𝑟 = 0.72, which are typical values for combustible mixtures. Also, for
all the results presented below we use 𝐿𝑒𝑂 = 1 and 𝜙 = 1.

Only axisymmetric solutions are considered in the present study.
The edge flame position is determined as the point (𝑥𝑤, 𝑟𝑤) at which
the reaction rate 𝜔 reaches a local maximum value, 𝜔𝑚𝑎𝑥 = 𝜔(𝑥𝑤, 𝑟𝑤).

3. Numerical treatment

It is advantageous for two-dimensional steady-state numerical sim-
ulations to eliminate the pressure from the momentum equations by
introducing the vorticity field, 𝜁 = 𝑣𝑥 − 𝑢𝑟. Subscripts 𝑥 and 𝑟, here and
below, denote partial differentiations. The vorticity satisfies

𝜌𝐯 ⋅ ∇𝜁 − 𝜌𝑣𝜁∕𝑟 = 𝑃𝑟(𝛥𝜁 − 𝜁∕𝑟2) + 𝐽 , (11)

where 𝐽 is the vorticity production term given by

𝐽 = 𝑣𝑥(𝜌𝑣)𝑟 − 𝑣𝑟(𝜌𝑣)𝑥 + 𝑢𝑥(𝜌𝑢)𝑟 − 𝑢𝑟(𝜌𝑢)𝑥.

The continuity equation is satisfied automatically by introducing a
stream function 𝜓 , defined from 𝑟𝜌𝑢 = 𝜓𝑟, 𝑟𝜌𝑣 = −𝜓𝑥, which satisfies

(𝜌−1𝜓𝑥)𝑥 + (𝜌−1𝜓𝑟)𝑟 − (𝜌𝑟)−1𝜓𝑟 . = −𝑟𝜁 (12)

The solutions described by Eqs. (3)–(6) and (11)–(12) were calcu-
lated using the Gauss–Seidel method with over-relaxation. The typical
step size of the uniform square numerical grid was ℎ = 0.02. It was
verified that increasing the resolution to ℎ = 0.01 did not lead to
changes in the results. Two versions of the calculations were carried
out. In the first case, direct iterative calculations of all distributions
were performed with fixed values for all parameters. In the second case,
the temperature value, 𝜃 = 𝜃∗, was fixed at one point of the domain
while the value of the Damköhler number, 𝐷, was calculated iteratively
3

also by the Gauss–Seidel method with over-relaxation.
The choice of the temperature 𝜃∗ and its location had to corre-
spond to some real solution (stable or unstable). To ensure this, a
previously calculated solution was shifted by several grid points down-
stream/upstream and used as the initial condition for iterations. The
typical values for 𝜃∗ were between 0.7 and 0.8 fixed in a point along
the 𝑟 = 𝑟∗ line with 𝑟∗ ≲ 1. Numerical calculations revealed that the best
convergence was achieved when the value of 𝑟∗ was close to the radial
value of the corresponding edge flame position 𝑟𝑤. For this reason, the
values of 𝑟∗ were gradually decreased as the flame edge moved away
from the porous plug (which led to the flame edge approaching the
channel axis, see Fig. 4). However, it was verified that the solution
obtained after the iterative calculations does not depend on the values
of 𝜃∗ and 𝑟∗ (within reasonable limits).

4. Results

Let us first consider the case with fuel Lewis number equal to one,
𝐿𝑒𝐹 = 1. Fig. 2 shows on the left plot the edge flame position as a
function of the Damköhler number, while on the right plot, 𝛽3𝐷 is used
for the horizontal axis. The comparison of these two plots illustrates
the importance of introducing 𝛽3, as a factor, into the expression for
the dimensionless reaction rate given by Eq. (10). Indeed, the response
curves on the left plot turn out to be much closer to each other at
different 𝛽 (or, equivalently 𝑁) than on the right plot. The scaling of
the Damköhler number with 𝛽3 reflects the fact that the flame edge is
located at the stoichiometric line.

