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A B S T R A C T

We have in depth analyzed the refractive-index behavior and optical absorption of below-band-gap light,
in order to calculate the basic parameters of the energy-band structure of thin layers of non-crystalline
semiconductors. By carrying out a semi-empirical determination of the influence of the finite (non-zero) width
of the valence and conduction electronic bands, we find the dependence of the index of refraction upon the
photon energy, 𝑛(𝐸), which goes just one order beyond the Wemple–DiDomenico two-level single-oscillator
expression, and we simultaneously obtain the spectral dependence of the absorption coefficient, 𝛼(𝐸). By
model fitting the measured normal-incidence transmittance spectrum, we demonstrate that with a highly-
sensitive double-beam spectrophotometer, it can be accurately determined the energy distance, 𝐸M,Sol, between
the corresponding ‘centers of mass’ of the bonding and anti-bonding electronic bands, and also a reasonable
estimate of the so-called effective width, 𝛥eff , of both valence and conduction bands. We have used this devised
optical approach with a series of uniform and non-uniform thin layers of unhydrogenated fully 𝑎-Si, grown
by RF-magnetron-sputtering deposition, onto room-temperature transparent glass substrates. The advantages
of our novel approach are mainly due to the additional attention paid to the roles of the weak-absorption
Urbach tail and the thickness non-uniformity of the studied 𝑎-Si films. We have also used a universal normal-
incidence transmission expression reported by the authors in an earlier paper, which can be applied even to
strongly-wedge-shaped semiconductor layers. Together with the use of the improved Solomon formula for the
normal optical dispersion of the refractive index, the complete approach with all its elements constitutes the
main novelty of the present paper, in comparison with other existing works.
1. Introduction

Ultraviolet–visible–near-infrared (UV–Vis–NIR) spectrophotometry,
at normal incidence, is frequently employed for accurately determining
both the optical and the structural properties and also the morphology
of uniform and non-uniform thin layers of amorphous semiconduc-
tors [1–7]. Concretely speaking, by the use of the optical transmit-
tance spectrum only, measured with a highly-sensitive, double-beam
ratio-recording spectrophotometer, we can determine the geometri-
cal parameters, average film thickness, 𝑑, and film thickness varia-
tion, 𝛥𝑑, the optical constants, refractive index and extinction co-
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efficient, 𝑛 and 𝑘, respectively, and the Tauc optical gap, 𝐸opt , of a
non-crystalline semiconducting layer under study. The value of this last
particular optical parameter, 𝐸opt , is found after the calculation of the
optical-absorption coefficient, 𝛼(𝜆), as a function of the corresponding
free-space wavelength, 𝜆.

For the specific case of an average layer thickness larger than
the incoming-photon wavelength, the experimentally-measured trans-
mittance spectrum exhibits a characteristic oscillatory behavior, and
from the respective maxima and minima of this Fabry–Perot (FP)
interference fringes, a precise and accurate spectral dependence (or
optical dispersion) 𝑛(𝜆) or 𝑛(𝐸), can be determined (𝐸 = ℏ𝜔 is the
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incident-photon energy) [1–7]. On the other hand, in previous works
reported by Solomon et al. [8–10], very interestingly, the dispersion
of the index of refraction was utilized in order to obtain the so-called
‘average gap’, 𝐸M, an optical quantity associated with the energy-band
structure of the amorphous-semiconductor material. Particularly, this
entirely empirical quantity has been demonstrated to be a measure
of the energy difference between of the ‘centers of mass’ of the va-
lence and conduction energy bands, accompanied by the necessary
weighting factors, of the non-crystalline semiconductor. Furthermore,
going one significant step further, its corresponding bandwidth was
also reasonably estimated from the normal dispersion of the index of
refraction. Hence, with straightforward normal-incidence transmission
measurements, it can be found highly valuable information about the
energy-band structure of the non-crystalline solid.

In this paper, by the in-depth study of the photon energy depen-
dence of the refractive index, 𝑛(𝐸), we have been able to calculate
not only the energy distance 𝐸M between the centers of the bonding
and anti-bonding electronic bands but also the corresponding effective
width, 𝛥eff , of these two energy bands of the semiconductor. The
present approach, mainly based upon the Solomon optical-dispersion
model, can be applied in principle to any uniform and non-uniform
film of an amorphous semiconductor, and the experimental results
obtained and discussed in detail in this work belong to both uni-
form and non-uniform layers of the prototypical hydrogen-free amor-
phous silicon (𝑎-Si), grown in this investigation by the radio-frequency
magnetron-sputtering deposition technique (RFMS), onto transparent
glass substrates, at room temperature.

In the last few decades, 𝑎-Si has been gaining more relevance, gener-
ally speaking, in the field of solar cells [11–16]. The hydrogenless 𝑎-Si
is proposed to the precursor material in order to prepare recrystallized
silicon (using to that end a laser source), that can substitute the 𝑐-
Si as a solar absorber. During the crystallization process it is found a
polycrystalline material which is made up of crystalline grains whose
sizes are of the order of microns, ant they can be visualized with the
naked eyes. It is a novelty the fabrication of the 𝑎-Si precursor material
by radio-frequency magnetron sputtering, and also at relatively low
temperature, smaller than around 300 °Celsius. An additional advantage
of the sputtering deposition method is that such a technique avoids the
use of toxic gases during the growth process, which makes it certainly
more friendly to the environment. And last but not least, it has to be
stressed that on this way very small thickness of only around 10 μm are
needed. It favorably compares with the silicon wafers whose thickness
ranges between 100 and 180 μm. That is to say, there is a remarkable
eduction of the solar absorber thickness, and it obviously means an
mportant reduction of cost.

In addition, multi-layered H-free 𝑎-Si thin films have become in
the last decade a certainly promising candidate for Li-ion battery
anodes, for it was found to be a reversible host material for Li in-
tercalation, and it possesses a theoretical specific capacity of approx-
imately 4200mAh∕g, the highest known value among all the exist-
ing material in nature [17]. Moreover, it was reported by Karabacak
and Demirkan [18] a low-cost and scalable procedure of producing
hydrogen-less 𝑎-Si-thin-layer anodes, with large specific-capacity values
and large numbers of charging/discharging cycles. Unhydrogenated
𝑎-Si thin layers were grown for such a goal, with a mass–density-
modulated multilayer structure, and these 𝑎-Si films were prepared
by a high/low working-pressure RF magnetron sputtering deposition
method.

To end this introduction, it is worthy to underline that, to the best of
the authors’ knowledge, this is the first time that our adopted approach,
formed by the particular combination of both the Solomon dispersion
model [10] and the consideration of the non-negligible absorption
associated to the Urbach tail [19,20], along with the use of both
the inverse-synthesis method [21,22] and a novel universal formula
for the normal-incidence transmission [5], has all been applied to
films of amorphous semiconductors in order to determine their energy-
band structure. This presented original combination of the Solomon
formula and the Urbach rule will be designated from now on, the
2

’Solomon–Urbach model’.
2. Experimental procedure: Preliminary surface, structural and
optical characterizations of 𝒂-Si layers

First of all, it must be noted that the preparation of the 𝑎-Si thin-film
pecimens under study by room-temperature, radio-frequency mag-
etron sputtering deposition technique, has been extensively reported
y us elsewhere [23–25], and there is no need to be repeated here.

The quality of the surface morphology, quantified by the root-mean-
quare value of the surface roughness, 𝑅q, of the studied 𝑎-Si films,
as measured by atomic force microscopy (AFM microscopes Bruker
anoscope IIIA). The representative AFM micrograph in Fig. 1 proves

hat our 𝑎-Si specimens do have a flat, shiny, and smooth surface.
he AFM measurements show that the value of the surface-roughness
arameter, 𝑅q, is about 1.50 nm. On the other hand, the value of this
arameter 𝑅q for the 1-mm-thick glass substrate was found to be
round 0.60 nm.

