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A B S T R A C T

This study examines stabilization of a premixed flame by a circular cylinder placed perpendicularly to the
uniform flow of the reacting mixture. It is assumed that the cylinder has a high thermal conductivity leading
to an effectively uniform surface temperature. This temperature is not fixed, but it is determined by a thermal
flame-cylinder balance. The numerical investigation is carried out on the basis of low Mach number Navier–
Stokes equations coupled with the conservation equations for the energy and the fuel mass. Two models for
transport coefficients are compared. The first model assumes they have constant values, and the second takes
into account their change with temperature.

Numerical modeling shows that within the specific range of parameters of this study the system can have
several steady-state solutions corresponding to different cylinder temperatures. Moreover, at least two solutions
are shown to be stable, corresponding to the hottest and coldest cylinder temperatures. The actual occurrence
of one or another regime depends on the initial conditions.
1. Introduction

Combustion in a closed system is accompanied by the interaction
of the flame with the surrounding solid parts, such as a porous plug
used for injecting a flammable mixture or the walls of the device.
An important issue is the interaction with a bluff body placed in the
reactants flow to achieve flame stabilization. Despite the fact that
the systematic studies of this problem can be traced back more than
60 years [1–5] important aspects remain unexplored to this day.

The impact of a bluff body on the combustion field in the sense
of flame stabilization occurs mainly for two reasons. The first one is
the slowing down of the gas velocity in the vicinity of the solid. The
second reason is the enhancement of heat transfer from products to
reactants by heat transfer through the solid bluff body. The predom-
inant configurations for numerical simulations found in literature are
those of solid bodies placed in channels. Most of these investigations
were carried out in the framework of two-dimensional models. The
effect of solid materials on the blow-off limit of a micro-combustor
was investigated in [6]. The influence of the flame holder temperature
on the stabilization of a laminar methane flame by a cylinder was
presented in [7]. Considerable effort has gone into modeling complex
chemical kinetics [8–14] and conjugate heat transfer [12–17]. Flame
stabilization behind the trailing edge of a semi-infinite cylindrical rod
placed coaxially in a circular channel was investigated in [18].
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The flame stabilization by means of a solid square maintained at a
constant temperature in a laminar channel flow was studied in [19].
The problem of flame stabilizing in a uniform flow by means of a
circular cylinder was considered in [20]. In particular, it was found that
when the temperature of the cylinder is not fixed and is determined
by interaction with the flame, then up to five non-trivial steady-state
solutions can be observed at certain parameter values. These multiple
steady-state solutions correspond to a zero value of the net heat flux
between the gas and the surface of the bluff body.

The results presented in [20] were based on a thermo-diffusive
combustion model. The main weakness of this approximation is the
assumption of constant density. In the present study, this physical prob-
lem is investigated taking into account the effect of thermal expansion,
which modifies the gas velocity field around the cylinder. The study
is based on the Navier–Stokes equations coupled with the equations of
conservation of energy and fuel mass.

2. Formulation and numerical treatment

A circular cylinder of radius 𝑅 is placed perpendicularly to an
incoming flow of a combustible mixture at initial temperature 𝑇0,
density 𝜌0 and fuel mass fraction 𝑌0 moving with a uniform velocity 𝑈0
far upstream relative to the cylinder. It is assumed that the flame speed
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of the corresponding planar flame, 𝑆𝐿, is smaller than the velocity
of the mixture, 𝑆𝐿 < 𝑈0. This condition prevents upstream flame
propagation. Within this configuration, the flame can be stabilized only
under the action of the cylinder, which works like a flame holder. In the
present study, the problem statement is limited to a two-dimensional
consideration and all solutions are assumed to be mirror-symmetric
about the 𝑥-axis. Thus, all dependent variables are functions of the
spatial variables 𝑟 and 𝜙, where 𝑥′ = 𝑟′ cos𝜙, 𝑦′ = 𝑟′ sin𝜙 and 0 < 𝜙 <
𝜋. Here the ‘‘𝑥′’’-axis coincides with the direction of initial gas flow
and the ‘‘𝑦′’’-axis is perpendicular to this direction. Primes here and
hereafter mark dimensional quantities if the same notation is used for
dimensional and non-dimensional variables. The subindex ‘‘0’’ indicates
initial fresh stream values.