Fig. 2 shows that the response curve consists of two branches. The
edge flame position approaches the porous plug as the Damköhler
number increases along the lower branch, while 𝑥𝑤 increases with
𝐷 along the upper branch. The two branches are connected at a
bifurcation point (open circles) which determines the critical value for
the Damköhler number, 𝐷 = 𝐷𝑐 . There are no solutions for 𝐷 < 𝐷𝑐 .
Although the investigation of the stability of the computed steady-states
remains beyond the scope of this work, one can be sure that the lower
branch of the response curve describes stable solutions, while along the
upper branch the steady-state solutions are unstable. We will call the
first type of solutions (when 𝑥𝑤 decreases as 𝐷 increases) as ‘‘normal’’
solutions, according to the intuitive consideration that the flame should
approach the porous plug as the intensity of the reaction increases.

A similar behavior was obtained in [24], where the structure of
the edge flames after separate injection of fuel and air in a planar
channel was considered. Numerical simulations of the corresponding
time-dependent dynamics showed that the ‘‘normal’’ regimes are stable
(small perturbations of these solutions decrease with time). However,
a rigorous linear global analysis of the stability of stationary solutions
is a challenging task and will be reported elsewhere.

An analogy can be established between the ‘‘C’’-curves presented
here and those obtained when considering a freely propagating pre-
mixed flame in a channel with heat losses to the wall. In the last case,
two branches of steady-state solutions are also observed: a stable one,
corresponding to a decrease in the propagation flame velocity (relative
to the wall) with increasing heat loss intensity, and another solution in
which the flame velocity increases with increasing heat losses.

The behavior of the response curve becomes more complex as the
Lewis number for the fuel decreases. Fig. 3 shows the dependence of the
flame position on the Damköhler number for varying flow rate values
𝑚. All curves are calculated for 𝐿𝑒𝐹 = 0.7. It can be seen that at a
relatively small flow rate, 𝑚 = 6, the response curve resembles those
shown in Fig. 2 for 𝐿𝑒𝐹 = 1, with two solutions for any Damköhler
number above 𝐷𝑐 (marked with an open triangle) and no solutions for
𝐷 < 𝐷𝑐 .

The situation changes as the flow rate increases. It can be seen
in Fig. 3 that for the cases calculated with 𝑚 = 8 and 𝑚 = 10,
two additional bifurcation points appear on the response curves. These
bifurcation points (marked with open triangles) are indicated as (b) and
(c) on the curve with m = 10, in addition to bifurcation point (a). Thus,



Combustion and Flame 264 (2024) 113433V.N. Kurdyumov and C. Jiménez

t

f
e
p

Fig. 2. Dependence of the edge flame position on the Damköhler number calculated for 𝑚 = 10, 𝑞 = 5 and 𝐿𝑒𝐹 = 1 at different values of the dimensionless activation energy 𝑁 .
The left plot shows the flame position as a function of the Damkohler number and the right plot as a function of 𝐷𝛽3, where 𝛽 = 𝑞𝑁∕(1 + 𝑞)2. Bifurcation points are marked with
open circles.
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Fig. 3. Dependence of the edge flame position on the Damköhler number calculated
for several flow rates 𝑚; with 𝑎 = 3, 𝑁 = 72, 𝑞 = 5 and 𝐿𝑒𝐹 = 0.7. Bifurcation points
are marked with open symbols. The filled squares on the curve with 𝑚 = 10 correspond
o the solutions in Fig. 4.

or a fixed Damköhler number, up to four steady-state solutions can
xist for the same set of parameters. It should be noted that between
oints (a) and (b), the position of the flame edge 𝑥𝑤 also decreases with

increasing Damköhler number and solutions along this segment of the
response curve are ‘‘normal’’ and in all probability stable.

Fig. 4 illustrates the temperature distributions (colored shades), the
reaction rate isolines (black lines) and the stream function isolines
(white lines) for the solutions shown as filled squares (1), (2) (3) and
(4) on the curve with 𝑚 = 10 in Fig. 3. It can be seen that, as the flame
shifts away from the porous plug, the position of the edge moves closer
to the center of the channel and the circle formed by the axisymmetric
edges can even blend into a single edge at the channel axis. As stated
above, in all probability only solutions (1) and (3) are stable.
4

Fig. 5 shows the response curves as a function of the Damköhler
number calculated for different values of 𝐿𝑒𝐹 , for 𝑚 = 10, 𝑎 = 3
nd 𝑁 = 72. As mentioned above, for 𝐿𝑒𝐹 ⩾ 1 only two modes are
bserved. As the Lewis number gradually decreases (for a fixed flow
ate), additional turning points appear and the response curve becomes
ouble C-shaped. The interval of existence of four solutions slightly
ncreases with a decreasing Lewis number.