It must also be noted the characteristic surface effect, usually called
broccoli’, ‘orange peel’, or ‘dry mud’ cracks [26], seen in the top-
iew SEM image (SEM: FEI Nova NanoSEM 450), belonging to a
epresentative 𝑎-Si specimen, and displayed in Fig. 1. To date there is no
lear explanation, whatsoever, of the possible underlying mechanisms
hat could give a concluding explanation of the formation of this very
eculiar surface effect. However, it might be reasonably proposed that
t could be correlated to the expected tendency of shrinkage of any thin
oating film, in order to reduce its associated surface energy, and so,
ould be caused by the existing tensile internal stresses within the thin

ayer, occurring during the RFMS coating process.
In addition, the optical constants, refractive index, 𝑛, and extinc-

ion coefficient, 𝑘, were accurately calculated from room-temperature
easurements of the normal-incidence transmission spectrum of each

-Si specimen to be studied. Those optical spectra were measured by
Perkin-Elmer 1050 and/or a Cary 5000 UV/Vis/NIR, double-beam

atio-recording spectrophotometer, both state-of-art instruments. The
pecific irradiated area of the 𝑎-Si specimen was 1 cm × 1mm, and the
dopted spectral width was 2 nm. The transmission data, on the other
and, were collected with a data interval of 4 nm. All the normal-
ncidence transmittance spectra were measured from 300 to 2500 nm. It
as to be noted that various spots on each 𝑎-Si specimen investigated
ave been illuminated, and we have indeed found excellent consistency
etween the results from the various spot-to-spot transmission mea-
urements. Moreover, the value of optically-calculated average layer
hickness was routinely confirmed by the respective cross-sectional
EM micrographs and also cross-checked for a few chosen 𝑎-Si spec-
mens by a Veeco Dektak 150 mechanical profilometer. It should be
tressed that the difference found with the value of the average layer
hickness exclusively determined from the transmission measurements
nly was, for the particular specimens selected, lower than around 3%.

In order to study the non-crystalline atomic structure of the in-
estigated sputtered 𝑎-Si specimens, the first-order Raman spectra,
easured at room temperature, of the present 𝑎-Si thin layers, were

xcited with a 633-nm laser of 20-nW nominal power by employing a
Horiba LabRAM HR Raman spectrometer. In Fig. 1, it is shown three
typical Raman spectra for the representative 𝑎-Si samples, respectively.

Let us commence now with the detailed analysis of those as-
measured first-order Raman spectra. It is interesting to recall that
in a material, a small part of the incident photon energy can be
employed in order to produce a lattice vibration (that is to say, a
phonon quasiparticle). The rest of the energy escapes as a photon,
with slightly lower energy in comparison with that of the incoming
photon, and this particular energy shift is the so-called Raman shift. In
the specific case of the 𝑎-Si material, the momentum selection rules is
considered to be relaxed, as compared to that of the single-crystalline
Si, and thus various phonon modes, and their respective energies,
are now allowed. Generally speaking, a broad peak centered at about
480 cm−1, almost dominates the complete first-order Raman spectrum. It

is noticed that the three typical Raman spectra for three representative
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Fig. 1. (a) The ordinary visual appearance (unaided eye) of the surface of a representative 𝑎-Si specimen (see also the displayed three-layer optical model for our studied samples).
(b) AFM and (c) top-view SEM images of the specimen #3. The displayed top-view SEM image clearly illustrates the ‘broccoli’, ’orange peal’, or ’dry mud’ cracks, characteristic
of the 𝑎-Si thin layers under investigation. (d) Three typical Raman spectra corresponding to three 𝑎-Si thin-film samples, respectively, all them sputtered onto room-temperature
glass substrates, are shown. (Adapted from [25] by E. Marquez et al.).
specimens depicted in Fig. 1, exhibits the main peak at a particular
average value of 𝜔TO = 464 cm−1, associated with the transverse-
optic (TO) phonon band, and another main peak at a particular value
of the wavenumber of around 140 cm−1, corresponding in this other
case to the transverse-acoustic (TA) phonon-band [27–29]. Along with
these two dominant Raman peaks, two more Raman peaks belonging,
firstly, to the longitudinal-optic (LO) phonon band, and positioned
at around 372 cm−1, and, secondly, to the longitudinal-acoustic (LA)
phonon band, positioned in this other case at a smaller value of about
300 cm−1, are also observed. Furthermore, it has to be mentioned that
the broad but small characteristic feature seen at the high-energy side,
in those representative 𝑎-Si first-order Raman spectra shown in Fig. 1,
at a particular value of the wavenumber of nearly 620 cm−1, can be
associated to two plausible two-phonon excitations, such as TO+TA and
2LA, respectively [27–29].

The TA-peak intensity, 𝐼TA, considered in relation to the TO-peak
intensity, 𝐼TO, on the other hand, is well accepted to quantify the degree
of the extent of the medium-range order existing in the atomic structure
of a disordered solid. Thereby, the higher the intensity ratio, 𝛾Raman
(= 𝐼TA∕𝐼TO), the lower the amount of medium-range order occurring in
such a solid. For the 𝑎-Si specimen #1, 𝛾Raman was found to be as large as
0.89, whereas the value of the parameter 𝛾Raman for a sputtered 𝑎-Si (but
in this case grown without the RF magnetron enhancement existing
during the deposition of our samples) was reported to be a slightly
lower value of 0.80. Additionally, Orapunt et al. [30–32], fabricated
a novel form of 𝑎-Si by the deposition technique of ultra-high-vacuum
evaporation of Si atoms, onto a room-temperature quartz substrate,
whose corresponding thin-layer mass density resulted to be surprisingly
just only 2% smaller than that of 𝑐-Si, and possessing a lower value of
the structural parameter 𝛾Raman of 0.70. Hence, from the standpoint of
their non-crystalline atomic structure, it is then reasonable to think that
our RFMS 𝑎-Si specimens are, indeed, the most disordered of all the
above-mentioned and differently-deposited 𝑎-Si thin-films materials.

Grazing-incidence X-ray diffraction (GIXRD) measurements made
previously on the RFMS-𝑎-Si specimens have undoubtedly corroborated
their non-crystalline nature, with none of the characteristic sharp X-
ray diffraction peaks of its 𝑐-Si counterpart being present, at all, in the
3

bulk of the thin-film sample [25]. The GIXRD and EDX measurements
also demonstrated the total absence of any kind of impurities in the
investigated 𝑎-Si layers. Moreover, micro X-ray diffraction (𝜇XRD)
measurements were carried out, in order to get an even much deeper
insight into the atomic structure and morphology of sputtered 𝑎-Si
layers. This particular experimental technique permits the detection of
very minor changes that are not possible to be observed with other
experimental configurations. Three crystalline peaks were noticed in
the 𝜇XRD pattern, which were attributed to an SiO2 native oxide over-
layer, very likely to be a priori expected in the RFMS-𝑎-Si films [16].
Three possible candidate crystalline structures were those of the quartz,
tridymite, and cristobalite, respectively. It should be mentioned that
Morita et al. [33] reported the appearance of crystalline SiO2, up to
2 nm thick, also detected by XRD measurements, at the interfaces, and
formed by thermal oxidation.

3. The single-effective-oscillator model

Even though the refractive-index dispersion of amorphous semi-
conductors can be accurately described in the sub-band-gap region by
the two- or three-term Cauchy equations, it is difficult to assign a
physical interpretation to these simple expressions. Hence, we take into
consideration another expression, which can be correlated to physical
parameters, in a much more straightforward fashion. So, the real part
of the electronic dielectric function in most covalent and ionic, both
ordered and disordered solids can be written as follows,

𝜀1(𝜔) = 1 + 𝑒2

𝜋2𝑚

∑

𝑖,𝑗

′

∫BZ
𝑑3𝑘

𝑓 𝛼
𝑖𝑗 (𝐤)

𝜔2
𝑖𝑗 (𝐤) − 𝜔2

, (1)

where 𝑒 and 𝑚 are the electron charge and mass, respectively. On the
other hand, the sum extends over all the energy bands 𝑖 and 𝑗, such that
it is verified that 𝑖 ≠ 𝑗, and extends over the whole volume of the (first)
Brillouin zone (BZ, a unit cell of the reciprocal or 𝐤-space). For each
electronic transition between two energy bands 𝑖 and 𝑗, respectively,
the corresponding oscillator strength for a specific polarization of the
electric field of light of a particular direction 𝛼 is expressed by 𝑓 𝛼 (𝐤). In
𝑖𝑗
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order to simplify Eq. (1) to convenient macroscopic optical parameters
that can be instead experimentally measured, it should be stressed that
isotropic two-band models, despite their great simplicity, have been
found to be an excellent approximation, in many cases [8,34,35]. Thus,
the isotropic models must be particularly suitable for non-crystalline
materials as a result of their lack of long-range structural order. By
using the Wemple–DiDomenico’s highly-simplified dispersion model,
which reduces the complex valence- and conduction-band system of
a real semiconductor to just a two-energy-level system, it can be
demonstrated that the previous expression of 𝜀1(𝐸), Eq. (1), can be
finally reduced to an approximate, single-effective-oscillator formula,
accounting for the dielectric response for the sub-band-gap electronic
transitions:

𝜀1(𝐸) = 𝑛2(𝐸) = 1 + (𝑛2(0) − 1)
𝐸2
M,WD

𝐸2
M,WD − 𝐸2

. (2)

Here 𝑛(𝐸) is the expression of the refractive index as a function of the
hoton energy, and 𝑛(0) is the value of the refractive index extrapolated
o zero energy (infinite wavelength), i.e., the static refractive index.
he physical quantity 𝐸M,WD is the average energy-gap parameter,
hich corresponds in this particular optical-dispersion model to the
nergy difference between the assumed two energy levels of the single-
scillator system (Fig. 3(a)). In fact, it has to be added that it is
hysically clear that the parameter 𝐸M,WD does not correspond to an
ctual energy-band gap, being instead similar to the energy parameter
the so-called ‘Penn gap’), used by Penn [36] for the determination of
he static refractive index, 𝑛(0), in semiconductors. It is clear that this
arameter 𝐸M,WD is a kind of measure of the energy difference between
he ‘centers of mass’ of the valence (bonding) and conduction (anti-
onding) bands. The derivation of the two optical parameters 𝑛(0) and
M,WD from first principles, by using Eq. (1), is most certainly exces-

ively ambitious in the case of a disordered solid, where little is known
n the transition probabilities of both localized as well as extended
nergy-band states. It must also be pointed out that the experimental
pectral dependence of the refractive index, 𝑛(𝐸), can deviate from
hat expressed by Eq. (2), when the photon energy gets close to the
alue of the actual optical gap, 𝐸opt . The single-oscillator model then is
ot obeyed, and the existence of a non-zero bandwidth gives place to
ignificant discrepancies, as a result of the denominator term in Eq. (2);
t can be anticipated a change in the spectral dependence 𝑛(𝐸) quicker
han that exhibited by Eq. (2), which is certainly what has often been
xperimentally measured [34]. However, this experimental spectral
ependence 𝑛(𝐸) has been found to be more gradual and smooth in the
ase of the hydrogenless 𝑎-Si material under study. In spite of that, we
ill be able to present below valuable information on the real width of

he valence and conduction energy bands of this unhydrogenated 𝑎-Si.
For values of the photon energy, much smaller than the value of

he optical gap, 𝐸opt , Eq. (2) gave rise to an excellent experimental fit
o previously-determined values of the refractive index, by the authors
f this paper, of hydrogen-free 𝑎-Si [23], by using a direct dispersion-
odel-free approach. On the other hand, the average gap, 𝐸M,WD,

ffers relevant quantitative information on the overall electronic-band
tructure of the amorphous material, certainly quite different from that
y the optical gap, 𝐸opt , which only probes the optical properties in
he proximity of the energy-band edges of the semiconductor. Partic-
larly, the localized electron states near the valence and conduction
nergy bands (the so-called ‘tail electronic states’), can have a notable
nfluence on the optical absorption of the material, and therefore
emarkably decrease the value of 𝐸opt , while, on the contrary, they can
nfluence the normal dispersion of the refractive index of the sub-band-
ap light, in a small fashion. Thus, they could enlarge the so-called
Urbach–Martienssen’s tails’, or more simply, ‘Urbach tail’ [19,20], but
ould not significantly modify the value of the average energy gap,
M,WD.

It has to be indicated that in our method of analysis, contrariously
4

o what is done by Solomon [10], we shall also interpret, in terms of t
he porosity, the calculated value of the static refractive index, 𝑛(0),
which has been determined, as said before, by employing our relatively
simple semi-empirical arguments. This optical parameter 𝑛(0) had been
onsidered, in this context, only an experimentally-determined free pa-
ameter that will be found by computationally fitting the as-measured
ormal-incidence transmission spectrum of the specimen by using to
hat end the Nelder–Mead numerical method (also called the downhill
implex method). The computed value of 𝑛(0) was also experimentally
ross-checked by making use of a far-infrared spectrometer.

. Determination of optical properties of amorphous semiconduc-
or films

.1. Calculations of 𝑑, 𝛥𝑑, 𝑛(0), 𝐸M,WD, 𝛼0, and 𝐸U by fitting of the
niversal transmission formula to the as-measured spectrum

The optical transmission expression, 𝑇𝛥𝑑 (𝜆), used in this work, is a
ew equation, which has been recently reported by the authors of the
resent paper [5,25]. These universal formulae of the normal-incidence
ransmittance for a real, highly-non-uniform (strongly-wedge-shaped)
hin weakly-absorbing film, onto a thick transparent substrate, is as
ollows:

𝛥𝑑 (𝜆; 𝑛(𝜆), 𝑘(𝜆), 𝑠(𝜆), 𝑑, 𝛥𝑑) =

𝐴
[(

arctan
(𝐶
𝐷

)

+𝑁c,2𝜋
)

−
(

arctan
(𝐵
𝐷

)

+𝑁c,1𝜋
)]

𝐷(𝜑2 − 𝜑1)
𝑥average, (3)

here

𝐴 = 32(𝑛2 + 𝑘2)𝑠,

𝐵 = 𝑥average(𝐹 + 𝐸(𝐺 +𝐻𝑥average)) tan(𝜑1∕2),

𝐶 = 𝑥average(𝐹 + 𝐸(𝐺 +𝐻𝑥average)) tan(𝜑2∕2),

𝐷 =
√

𝐸2 − 𝑥2average(𝐹 2 + 𝐺2 − 2𝐸𝐻 −𝐻2𝑥2average),

𝐸 =
(

(𝑛 + 1)2 + 𝑘2
) (

(𝑛 + 1)(𝑛 + 𝑠2) + 𝑘2
)

,

𝐹 = 2𝑘
(

2(𝑛2 + 𝑘2 − 𝑠2) + (𝑛2 + 𝑘2 − 1)(𝑠2 + 1)
)

,

𝐺 = 2
(

(𝑛2 + 𝑘2 − 1)(𝑛2 + 𝑘2 − 𝑠2) − 2𝑘2(𝑠2 + 1)
)

×
(

(𝑛 − 1)(𝑛 − 𝑠2) + 𝑘2
)

,

𝐻 = (𝑛 − 1)2 + 𝑘2,

𝜑1 = 4𝜋𝑛(𝑑 − 𝛥𝑑)∕𝜆,

𝜑2 = 4𝜋𝑛(𝑑 + 𝛥𝑑)∕𝜆,

𝛼 = 4𝜋𝑘∕𝜆,

average = exp(−𝛼𝑑),

nd where lastly the two introduced correcting integers, 𝑁c,1 and 𝑁c,2,
espectively, are given by the respective two expressions:

c,1 = round(𝜑1∕2𝜋),

nd

c,2 = round(𝜑2∕2𝜋).

The newly-defined function, ‘round’, does round off its correspond-
ng arguments to its closest integer values. The novel general expression
f the transmission, Eq. (3), is, importantly, a continuous function that
an be used in order to perform the complete optical characterization
f a wide variety of thin-film non-crystalline semiconductors, with high
ccuracy. Furthermore, the so-far existing limiting maximum value of
he non-uniformity parameter, 𝛥𝑑max = 𝜆∕4𝑛 [5], when rigorously
rying to determine the optical constants of strongly-wedge-shaped
ilms, has been now successfully suppressed, with the introduction of
he previous two angle parameters, 𝑁c,1 and 𝑁c,2, respectively, in the
niversal formulae for the normal-incidence transmittance, Eq. (3).

In our analysis of the experimental transmission spectrum, we do

ake into consideration the existence of the exponential Urbach spectral
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Fig. 2. (a) Experimental (red line) and best-WD-model-fit (blue line) normal-incidence transmission spectra of the 𝑎-Si specimen #1. Measured (red line) transmission spectrum of
the glass substrate alone is compared with the two former spectra. Very importantly, the value of the so-called connection energy, 𝐸c of 1.75 eV, which defines the transition from
Urbach to Tauc-Lorentz functionalities [25] is indicated (the very small green area represents the Tauc region). (b) The excellent comparison between the simulated and measured
transmission spectra in only the sub-band-gap region is clearly illustrated in this figure. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
region, where the absorption is not negligible, on the contrary, to
what was assumed in Ref. [10]. The transmittance is as aforemen-
tioned a function of 𝑑, 𝛥𝑑, 𝑛(𝜆) and 𝛼(𝜆) (we have initially determined
the corresponding values of the refractive index of the transparent
glass substrate, 𝑠(𝜆), onto which the sputtered 𝑎-Si film was grown,
from previous transmission measurements of such a bare substrate).
If the expression of the normal dispersion of the refractive index
given by Eq. (2) is adopted, then the theoretical transmission equation
employed will finally depend upon six free parameters: 𝑑, 𝛥𝑑, 𝑛(0),
𝐸M,WD, 𝛼0 and 𝐸U. We will next determine those six free parameters
by direct computer fitting of the previous expression for 𝑇𝛥𝑑 (𝜆) to
the as-measured transmittance spectrum by using the devised com-
puter program ’AdjusTransIS toolbox’, based on the Matlab (R2022a)
software package.