The combustion process is modeled by a global, one step and irre-
versible reaction of the form 𝐹 +𝑂 → 𝑃 +𝑄, where 𝐹 , 𝑂 and 𝑃 denote
the fuel, the oxidizer and the products, respectively, and 𝑄 is the heat
released per unit mass of fuel. We assume for simplicity that the mixture
is lean in fuel and consider the oxidizer mass fraction as constant. Then,
the reaction proceeds at the rate 𝛺 = 𝜌 ′2𝑌 ′ exp(−∕𝑇 ), where  is
pre-exponential factor containing the oxidizer mass fraction, 𝜌′ is the
mixture density, 𝑌 ′ is the fuel mass fraction,  is the overall activation
energy,  is the universal gas constant and 𝑇 is the temperature. The
same kinetics were used in [20] within the constant density model.
However, it should be noted here that the reaction rate is proportional
to the product of the concentrations of fuel and oxidizer. This is why
the reaction rate is proportional to 𝜌′ 2 despite the fact that the oxidizer
consumption is neglected.

In this work, two well-known models for the reactant gas mixture
transport coefficients are used. In the first model, all coefficients are
assumed to be constant. In the second, more general model, the tem-
perature dependence of the viscosity, 𝜂, the thermal conductivity, 𝜆,
and the fuel diffusivity, , are approximated by a power law of the
form 𝜂∕𝜂0 = 𝜆∕𝜆0 = 𝜌∕𝜌00 = (𝑇 ∕𝑇0)𝜎 . In the present work the heat
capacity, 𝑐𝑝, is assumed to be constant. A typical value for 𝜎 is usually
chosen as 𝜎 = 0.7. This model for the transport properties is similar to
that proposed in [21], where the Prandtl number 𝑃𝑟 = 𝜂𝑐𝑝∕𝜆 and the
Lewis number 𝐿𝑒 = 𝜆∕(𝜌𝑐𝑝) were assumed to have constant values.
Note that the first model is a special case of the second one with 𝜎 = 0.

Dimensionless variables are defined as follows
𝑡 = 𝑡′𝑈0∕𝑅, 𝑥 = 𝑥′∕𝑅, 𝑦 = 𝑦′∕𝑅,
𝐯 = 𝐯′∕𝑈0, 𝜌 = 𝜌′∕𝜌0, 𝑌 = 𝑌 ′∕𝑌0,

𝜃 = (𝑇 − 𝑇0)∕(𝑇𝑎 − 𝑇0) , 𝑝 = 𝑝′∕(𝜌0𝑈2
0 ) ,

(1)

where 𝐯′ = 𝑣′𝜙𝐞𝜙 + 𝑣′𝑟𝐞𝑟 is the velocity vector, 𝑝′ is the manometric
pressure and 𝑇𝑎 = 𝑇0 +𝑄𝑌0∕𝑐𝑝 is the adiabatic flame temperature.

The combustion field is determined by the coupled continuity,
momentum, energy and fuel balance equations. The gas governing
equations and the equation of state take the form

𝜌𝑡 + ∇(𝜌𝐯) = 0, (2)

𝜌𝐯𝑡 + 𝜌(𝐯∇)𝐯 = −∇𝑝 + ∇𝜏∕𝑅𝑒, (3)

𝜌𝜃𝑡 + 𝜌(𝐯∇)𝜃 = [∇(𝜇∇𝜃) + 𝜔]∕𝑅𝑒𝑃𝑟, (4)

𝜌𝑌𝑡 + 𝜌(𝐯∇)𝑌 = [∇(𝜇∇𝑌 )∕𝐿𝑒 − 𝜔]∕𝑅𝑒𝑃𝑟, (5)

𝜌(1 + 𝑞𝜃) = 1, (6)

where 𝜇 = (1 + 𝑞𝜃)𝜎 , with 𝑞 = (𝑇𝑎 − 𝑇0)∕𝑇0 the heat release parameter,
𝜏 = 𝜇[∇𝐯+∇𝑇 𝐯−2𝐈(∇𝐯)∕3] is the dimensionless viscous stress tensor, and
𝑅𝑒 = 𝜌0𝑈0𝑅∕𝜂0 is the Reynolds number. Since typical Mach numbers
in most applications are small compared with unity, we have neglected
the pressure variations in the equation of state. We have also neglected
the viscous dissipation in the energy equation.
2

Fig. 1. The calculated  values determining the heat flux in Eq. (8) plotted as a
function of 𝜃𝑤 for 𝑅𝑒 = 20, 𝜎 = 0 and various 𝑑. The inset shows the interval of 𝜃𝑤 in
which additional roots of the equation  = 0 appear for 𝑑 = 9.