The curves shown in Fig. 6 illustrate the dependence of the flame
dge position on the Damköhler number obtained for 𝑚 = 10, 𝑎 = 3
nd 𝐿𝑒𝐹 = 0.7 and several values of the activation energy 𝑁 . It

should be noted that for the solutions located closest to the porous
plug, all the curves practically overlap. However, for solutions with
edge flame positions more distant from the porous plug, the separation
between the curves for different 𝑁 increases with 𝑥𝑤. One can see
also that the region of existence of four solutions decreases as the
dimensionless activation energy decreases. For very small values of
𝑁 , e.g. the response curve calculated for 𝑁 = 20, the region of four
solutions does not exist.

All the results presented above were obtained for a dimensionless
channel radius 𝑎 = 3. As can be seen in Fig. 4, the combustion field,
even at this value of 𝑎, does not extend far from the axis. However,
due to thermal expansion, the gas velocity behind the edge flame
increases to different degrees at different values of 𝑎. Fig. 7 compares
the distributions of the longitudinal velocity field 𝑢 (color shades)
nd the reaction rate isolines (𝜔 = 0.5, 1, 5, 20, 50) for the cases
alculated with 𝑎 = 2 and 𝑎 = 5. It can be seen that although the
ositions of the edge flame are close to each other, the velocity fields
re noticeably different. On the other hand, it should be noted that the
lame structures (𝜔 reaction rate isolines) are very similar for 𝑎 = 2 and
= 5.

Fig. 8 shows the velocity profiles along the channel axis calculated
or 𝐷 = 2300, 𝑚 = 10, 𝐿𝑒𝐹 = 0.7 and different values of the channel
adius 𝑎. It can be seen that with an increase in 𝑎, the maximum values
f the gas velocity achieved after the edge flame decrease appreciably.
t should be noted that for the cold wall cases considered in the present
tudy, the temperature of the combustion products will asymptotically
rop to zero far downstream and the velocity distribution should
pproach the well-known parabolic Poiseuille profile, 𝑢→ 2𝑚[1−(𝑟∕𝑎)2]

as 𝑥 → ∞, that is, 𝑢|𝑟=0 → 2𝑚. However, this limit value is reached only
t 𝑥 ≫ 1.

A quantitative change in the gas flow velocity distribution entails
change in the bifurcation points for the response curves. Fig. 9

hows the response curves obtained for several values of 𝑎, all curves
alculated for 𝑚 = 10, 𝑁 = 72 and 𝐿𝑒 = 0.7. It should be noted,
𝐹
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Fig. 4. Example of the four flame solutions obtained for 𝑚 = 10, 𝑎 = 3, 𝑁 = 72 and 𝐿𝑒𝐹 = 0.7. The color shades show the temperature field, black and white lines show 𝜔-isolines
(𝜔 = 0.5, 1, 5, 20 and 50) and 𝜓-isolines (values are shown on the line), respectively. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
Fig. 5. Dependence of the edge flame position on the Damköhler number calculated
for various decreasing Lewis numbers, for 𝑚 = 10, 𝑎 = 3 and 𝑁 = 72 (𝛽 = 10). Turning
points are marked with open symbols.

however, that the qualitative behavior of the response curves remains
similar.

It can be seen in Fig. 9 that the branches corresponding to flame
positions closer to the porous plug almost overlap for different values
of 𝑎, while for branches with large 𝑥𝑤 this does not happen. This
behavior can be explained as follows. For the first solutions, the edge
flame is located in the zone where the mixing of the reactants is just
beginning. The mixture between the edge flame and porous plug is
thus stoichiometric and complete combustion of both fuel and oxidizer
occurs just behind the edge flame. For solutions with larger 𝑥 , the
5

𝑤

Fig. 6. Dependence of the edge flame position on the Damköhler number calculated
for various values of the dimensionless activation energy 𝑁 , for 𝑚 = 10, 𝑎 = 3 and
𝐿𝑒𝐹 = 0.7.

fuel and oxidizer are already partially premixed ahead the edge flame
location. Then the mixture just upstream the edge flame is no longer
stoichiometric and the scaling using 𝛽3 becomes less adequate. Finally,
Fig. 10 shows a map of the number of solutions in the 𝐷 − 𝑎 plan. The
digit inside each zone indicates the number of steady-state solutions.