This procedure, named inverse synthesis, an alternative to the use of
the FP interference fringes, following the Swanepoel envelope method,
has the important advantage of being able to be applied to very thin
layers, with their corresponding average thicknesses lower than around
100 nm. In these circumstances, the number of oscillations is unfor-
tunately quite small or nonexistent. Moreover, special care has to be
taken when employing this reverse-engineering approach, considering
that this method is based upon the magnitude of the transmission,
𝑇𝛥𝑑 (𝜆), instead of the wavelength positions, 𝜆tan’s, of the corresponding
extrema of the FP interference pattern, and it is therefore relevant
that the transmittance measurement is both precise and accurate. With
a standardized state-of-art double-beam spectrophotometer, and af-
ter the necessary thermal stabilization period, the overall transmis-
sion measurement error is diminished down to a value of less than
approximately 1 × 10−4.

In order to illustrate the application of this model-fitting procedure,
it has been in depth analyzed a layer of non-hydrogenated 𝑎-Si, in
this case with many FP oscillations in the whole spectral range, with
𝜆 ≳ 700 nm (Fig. 2(a)). It must be emphasized that there is practically
non-negligible weak absorption in the complete wavelength range shown
in Fig. 2. This existing absorption is the universal observed character-
istic feature of the optical-absorption spectra close to the band edges
observed in both crystalline and amorphous semiconductors, and as
already mentioned, is the Urbach–Martienssen exponential absorption
edge. The absorption coefficient, 𝛼, for optically-induced electronic
transitions from the valence- up to the conduction-band tails, obeys
the well-known rule: 𝛼(𝐸) = 𝛼0 exp(𝐸∕𝐸U), where 𝛼0 is a constant and
𝐸U is the Urbach energy. The introduction of this Urbach relationship
in the dispersion-model fit is a novelty of our approach, as compared
with some others reported works. The values of 𝑛(0), 𝐸 , and 𝐸 ,
5

M,WD U
computed from our model fit, and all of them listed in Table 1, are
in excellent agreement with those calculated from only extrema of
the interference pattern by using the Swanepoel model-free graphical
method [2]. Very interestingly, the value of energy parameter, the so-
called connection energy, 𝐸c, of 1.75 eV (𝜆c = 708 nm), in the case of
specimen #1, which marks the transition from the Urbach tail to the
Tauc-Lorentz functionalities [25], is shown in Fig. 2(a). The introduced
small green area corresponds to exclusively the Tauc spectral region,
while the light blue one refers to those values of the photon energy
within the specific range, 𝐸opt < 𝐸 < 𝐸c. This very fact explains the a
priori rather unexpected success of the proposed combination of the
sub-band-gap Wemple–DiDomenico model, plus the Urbach rule, for
taking into account the non-negligible absorption in the sputtered a-Si
material. This is certainly true when calculating the optical properties
of the present unhydrogenated a-Si, in the whole measurement spectral
range from a vacuum wavelength of around 700 nm, in the particular
case of specimen #1 displayed in Fig. 2(a).

4.2. AdjusTransIS Toolbox: Matlab-coded program for the optical charac-
terization of non-crystalline semiconductor layers

The Matlab computer program called ’AdjustTransIS Toolbox’, de-
veloped in order to carry out the accurate optical characterization
of both parallel-faced and wedge-shaped amorphous semiconductor
thin films, falls, as above-mentioned, into the category of reverse or
inverse-synthesis approach. The simplified flowchart of its algorithm
was already reported in [5], and it has to be also indicated that
the AdjusTransIS toolbox is fully configurable by employing MS-Excel
files. This toolbox allows fast fitting a model-generated transmission
spectrum to the experimental data corresponding to a semiconducting
film, by adjusting to that end up to a maximum possible number of nine
free parameters. Up to seven of them belong to the adopted dispersion
mode, plus two geometrical parameters, namely, the average layer
thickness and, very significantly, the homogeneity parameter, 𝑑 and 𝛥𝑑,
respectively.

The main idea behind ‘AdjustTransIS Toolbox’, in order to be able
to compute all the model parameters, is to find the whole set of values
minimizing the following figure-of-merit (FoM) function:

FoM(𝑇 ) = 100 × RMSE = 100

√

√

√

√

√

√

√

𝑁
∑

𝑖=1

(

𝑇𝑖,meas − 𝑇𝑖,simu
)2

𝑁exp
, (4)

where 𝑁exp denotes the total number of experimentally-measured data
points, 𝑇 , stands for each as-measured transmission value, and,
𝑖,meas
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Table 1
Values of the WD single-effective-oscillator model parameters, 𝑛(0) and 𝐸M,WD, respectively, for three 𝑎-Si thin films, sputtered with increased
Ar-gas pressure (𝑝Ar) . The geometrical parameters 𝑑 and Δ𝑑 are the average layer thickness and the wedging parameter, respectively. 𝐸U is
the Urbach energy, and FoM is the obtained value of the figure of merit corresponding to each 𝑎-Si specimen.
𝑎-Si specimen ID 𝑝Ar 𝑛(0) 𝐸M,WD 𝐸U 𝑑 (or 𝑑) Δ𝑑 𝑑SEM FoM

(Pa) (eV) (meV) (nm) (nm) (nm)

#1 4.4 3.10 3.28 241 1121 0 1130 0.599
#2 3.2 3.15 3.26 249 769 25 777 0.447
#3 2.4 3.33 3.17 221 1175 0 1167 0.658
device-grade 𝑎-Si:H [10] N.A. 3.38 3.48 N.A. 299 N.A. N.A. N.A.
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𝑇𝑖,simu, for the associated model-generated transmission value, for those
specific measured wavelengths for which the glass substrate used is
reasonably transparent. The adopted FoM function in order to be min-
imized is really a hundred times the root-mean-square error (RMSE),
corresponding to the existing differences between the as-measured and
calculated transmittance data; i.e., the square root of the average of
the squared transmittance differences, or residues. In the created ‘Ad-
justTransIS Toolbox’, the minimizing routine employed, as mentioned
before, was the Nelder–Mead (downhill) simplex algorithm, already
implemented as a particular Matlab function. It ought to be pointed
out that this is a non-linear direct-search method, incorporated into the
software package Matlab (R2022a) by its ‘fmnsearch’ function, and it
was chosen in order to be able to find the minimum of an unconstrained
multivariable function.

5. Influence of the finite width of the energy bands: Refining the
single-oscillator model

We shall next try to determine the influence of the non-zero width
of the energy band when the photon energy, 𝐸, is not very small in
comparison with the optical band gap, 𝐸opt . It has to be noted that
the reasonably anticipated improvement of Eq. (2) will be necessarily
small, but it can be fortunately measured by employing a highly-
sensitive UV–Vis-NIR spectrophotometer. However, the information
found upon the width of the electronic bands of the semiconductor,
𝛥eff , even though very valuable, will only be an estimate, albeit a
quite reasonable one, as it will be shown. We can now carry out
some convenient simplifications that will reduce the complexity of
the obtained mathematical expressions, which would just obscure the
physical consequences of the existing non-zero bandwidth.

Particularly, we can assume square-shaped energy bands, therefore,
having a constant density of states (DOS) from the bottom up to the
top of each energy band. So, the value of the 𝛥eff -parameter that we
estimate by the model fitting shall be called ’effective width’ of the
electronic bands. On the other hand, we consider in this derivation
that the width of the valence (bonding) and conduction (anti-bonding)
energy bands are equal to each other, and that is precisely what actually
happens in our case of H-free 𝑎-Si with just a pure 𝑠𝑝3 Si–Si bonding,
as in unhydrogenated 𝑎-Si [37]. We will finally perform a new approxi-
mation concerning the transition matrix elements between the states of
each energy band. At first, we have to determine the total sum of all the
corresponding dipole–dipole matrix elements, between each particular
energy level of the valence band and each particular energy level of
the conduction band [34]. In addition, within the framework of the 𝑠𝑝3

ight-binding theory [38], the electronic quantum states in the energy
ands are expressed as linear combinations of |𝑠𝑠⟩ and |𝑝𝑠⟩ eigenstates
or eigenfunctions) of the Hamilton operator, ranging from a pure |𝑠𝑠⟩

electron state to a pure |𝑝𝑠⟩ electron state, from the very bottom to
the very top of both the valence and conduction bands, as shown in
Fig. 3(a). An additional rough, but nevertheless suitable simplification,
is added, that is, to only take into account as non-zero matrix elements
those associated with the electronic transitions occurring just between
‘symmetric’ quantum states. Those two particular symmetric quantum
states are the following: one state at an energy distance 𝜉 (upward),
from the very bottom of the conduction band, and the other state at
6

exactly the same energy distance 𝜉 (but downward, in this other case),
from the very top of the valence band.