The non-dimensional reaction rate, 𝜔 = 𝛺𝑅∕𝜌0𝑈0, is given by

𝜔 =
𝑑𝛽2(1 + 𝑞)2−𝜎𝜌2𝑌

2𝐿𝑒 𝑢2𝑝
exp

{

𝛽(𝜃 − 1)
(1 + 𝑞𝜃)∕(1 + 𝑞)

}

, (7)

where 𝛽 = (𝑇𝑎 − 𝑇0)∕𝑇 2
𝑎 and 𝑑 = 𝑅2∕𝛿2𝑇 are the Zel’dovich

and Damköhler numbers, respectively. The Damköhler number is the
square of the ratio of the cylinder radius to the thermal width of
a planar flame, 𝛿𝑇 = 𝜆0∕(𝑐𝑝𝜌0𝑆𝐿). This expression for the reaction
rate is obtained when the usual Arrhenius reaction rate is written in
dimensionless form.

The factor 𝑢𝑝 = 𝑆𝐿∕𝑆𝑎𝑠
𝐿 included in Eq. (7) ensures that the non-

dimensional speed of a planar adiabatic flame equals unity for a given
finite 𝛽, where 𝑆𝑎𝑠

𝐿 is the asymptotic value of adiabatic laminar flame
speed calculated at 𝛽 → ∞:

𝑆𝑎𝑠
𝐿 =

√

2(𝜆0∕𝑐𝑝)𝐿𝑒𝛽−2𝜌𝑛−20 (𝑇𝑎∕𝑇0)𝜎−𝑛 × exp(−𝐸∕2𝑇𝑎)

According to Bush and Fendell [22], 𝑢𝑝 = 1 + 𝑎1∕𝛽 + … , as 𝛽 → ∞.
The numerical values of 𝑢𝑝 calculated by a shooting method are given
in [23].

In this work we assume that the thermal conductivity of the solid
material is much higher than that of the gas. The temperature of the
cylinder remains uniform in this limit, being a function of time only. A
formal mathematical discussion of this approximation is given in [20].
Denoting the temperature of the cylinder as 𝜃𝑤, to be determined, and
the local heat flux on the cylinder surface as 𝑞𝐿(𝜙) = 𝜇(𝜃𝑤)𝜕𝜃∕𝜕𝑟|𝑟=1,
the energy balance equation for the cylinder becomes

𝐶
𝑑𝜃𝑤
𝑑𝑡

= , (8)

where  = ∫ 𝜋
0 𝑞𝐿(𝜙)𝑑𝜙, the total heat flux to the cylinder, is a function

of 𝜃𝑤. Here 𝐶 = 𝜋𝑅𝑐𝑤𝜌𝑤𝑈0∕(2𝜆0) represents the total dimensionless
thermal capacity of the cylinder. This value is based on the density and
heat capacity of the cylinder material (averaged over the cross section
of the cylinder) 𝜌𝑤 and 𝑐𝑤, respectively. In realistic cases of metal flame
holders, for example, this parameter should be much greater than one.
However, it is obvious that its value can be easily changed experimen-
tally by layer-by-layer combination of materials with different 𝜌𝑤 and
𝑐𝑤, for example.

The boundary conditions for the temperature and mass fraction on
the cylinder surface become:

𝑟 = 1 ∶ 𝜃 = 𝜃 , 𝜕𝑌 ∕𝜕𝑟 = 0, 𝐯 = 0. (9)
𝑤
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On the 𝑥-axis, standard symmetry conditions are assumed:

𝜙 = 0, 𝜋 ∶ 𝜕𝜃
𝜕𝑟

= 𝜕𝑌
𝜕𝑟

=
𝜕𝑣𝑟
𝜕𝜙

= 𝑣𝜙 = 0 . (10)

In a similar way as in [20], the solution of the above problem was
carried out in two stages. Firstly, the problem of finding a stabilized
flame at a given and fixed cylinder temperature 𝜃𝑤 was solved numeri-
cally. The solution to this problem determines the total heat flux to the
cylinder appearing in Eq. (8) as a function of the cylinder temperature,
 =  (𝜃𝑤). It should be noted that the results obtained for a cylinder
with a fixed temperature are interesting in themselves from the point
of view of flame stabilization by heated bodies. Although in most cases
time-dependent solutions were brought to stationary states, oscillatory
modes were also observed for some parameter values.

It is obvious that the values of the temperature for which the total
heat flux to the cylinder is equal to zero determine the steady states
corresponding to the flame holder (cylinder) thermally insulated from
the external environment interacting only with the flame. Alternatively,
at the second stage, the coupled time-dependent system of equations
Eqs. (2)–(6) and (8) was solved numerically. One can expect that
the time dynamics depends on the parameter 𝐶, but the steady state
solutions (if they exist) are independent of this parameter.