It is interesting to note the following fact: if we gradually increase
the value of the Damköhler number, we can see in Fig. 9 that for small
values of 𝑎 (e.g. the curve plotted for 𝑎 = 2), solutions first arise with 𝑥𝑤
located close to the porous plug. However, for large values of 𝑎 (e.g. the
curve plotted with 𝑎 = 7) the first solutions that appear at small 𝐷
are far from the porous plug. This is illustrated by the vertical dotted
lines shown in Fig. 9 for the bifurcation points corresponding to the
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Fig. 7. Distributions of longitudinal velocity 𝑢 for 𝐷 = 2300, 𝑚 = 10, 𝐿𝑒𝐹 = 0.7 in two
cases with 𝑎 = 2 and 𝑎 = 5 (color shades), together with isolines of the omega reaction
rate (𝜔 = 0.5, 1, 5, 20, 50). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 8. Velocity profiles along the channel axis for 𝑚 = 10, 𝐷 = 2300, 𝐿𝑒𝐹 = 0.7 and
three values of 𝑎. The dashed line marks the limit value of the velocity at the channel
axis 𝑢 = 2𝑚.

remote solutions. In Fig. 10 this leads to the intersection of the curve
with circles and the curve with triangles at 𝑎 ≈ 5.

5. Conclusions and discussions

The study of the phenomenon of multiplicity of operation modes of
a device, when different regimes may simultaneously exist for a single
set of parameters, is an important part of the design and feasibility
studies of the system. Indeed, transition from one mode to another with
a slight change in the control parameters may be undesirable when
operating the device. It is important to note that careful numerical
determination of the boundaries of the regions of multiplicity, or
bifurcation points, requires the calculation of both stable and unstable
steady states. For this reason, the direct application of a time-marching
procedure perhaps is not effective, and special calculation methods
must be used.
6

Fig. 9. Dependence of the edge flame position on the Damköhler number calculated
for various dimensionless channel radius 𝑎, for 𝑚 = 10, 𝐿𝑒𝐹 = 0.7 and 𝑁 = 72 (𝛽 = 10).
Open symbols indicate bifurcation points.

Fig. 10. Map of the multiplicity of steady-state modes in the 𝐷 − 𝑎 parameters plane,
calculated for 𝑚 = 10, 𝐿𝑒𝐹 = 0.7 and 𝑁 = 72. The numbers indicate the number of
non-trivial solutions in each area (excluding the trivial cold solution 𝜃 ≡ 0).

An obvious example of transition from one regime to another with
only a small change in the parameter values is the flame extinc-
tion, since the trivial cold state is also one of the possible modes. A
less obvious example is the transition from one combustion mode to
another, different in the flame structure, combustion characteristics
and interaction with the environment. This case is investigated in the
present study for a combustion device with separate injection of fuel
and oxidizer into the combustion chamber.

The present numerical study reveals the possibility of multiple
edge flame solutions as a circular fuel jet is injected in the middle
of a circular channel separately from a surrounding oxidizer stream.
The study focuses in a simplified case of injection through a highly



Combustion and Flame 264 (2024) 113433V.N. Kurdyumov and C. Jiménez

/

conducting porous plug, ensuring uniform flux of reactants at a uniform
temperature, and considers only axisymmetric solutions.

Results show that two different axisymmetric solutions may exist for
unity fuel Lewis number flames. As the fuel Lewis number decreases,
up to four different axisymmetric flames solutions are found, with two
of them being in all probability simultaneously stable. These investi-
gations could be important in light of the current increasing interest
in the study of designs for burning hydrogen, including that obtained
from renewable sources, for domestic and industrial purposes.

Perhaps these results may open the way to an explanation for
experimental observations reporting an alternance of anchored and
lifted flames in axial non-premixed burners [25], particularly when
burning fuels with 𝐿𝑒𝐹 < 1. One has to bear in mind that, in addition to
multiple axisymmetric flames, non-axisymmetric solutions, both stable
and unstable, must certainly also exist for the same parameters, as was
the case in the planar jet studies reported in [23,24]. This shall be
investigated in future work.
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