Regarding all the above-indicated simplifying steps, it should be
pointed out that within the tight-binding model, in order to calculate
the sum of all the transition matrix elements of the dipole–dipole
operator, 𝐷𝐷vc, between the energy levels of the bonding band and
those energy levels belonging to the anti-bonding band, we ought to
label the quantum states conveniently. In the physics-based framework
that is being employed in this work, it is now defined a set of two angle
parameters, 𝜙vs and 𝜙cs, respectively, for labeling the quantum states,
using the bra–ket notation, or Dirac notation:

|𝑣𝑠⟩ = cos𝜙vs|𝑠𝑠⟩ + sin𝜙vs|𝑝𝑠⟩, (5)
|𝑐𝑠⟩ = sin𝜙cs|𝑠𝑠⟩ + cos𝜙cs|𝑝𝑠⟩. (6)

The valence angle variable, 𝜙vs, varies from 0 to 𝜋∕2 radian, from
he bottom up to the top of the valence band (upward direction). And,
n the same manner, the conduction angle variable, 𝜙cs, varies from 0
o 𝜋∕2 radian, from the top down to the bottom (downward direction).
his way of particular labeling of the quantum states satisfies the pure
and pure 𝑝 character of the energy-band edges, as shown in Fig. 3(a).
onsidering next that the transition matrix elements of the dipole–
ipole operator, 𝐷𝐷vc, are non-zero exclusively between |𝑠𝑠⟩ and |𝑝𝑠⟩

states, we obtain that:

|

|

⟨𝑣𝑠|𝐷𝐷vc|𝑐𝑠⟩||
2 = cos2(𝜙vs − 𝜙cs) ||⟨𝑠𝑠|𝐷𝐷vc|𝑝𝑠⟩||

2 . (7)

Thus, a pronounced maximum of the transition matrix elements is
ound for the particular case of 𝜙vs = 𝜙cs, i.e., between those quantum
tates that were previously designated as symmetric states. Finally, we
arry out another very convenient simplification in order to ease the
lgebraic expressions, but without modifying the physics of the present
ystem. If we substitute cos2(𝜙vs −𝜙cs) by 𝛿(𝜙vs −𝜙cs), that is, the Dirac
elta function or, 𝛿 distribution, the existing double sum of all the
ransition matrix elements between the valence and conduction bands,
ow transforms to just a single sum. Thus, we can derive the following
ntegral equation:

2(𝐸) = 1 + (𝑛2(0) − 1) 1
2𝛥eff ∫

𝐸M,Sol+𝛥eff

𝐸M,Sol−𝛥eff

𝜉2

𝜉2 − 𝐸2
d𝜉. (8)

This expression can be interpreted from the physical point of view,
s follows: The electronic dielectric constant of a two-energy-level
ystem, with Eq. (2) as its characteristic equation, is now substituted
y the average of all the single-oscillator-system values for each pair of
he symmetrical quantum states of the valence and conduction bands,
s has been previously expressed in Eq. (2). Since it can be written
𝐸M,Sol+𝛥eff

𝐸M,Sol−𝛥eff

𝜉2

𝜉2 − 𝐸2
d𝜉 = 𝜉 − 𝐸 tanh−1

𝜉
𝐸

|

|

|

|

|

𝐸M,Sol+𝛥eff

𝐸M,Sol−𝛥eff

= 𝜉 − 𝐸 1
2
ln

𝐸 − 𝜉
𝐸 + 𝜉

|

|

|

|

|

𝐸M,Sol+𝛥eff

𝐸M,Sol−𝛥eff

, (9)

the integration of Eq. (8) results in the following relationship:

𝑛2(𝐸) = 1 + 𝜒(𝐸) =

1 + (𝑛2(0) − 1)

[

1 + 𝐸
4𝛥

ln

(

𝐸2
M,Sol − (𝛥eff − 𝐸)2

2 2

)]

, (10)

eff 𝐸M,Sol − (𝛥eff + 𝐸)



Journal of Non-Crystalline Solids 594 (2022) 121803M. Ballester et al.
Fig. 3. (a) Schematic diagram of the energy-band structure of 𝑎-Si. This conveniently simplified picture is fully described by only three energy parameters: the Tauc optical
gap, 𝐸opt, the Solomon average gap, 𝐸M,Sol, and the corresponding effective bandwidth, 𝛥eff. As pointed out in the text, the bottom and top of each electronic band are 𝑠 type
and 𝑝 type, respectively, due to the 𝑠𝑝3 nature of the existing Si–Si chemical bonds. (b) Si K𝛽 emission and Si K photoabsorption from 𝑎-Si material [39]. (c) The valence- and
conduction-energy-band density-of-states of 𝑎-Si as determined in [26,40]. The energy intervals corresponding to the Campi and Coriasso model parameters, this is, the splitting of
5.96 eV, the valence bandwidth of the 6.84 eV, and the calculated value of 𝐸opt of 1.30 eV, have been explicitly shown.
where 𝜒(𝐸) is the linear susceptibility. In order to be able to contrast
this new equation with Eq. (2), we next consider that

𝜒(0)
𝜒(𝐸)

=
𝑛2(0) − 1
𝑛2(𝐸) − 1

= 1

1 + 𝐸
4𝛥eff

ln

(

𝐸2
M,Sol − (𝛥eff − 𝐸)2

𝐸2
M,Sol − (𝛥eff + 𝐸)2

)
, (11)

and use the Taylor expansion,

𝜒(0)
𝜒(𝐸)

= 1 −
(

𝐸
𝐸corr

)2
− 𝛽

(

𝐸
𝐸corr

)4
− 𝛾

(

𝐸
𝐸corr

)6
−… , (12)

where

𝐸2
corr = 𝐸2

M,Sol − 𝛥2
eff ,

𝛽 = 4
3

𝛥2
eff

𝐸2
corr

and

𝛾 =
4𝛥2

eff

3𝐸2
corr

(

5𝐸2
corr + 12𝛥2

eff

5𝐸2
corr

)

= 𝛽
(

1 + 9
5
𝛽
)

.

So that, truncating beyond the fourth-order term, we obtain

𝑛2(𝐸)=1 + (𝑛2(0) − 1) 1
1 − (𝐸∕𝐸corr )2 − 𝛽(𝐸∕𝐸corr )4

. (13)

We can easily confirm that Eq. (13) is fully consistent with the
single-effective-oscillator formula, Eq. (2), when the effective band-
width, 𝛥eff , equals zero, since they both, as it should be expected,
totally coincide. And it is also deduced that 𝐸 ≡ 𝐸 , and hence it
7

corr M,WD
is derived the following interrelationship between the Solomon average
gap, 𝐸M,Sol, and the Wemple–DiDomenico average gap, 𝐸M,WD:

𝐸2
M,Sol = 𝐸2

M,WD + 𝛥2
eff , (14)

or equivalently expressed,

𝐸M,Sol = 𝐸M,WD ⊕ 𝛥eff , (15)

where ⊕ denotes the Pythagorean addition, also named addition in
quadrature.

It has to be stressed that the previous Solomon normal-dispersion
model for the refractive index is only valid for the photon-energy
range where it is verified that 𝐸 < 𝐸opt , as it should be. In order
to unambiguously demonstrate that, we now substitute the previous
relationship 𝐸M,Sol = 𝐸opt +𝛥eff (see Fig. 3(a)), into Eq. (10). Moreover,
we then get an alternative expression of the 𝑛(𝐸)-dependence in a
convenient and clarifying form:

𝑛2(𝐸) = 1 + (𝑛2(0) − 1) ×
[

1+ 𝐸
4(𝐸M,Sol−𝐸opt )

ln
[2𝐸M,Sol−(𝐸opt+𝐸)](𝐸opt + 𝐸)
[2𝐸M,Sol−(𝐸opt−𝐸)](𝐸opt − 𝐸)

]

, (16)

where the revealing appearance in the denominator of the logarithmic
term of the difference between the band-gap energy and the photon
energy, 𝐸opt − 𝐸, necessarily obligates to be considered only the sub-
band-gap spectral region, where 𝐸 < 𝐸opt when applying the Solomon
approach, which is, as said before, an exclusively normal-dispersion
model.