For the calculations presented below, the set of dimensionless time-
dependent Eqs. (2)–(6) was resolved making use of the open source
code OpenFoam [24]. The implemented numerical method was based
on the finite volume method formulated in a collocated grid arrange-
ment. A first order Euler scheme was used for temporal discretization
and a second-order centered scheme for spatial discretization. The
computational domain is discretized into a block-structured mesh: a
radial distribution is used within a radius 3𝑅 around the cylinder with
a homogeneous grid resolution, ℎ𝑟 = 0.075; far away from the cylinder,
a Cartesian mesh is used with a maximum grid resolution value of
0.1 in both the longitudinal and vertical directions. The domain size
extends from −6 to 50 along the 𝑥-direction and from 0 to 50 along the
𝑦-direction. The grid resolution ensures 5 to 10 points in the thermal
flame thickness 𝛿𝑇 , depending on the value of the Damkhöler number
considered. We checked the independence of the solution from the grid
resolution and mesh decomposition by increasing the grid resolution
by a factor 2 and also by further extending the radial mesh distribution
around the cylinder up to 6𝑅.

All the results presented below were obtained for 𝐿𝑒 = 1. The
Prandtl number was assigned a constant value 𝑃𝑟 = 0.72. The values
of the Zel’dovich number and heat release parameter were chosen as
𝛽 = 10 and 𝑞 = 5, which are typical values used to represent the
combustion of lean methane-air mixtures, for example.

3. Results

3.1. Solutions for the cylinder with a fixed temperature

Let us first consider the steady-state solutions obtained for the
model with constant transport coefficients, 𝜎 = 0. Fig. 1 shows the
dependence of the total heat flux  into the cylinder appearing in
Eq. (8) on its temperature, 𝜃𝑤, calculated for 𝑅𝑒 = 20 and various
values of the Damköhler number 𝑑. The main interest is to determine
the cylinder temperature values that give  = 0, corresponding to the
steady states for a cylinder in contact only with the flame, that is,
without heat loss to the environment.

Fig. 1 demonstrates that for sufficiently high values of the Damköh-
ler number (e.g the curve plotted for 𝑑 = 20), there is only one steady
state for which  = 0. This state corresponds to a temperature of the
cylinder close to the adiabatic flame temperature, 𝜃𝑤 ≈ 1. In contrast,
for sufficiently low values of 𝑑 (e.g. the 𝑑 = 3 curve), only one steady
state is possible with  = 0 but it corresponds to a nearly cold cylinder,
𝜃𝑤 ≲ 0.1.

One can see in Fig. 1 that at intermediate values of the Damköhler
number, two states corresponding to  = 0 exist simultaneously,
3

Fig. 2. Example of the solutions with the highest and lowest values of 𝜃𝑤 for points (a)
and (b) corresponding to  = 0 in Fig. 1 for the case 𝑑 = 9. The color shades represent
the temperature field, white lines show the streamlines and the isoline 𝜔 = 0.35 is
marked with a black line. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

with cold and hot cylinder temperatures. As a consequence of this,
in view of the obvious physical fact that the curve 𝑄 versus 𝜃𝑤 must
be continuous, a third steady state must appear, corresponding to an
intermediate cylinder temperature. Moreover, for some values of 𝑑, two
additional states with  = 0 appear, which are illustrated by the curve
with 𝑑 = 9. It should be noted, however, that the emergence of two
additional solutions takes place in a narrow range of the Damköhler
number. The hot and cold cylinder modes are denoted below as (a)
and (b), respectively, while the intermediate states are denoted by (c),
(d) and (e), as marked in Fig. 1 for the case with 𝑑 = 9.

It is interesting to note that the results obtained on the basis of
the full Navier Stokes equations (with variable density) Eqs. (2)–(6)
are in good qualitative agreement with the results presented in [20]
where the constant density approximation was applied. This qualitative
agreement is obtained even for the effect of the appearance of two
additional states, as for the case with 𝑑 = 9 in Fig. 1. This indicates
that the effect of the thermal interaction between the flame and the
cylinder plays a leading role in the process of flame stabilization.
Some quantitative differences between the constant density model and
the model used in the present study may lie in the definition of the
Damköhler number, since the reaction rate given by Eq. (7) depends
on the square of the density.