If we perform a seven-parameter fit to Eq. (16), we would, in
theory, be able to compute the values of the three free geometrical and
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Table 2
Optical properties, together with the void volume fractions of the three 𝑎-Si specimens under study. The parameter 𝑛(0) is the Solomon static
refractive index, 𝐸M,Sol and Δeff are the Solomon energy-band parameters, 𝐸opt is the Tauc gap, 𝐸U is the Urbach energy, 𝑑 is the average film
thickness, Δ𝑑 is the thickness variation, FoM is the value of the figure of merit, and 𝑓Bru

void and 𝑓MG
void are the void volume fractions, calculated

based upon the BEMA and MG approaches, respectively.
𝑎-Si specimen ID 𝑛(0) 𝐸M,Sol 𝐸opt Δeff 𝐸U 𝑑 (or 𝑑) Δ𝑑 FoM 𝑓Bru

void 𝑓MG
void

(eV) (meV) (eV) (meV) (nm) (nm)

#1 3.11 5.57 1.37 4.20 243 1123 0 0.673 0.22 0.24
#2 3.16 5.41 1.38 4.03 258 769 25 0.455 0.21 0.22
#3 3.34 5.37 1.32 4.05 230 1174 0 0.849 0.14 0.15
device-grade 𝑎-Si:H [10] 3.44 4.66 1.90 2.75 N.A. 299 N.A. N.A. N.A. N.A.
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optical parameters 𝑑, 𝛥𝑑 and 𝑛(0), and those two corresponding to the
energy-band parameters, 𝐸M,Sol and 𝛥eff , respectively. We would also
get the values of the two additional absorption parameters belonging
o the Urbach absorption tail, 𝛼0 and 𝐸𝑈 , respectively. However the
eality is that only five of the obtained values of free parameters, 𝑑,
𝑑, 𝑛(0), 𝛼0, and 𝐸𝑈 , respectively, are physically reasonable. In fact,
hey are almost coincident with the values of these five parameters

previously obtained with the fit corresponding to the other particular
combination of the WD model for 𝑛(𝐸), and the Urbach rule for 𝛼(𝐸).
However, the fitted values of the 𝐸M,Sol and 𝛥eff are both unrealistic
and unphysical ones, the computed bandwidth being very small, close
to zero, and even in some cases being unphysical negative values. This
is in sharp contradiction with what has been reported by Solomon [10]
when determining the electronic-band structure of his case study of
the device-grade 𝑎-Si:H material, as well as a series of 𝑎-Si1−𝑥C𝑥∶ H
alloys. It should be additionally indicated that he did not take into
account in his model fit the existing below-band-gap weak absorption,
associated to the mentioned Urbach–Martienssen tails, and he simply
considered the material to be absolutely transparent, with the very
rough assumption of 𝛼 = 𝑘 = 0.

5.1. Using the independent tauc band-gap determination based upon the
absorption-coefficient data

We do propose a new and necessary step, which consists in modify-
ing the previous fit to a six free parameter fit, as explained below, of-
fering physically-reasonable highly-accurate results. Additionally, from
Fig. 3(a), it can be recalled that the three band parameters 𝐸opt , 𝐸M,Sol
and 𝛥eff , respectively, are correlated by the equation 𝐸M,Sol = 𝐸opt+𝛥eff .
As the Tauc optical bandgap, 𝐸opt , can be independently calculated
from the absorption coefficient, 𝛼, of above-band-gap light, 𝐸M,Sol and
eff (or the two intermediate parameters 𝐸corr and 𝛽 from Eq. (12)),
an be instead interpreted just as a single free fitting parameter. By
q. (16), and introducing in it the relationship 𝛥eff = 𝐸M,Sol −𝐸opt , the
itting is finally modified to the aforementioned six-parameter fitting.

Concerning the determination of the optical gap, it should be said
hat some authors avoid the use of the Tauc plot, which requires an,
p to a point, rather ill-defined extrapolation, the Tauc extrapolation,
ubject sometimes to relatively large statistical errors. And instead,
valuate the energy, 𝐸04, at which the absorption coefficient equals the
alue of 𝛼 of 104 cm−1. This energy is about 0.15 eV higher than the
ctual Tauc gap, 𝐸opt , for 𝑎-Si. We have, in fact, confirmed in our work
his particular difference between the two gap parameters 𝐸04 and 𝐸opt ,
espectively. And they generally state that this energy difference is truly
nsignificant for the discussion of the experimental results. However,
n our present approach, we have made use of the well-known Tauc
xtrapolation, as the majority of the researchers in the field. Let us
ow recall the Tauc expression for the fundamental absorption edge.
ccording to Tauc et al. [41,42], for 𝛼 ≳ 104 cm−1 (the Tauc’s region),

t is obeyed that:

𝛼𝐸 = 𝐶Tauc(𝐸 − 𝐸opt ). (17)

his is the Tauc law, employed in order to calculate the Tauc optical
ap, 𝐸opt , and the Tauc slope, 𝐶Tauc, from the previously-determined
alues of 𝛼. See all details in Fig. 4.
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.2. Obtaining the optical constants by using the novel Solomon–Urbach
pproach

We have made use of the proposed optical characterization method
ased upon the Solomon–Urbach model by initially fixing for it the
ndependently-determined value of the Tauc gap 𝐸opt , belonging to
he hydrogen-free 𝑎-Si specimens #1 and #2 of 1.37 eV and 1.38 eV,
espectively. The values of the six fitting parameters 𝑑, 𝛥𝑑, 𝑛(0), 𝐸M,Sol
or equivalently 𝛥eff ), 𝛼0 and 𝐸U, respectively, are next computed, and
resented in Fig. 5 and Table 2, together with their respective low
alues of the figure of merit, FoM, of 0.673 and 0.849. See the two
atlab GUIs corresponding to the two 𝑎-Si specimens #1 (a), and #3

b), respectively, displayed in Fig. 5. We thus confirm the consistency
nd accuracy of the novel procedure based upon the devised Solomon–
rbach model. It has to be also mentioned that the values of some
P-interference order numbers are shown in Fig. 5, in order to enrich
he present analysis of the transmission curves.

Continuing with the discussion of the optical properties, in particu-
ar the complex refractive index, 𝒏 = 𝑛−i𝑘, of 𝑎-Si layers, it is observed
n Fig. 6 that in the range of low photon energy, 𝑛 is an increasing
unction of the photon energy (i.e., 𝑑𝑛∕𝑑𝐸 > 0). The optical dispersion
s then called normal dispersion. For values of photon energy larger
han approximately 𝐸opt, the refractive index starts increasing in a
lower fashion, instead, with increasing photon energy (i.e., 𝑑2𝑛∕𝑑𝐸2 <
). And eventually the values of 𝑛 commence decreasing (i.e., 𝑑𝑛∕𝑑𝐸 <
), which is then the so-called the regime of ‘anomalous’ dispersion,
hich is certainly not seen the present case. It must be noted that from

he Kramers–Kronig bidirectional mathematical relations, the refractive
ndex has to be necessarily correlated to the existing optical absorptions
f the 𝑎-Si films under study, clearly shown by the observed behavior
f the extinction coefficient, 𝑘 (see Fig. 6).

. Alternate calculation of the refractive index and film thickness
y Swanepoel model-free graphical method

According to the Swanepoel model-free envelope method [2], based
pon the approach devised initially by Manifacier et al. [1], of con-
tructing the two continuous envelope functions around the FP inter-
erence maxima and minima, a first (crude) value of the refractive index
f the layer, 𝑛1, in the spectral regions of weak and medium absorption,
s calculated by the following expression:

1(𝜆) =

√

𝑇 (𝜆) +
√

𝑇 2(𝜆) − 𝑠2(𝜆), (18)

where

𝑇 (𝜆) = 2𝑠(𝜆)
𝑇+(𝜆) − 𝑇−(𝜆)
𝑇+(𝜆)𝑇−(𝜆)

+
𝑠2(𝜆) + 1

2
.

Here 𝑇+ and 𝑇− are really the upper and lower tangent envelopes of
the normal-incidence transmission spectrum, respectively, rather than
the envelopes of the peaks and valleys of the transmittance curve.
Moreover, the values of the refractive index, 𝑠(𝜆), of the transparent
glass substrate, have been determined from the transmission spectrum
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Fig. 4. The Tauc optical band gap determined by the Tauc plot. We show the Tauc linear extrapolations for the non-hydrogenated 𝑎-Si data, belonging to the 𝑎-Si specimens #1
(a) and #2 (b), respectively. The extrapolated Tauc gaps are conveniently marked with arrows. (Adapted from [25] by E. Marquez et al.).
Fig. 5. Transmission spectrum for 𝑎-Si specimen #1 (a), and also that for 𝑎-Si specimen #3 (b). Matlab graphical-user-interface (GUI, or main window) screen for the accurate
optical characterization of wedge-shaped thin layers of amorphous semiconductor materials, belonging to the devised Matlab-coded computer program, ‘AdjusTransIS Toolbox’.
Appropriate checkboxes and radio buttons are used in this GUI for the quick and accurate transmission-data analysis carried out in the present work, based in this particular case
upon the proposed Solomon–Urbach dispersion model. Moreover, the values of some FP-interference order number are indicated in the figure. The very low computed values of
FoM are also inserted into the figure, for the two specimens #1 and #3, respectively.
Fig. 6. Plots of the refractive index, 𝑛, and extinction coefficient, 𝑘, belonging to the 𝑎-Si specimen #1 (a), and the 𝑎-Si specimen #3 (b). Best fit associated to the transmission
data corresponding to the investigated 𝑎-Si thin films, using the newly proposed Solomon–Urbach normal-dispersion model. Also shown in the figure, the values of 𝑛 directly
determined by the model-free graphical envelope method suggested by Swanepoel.
of the uncoated glass substrate, 𝑇s, by employing the well-known
formula for a thick slab:

𝑠(𝜆) = 1
𝑇s(𝜆)

+

√

1
𝑇 2

s (𝜆)
− 1. (19)

On the other hand, it is taken into account the basic spectrophotometric
equation associated to the FP-interference pattern:

2𝑛(𝜆 )𝑑 = 𝑚𝜆 , (20)
9

tan tan
where the interference order number, 𝑚, is an integer for the top
tangent points and half-integer for the bottom tangent points. By using
the ‘Swanepoel graphical method’ [2], based upon Eq. (20). which can
be appropriately re-written to that end, as follows,

𝓁
2
= 2𝑑

𝑛(𝜆tan)
𝜆tan

− 𝑚1, (21)

where 𝓁 = 0, 1, 2,… , and 𝑚1 is the first interference order, the exact val-
ues of 𝑚 and also the highly-accurate value of 𝑑 have been determined.
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Fig. 7. Plots of 𝑙∕2 versus 𝑛∕𝜆 (Swanepoel model-free graphical envelope method), in order to determine the layer thickness, 𝑑graph, and the first exact FP-interference order
number, 𝑚1,exact, for the 𝑎-Si specimen #1 (a) and #3 (b). The cross-sectional SEM micrographs for both samples are also shown in this figure, as insets. The two directly-measured
values of film thickness, 𝑑SEM, are marked in the insets.
So, by plotting 𝓁∕2 vs. 𝑛(𝜆tan)∕𝜆tan yields a straight line, with slope
2𝑑 and cut-off on the vertical axis, 𝑚1. Fig. 7 displays this particular
graph for the specimens #1 and #3. The final calculated values of 𝑑
are 1123 nm and 1174 nm, respectively, and those of 𝑚1,exact are 3.5 and
4.0, respectively. It has to be emphasized that two linear fit has been
performed.

By the first one, the slope, 2𝑑1, and the non-exact-value of 𝑚1,
𝑚1,non-exact, are reasonably estimated. And by the second one, with the
exact value of 𝑚1 fixed following the nearest-integer or half-integer
value as clearly shown in Fig. 7, the final value of the slope, 2𝑑2, is
then accurately determined (see Table 3).

6.1. On the newly-introduced table associated with the cross-checking
graphical envelope method

Regarding the rest of the content of the tables, let us point out
the following: The corresponding data when choosing from 2 up to 12
points in the linear fitting are listed. The columns 2𝑑1 and 𝑚1,non-exact
are associated to a linear fit in both coefficients (the slope and intercept
form). Then, the lowest integer or half-integer order 𝑚1 is forced to its
exact right position (integer for a maximum and half an integer for
a minimum). The following column readjusts the final, more accurate
value of the slope, 2𝑑2. The last column is the proposed measure for
the error: namely, the ratio RMSE∕𝑁points, in order to get a very con-
veniently normalized value, is used in order to compare the procedures
involving different straight lines in this graphical-method table. The
plots of Fig. 7 are obtained by using the data found with the values
of 𝑁points of 11 and 6, respectively. See all the details in Table 3. The
final, more accurate values for the refractive index, 𝑛2, after applying
the graphical envelope method, and making use of Eq. (20), are also
finally presented in Table 3 and Fig. 6.

7. Void-volume-fraction calculation: Bruggeman and Maxwell-
Garnet effective medium approximations

We can now extract valuable information from the value of the
static refractive index, 𝑛(0), clearly related to the porosity of the layer.
Hence, a calculation of the void volume fraction, 𝑓void, for the 𝑎-Si
thin films under study, by employing the self-consistent Bruggeman
effective medium approximation (BEMA) [43], and the values of the
static refractive index, 𝑛(0), determined by the Solomon–Urbach model
fit, is next performed.

Following this particular BEMA theory, a combination of various
materials can be treated as a homogeneous medium, having an effective
complex dielectric constant, 𝜀eff , that can be found from their indi-
vidual complex dielectric constants, 𝜀𝑖’s, and their associated volume
fractions, 𝑓 ’s, whereas it is verified the condition: ∑ 𝑓 = 1. According
10

𝑖 𝑖 𝑖
to the BEMA approach, for a composite material made up of several 𝑖-
constituent components, the relationship to be obeyed is the following:

∑

𝑖
𝑓𝑖

(

𝜀𝑖 − 𝜀eff
𝜀𝑖 + 2𝜀eff

)

= 0. (22)

By making use of the basic equation between the complex dielectric
constant and the complex refractive index, 𝜀 = 𝒏2, and by taking
into consideration the two existing constituent components of our 𝑎-Si
thin layer, the solid material and the embedded voids (pores), whose
respective volume fractions are, 1 − 𝑓Bru

void (for the dense, or pore- or
void-free unhydrogenated 𝑎-Si), and 𝑓Bru

void (for the air-filled voids or
pores), together with setting 𝑛eff (0) ≡ 𝑛porous(0), we can finally re-write
Eq. (22), as follows,

(

1 − 𝑓Bru
void

)

(

𝑛2dense(0) − 𝑛2porous(0)

𝑛2dense(0) + 2𝑛2porous(0)

)

+ 𝑓Bru
void

(

1 − 𝑛2porous(0)

1 + 2𝑛2porous(0)

)

= 0. (23)

Therefore, by solving for 𝑓void, we reach the final, closed-form expres-
sion:

𝑓Bru
void =

(1 + 2𝑛2porous(0))𝑛
2
dense(0) − 𝑛2porous(0)

3𝑛2porous(0)(𝑛
2
dense(0) − 1)

. (24)

The necessary value of the refractive index in order to calculate the
value of 𝑓Bru

void, i.e., the value of 𝑛(0) for the dense, self-implanted, fully
𝑎-Si, 𝑛dense = 3.697 [44,45], is now introduced in the above formula, for
𝑓Bru
void, Eq. (24). On the other hand, the value of the refractive index of

air, 𝑛air = 1, was previously inserted in Eq. (23). The obtained values
of the BEMA-based void volume fraction, 𝑓Bru

void, are listed in Table 2.
There is another very popular mixture rule for dispersed dielec-

tric spheres, such as the case of the air pores present in our non-
hydrogenated 𝑎-Si specimens, and embedded in a continuous dielectric
matrix, that works certainly very well for volume fractions up to a
specific value of about 20%, as it has also been corroborated in this
investigation, called the Maxwell-Garnet formula [43]:

𝑛2porous(0) − 𝑛2dense(0)

𝑛2porous(0) + 2𝑛2dense(0)
= 𝑓MG

void

(

1 − 𝑛2dense(0)

1 + 2𝑛2dense(0)

)

. (25)

Then, by solving for the void volume fraction, 𝑓MG
void, we get:

𝑓MG
void =

(

𝑛2porous(0) − 𝑛2dense(0)

1 − 𝑛2dense(0)

)(

1 + 2𝑛2dense(0)

𝑛2porous(0) + 2𝑛2dense(0)

)

. (26)

This Maxwell-Garnet (MG) relationship can accurately predict the ef-
fective dielectric constant of the H-free fully 𝑎-Si material that have,
nevertheless, dispersed pores. Therefore, as proved in this work, the MG
formula is particularly useful for the calculation of the value of porosity
of the investigated 𝑎-Si films. The calculated values of the parameter
𝑓MG are also listed in Table 2.
void
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Table 3
Swanepoel optical-characterization graphical method for the two representative 𝑎-Si specimens #1 and #3, respectively. Values of the optical
and geometrical parameters 𝜆tan, 𝑇+, 𝑇−, 𝑠, 𝑛1, 𝑁points, 2𝑑1, 𝑚1,non-exact, 2𝑑2, 𝑚1,exact, RMSE∕𝑁points, 𝑚exact and 𝑛2, obtained from their respective
normal-incident transmission spectra, by using the model-free (direct) graphical envelope method. The meaning of all the symbols indicated
are described in the text.
𝜆tan 𝑇+ 𝑇− 𝑠 𝑛1 𝑁points 2𝑑1 𝑚1,non-exact 2𝑑2 𝑚1,exact RMSE∕𝑁points 𝑚exact 𝑛2
(nm) (nm) (nm) (×10−7)

𝑎-Si specimen #1 [𝑑2,graph = 1121 nm, 𝑚1,graph = 3.5]

2028 0.8748 0.4395 1.514 3.149 N.A. N.A. N.A. N.A. N.A. N.A. 3.5 3.207
1776 0.8747 0.4342 1.511 3.173 2 2138 3.32 2243 3.5 28.0 4.0 3.210
1588 0.8542 0.4258 1.511 3.190 3 2192 3.41 2243 3.5 16.9 4.5 3.229
1436 0.8192 0.4146 1.523 3.217 4 2188 3.40 2239 3.5 16.0 5.0 3.244
1316 0.7704 0.4000 1.516 3.220 5 2230 3.48 2242 3.5 13.4 5.5 3.270
1216 0.7118 0.3782 1.519 3.259 6 2230 3.48 2241 3.5 10.4 6.0 3.296
1128 0.6463 0.3510 1.521 3.320 7 2189 3.40 2233 3.5 21.8 6.5 3.313
1060 0.5826 0.3237 1.523 3.388 8 2153 3.32 2224 3.5 30.3 7.0 3.353
996 0.5077 0.2940 1.526 3.445 9 2118 3.25 2213 3.5 38.4 7.5 3.375
944 0.4355 0.2714 1.529 3.410 10 2142 3.30 2213 3.5 32.8 8.0 3.412
892 0.3526 0.2428 1.531 3.315 11 2211 3.46 2226 3.5 42.1 8.5 3.426
852 0.2806 0.2051 1.522 3.331 12 2266 3.58 2238 3.5 47.4 9.0 3.465

𝑎-Si specimen #3 [𝑑2,graph = 1173 nm, 𝑚1,graph = 4.0]

1992 0.8865 0.3917 1.511 3.421 N.A. N.A. N.A. N.A. N.A. N.A. 4.0 3.397
1776 0.8729 0.3915 1.511 3.406 2 2494 4.28 2339 4.0 33.4 4.5 3.407
1608 0.8498 0.3840 1.511 3.423 3 2431 4.17 2343 4.0 22.8 5.0 3.428
1472 0.8145 0.3724 1.516 3.456 4 2377 4.07 2343 4.0 14.8 5.5 3.452
1356 0.7681 0.3592 1.513 3.475 5 2358 4.03 2342 4.0 10.6 6.0 3.469
1260 0.7137 0.3444 1.518 3.498 6 2349 4.02 2342 4.0 8.12 6.5 3.492
1180 0.6558 0.3281 1.520 3.519 7 2355 4.03 2343 4.0 7.23 7.0 3.522
1108 0.5954 0.3092 1.521 3.548 8 2349 4.02 2343 4.0 5.97 7.5 3.543
1048 0.5348 0.2899 1.523 3.573 9 2352 4.02 2344 4.0 5.32 8.0 3.574
992 0.4655 0.2665 1.526 3.597 10 2350 4.02 2344 4.0 4.55 8.5 3.595
948 0.4003 0.2416 1.529 3.632 11 2352 4.02 2345 4.0 4.45 9.0 3.638
904 0.3218 0.2096 1.530 3.654 12 2355 4.03 2346 4.0 4.48 9.5 3.661
868 0.2473 0.1781 1.533 3.578 13 2406 4.18 2357 4.0 28.1 10.0 3.701
The range of values of the porosity for the specific RF-magnetron
puttering deposition conditions used in this research, with a particular
ange of Ar-working pressure of around 2.4-4.4 Pa, was approximately

14-22%. The values of porosity found by the two EMAs employed
are very consistent with those values of porosity recently reported by
Karabacak and Demirkan [17,18], as large as around 30%, correspond-
ing, in their case to a measured value of the film mass density of about
1.64 g cm−3.

8. Comparison with the direct band-structure determination: Re-
ported soft X-ray spectroscopy measurements

A comparison and subsequent validation of our obtained value
of the average gap, 𝐸M,Sol, with direct measurements of the energy-
band structure, made by using the soft X-ray spectroscopy (SXS) tech-
nique and reported by Belin and Senemaud [39], is now undertaken.
This specific technique does need ultra-high vacuum equipment and
a specific manner of preparing the specimen. However, in spite of its
intrinsic complexity, it gives the possibility of providing direct infor-
mation regarding the density of states of the material. In particular,
it was reported a value of the peak-to-peak energy, 𝐸pp, associated
with the valence and conduction bands (i.e., the bonding/anti-bonding
splitting), of approximately 5.2 eV (see Fig. 3(b)).

It is obliged to say at this point that a complete quantitative agree-
ment between the values of the energy parameters 𝐸M,Sol and 𝐸pp must
ot be expected because the peak of the density of states in the valence
nd conduction band does not correspond exactly to the weighted
verage used in the determination of the average gap, within the
wo-band model. Instead, this takes into account not only the density
f states, but also the respective matrix elements of the electronic
ransition probabilities.

Nevertheless, the obtained values of the band parameters, 𝐸M,Sol
and 𝐸pp, respectively, in the energy range of 5.0-6.0 eV (see the ob-
tained values in Table 2), are surprisingly close to each other, taking
into consideration the whole set of simplifying steps taken in order to
11
eventually reach Eq. (16). And that closeness found between 𝐸M,Sol and
𝐸pp is clearly much greater than that corresponding to the case of the
WD single-effective-oscillator model, thus justifying the usefulness of
the proposed refractive-index correction.

Furthermore, it has been reported by Campi and Coriasso [40,46],
the calculated values of the bonding/anti-bonding splitting and the
valence bandwidth of 5.96 eV and 6.89 eV, respectively (see Fig. 3(c)).
They have been determined assuming the tight-binding approxima-
tion, and these two calculated values of the two band parameters
are certainly consistent with what was determined by the present
Solomon–Urbach dispersion-model fit.

9. Concluding remarks

We have unambiguously demonstrated that the in-depth analysis of
exclusively the normal-incidence transmission spectrum of the below-
band-gap light permits the reasonably accurate calculation of the main
parameters of the band structure of an amorphous semiconductor film.
We have used to that end a universal transmission formula previously
derived by the authors, which can be applied even to strongly-wedge-
shaped layers. By doing that, we have been able to determine the
average film thickness, 𝑑, and film thickness non-uniformity, 𝛥𝑑, to-
gether with the optical constants, refractive index, 𝑛, and extinction
coefficient, 𝑘, respectively, of the semiconductor material, as a function
of the photon energy, 𝐸. We have also calculated the value of the
pre-exponential factor of the Urbach equation, 𝛼0, and that of the
Urbach-energy parameter, 𝐸U. The novel Solomon–Urbach approach
presented in this work has been very successfully applied to a series
of non-hydrogenated 𝑎-Si specimens, grown by radio-frequency mag-
netron sputtering deposition, onto room-temperature glass substrates,
with slightly different Ar working pressures.

Last but not the least, it must be again emphasized that the afore-
mentioned values of the energy-band parameters, 𝐸M,Sol and 𝐸pp, re-

spectively, are indeed surprisingly near each other, if we consider
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the various assumptions previously introduced in order to finally de-
rive the very convenient, Eq. (16). And this particular expression
of the refractive-index dispersion, 𝑛(𝐸), is the base of our proposed
Solomon–Urbach approach.
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