Fig. 2 illustrates the steady-state solutions ( = 0) obtained for
the hottest and coldest values of the cylinder temperature marked by
points (a) and (b) in Fig. 1 for the case with 𝑑 = 9. Note that the
numerical domain for calculations significantly exceeds that shown
in the figures. It can be seen that for the solution with the hottest
cylinder temperature, 𝜃𝑤 ≈ 1, namely solution (a), the flame envelops
the cylinder. For solution (b), the flame is located behind the cylinder,
leaving it relatively cold, 𝜃𝑤 ≈ 0.1.

Fig. 3 shows three steady state solutions corresponding to intermedi-
ate values of the cylinder temperature. Since the values of 𝜃𝑤 are close
to each other, the distributions of the variables are very similar to each
other. It can be seen that the flame impacts on the cylinder at an angle 𝜙
approximately equal to 𝜋∕2. It is worth noting that this case, namely the
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Fig. 3. Example of the solutions with intermediate temperatures corresponding to
points (c), (d) and (e) in Fig. 1 for the case 𝑑 = 9 corresponding to  = 0. The
color shades illustrate the temperature field, white lines show the streamlines and the
isoline 𝜔 = 0.35 is marked with a black line. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. The calculated  values appearing in Eq. (8) plotted as a function of 𝜃𝑤 for
𝑅𝑒 = 20, 𝜎 = 0.7 and various 𝑑.

existence of three intermediate steady-state solutions corresponding to
 = 0, is a special one because it is observed only within a narrow range
of the Damköhler number. A less special situation is the case of only one
4

Fig. 5. The calculated  values appearing in Eq. (8) plotted as a function of 𝜃𝑤 for
𝑅𝑒 = 400. The approximate region of oscillatory dynamics is marked with an oval in
the figure.

Fig. 6. An example of oscillatory behavior obtained at a fixed cylinder temperature,
for 𝜃𝑤 = 0.55, 𝑅𝑒 = 400, 𝑑 = 180 and 𝜎 = 0.7.

intermediate mode corresponding to  = 0, represented by curves with
𝑑 = 5 and 𝑑 = 10 in Fig. 1. Anticipating the results of time-dependent
calculations with non-fixed cylinder temperature, one can notice that
these steady-state modes are unstable. Namely, states (d) and (e) are
always absolutely unstable, while for state (c) the temperature of the
cylinder experiences relatively small oscillations around the steady-
state value. It should also be added that this time-dependent dynamics
depends on the value of the parameter 𝐶 appearing in Eq. (8).

Fig. 4 shows the response curves obtained within the model with 𝜎 =
0.7 calculated for 𝑅𝑒 = 20. It can be seen that the qualitative behavior
of the curves remains similar to the case with 𝜎 = 0. For the small value
𝑑 = 6, there is only one solution, with slight heating of the cylinder.
For sufficiently large 𝑑, the curve plotted with 𝑑 = 40, the only solution
is a regime with a cylinder temperature close to adiabatic. And there is
also an interval of Damköhler numbers when these solutions can exist
simultaneously. In this case, an intermediate regime appears, which,
anticipating the results of time-dependent calculations, is unstable. The
only difference between the solutions with 𝜎 = 0 and 𝜎 = 0.7 is that in
the second case the two additional solutions with  = 0 do not appear.

The results presented above were obtained for a fairly low Reynolds
number, 𝑅𝑒 = 20. Numerical calculations have shown that the existence
of at least three different regimes in a certain range of Damköhler num-
bers persists also at much higher Reynolds numbers. Fig. 5 shows the
response curves obtained for 𝑅𝑒 = 400. The solid curves were obtained
with Damköhler numbers equal to 𝑑 = 60 and 𝑑 = 180 for the model
with 𝜎 = 0.7. For comparison, the dashed curve shows the response
curve obtained for 𝑑 = 60 and 𝜎 = 0. It can be seen that the ten-
dency obtained at lower Reynolds numbers (multiplicity of steady-state
solutions corresponding to  = 0) also persists for higher 𝑅𝑒.

For all the above calculations with fixed cylinder temperatures
carried out for 𝑅𝑒 = 20, a time-independent solution was established
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Fig. 7. The upper plot shows time histories of the cylinder temperature obtained after
small perturbations of the state (d) chosen as the initial conditions. Dashed lines show
the cylinder temperature for steady states. The lower plot illustrates low amplitude
oscillatory dynamics.

after a transition period. However, for 𝑅𝑒 = 400, oscillatory behavior
was observed within a small range of 𝜃𝑤. An example of such behavior
is illustrated in Fig. 6, where the total heat flux into the cylinder is
plotted as a function of time for 𝑅𝑒 = 400, 𝑑 = 180, 𝜎 = 0.7 and
𝑤 = 0.55. It should be noted that the obtained oscillatory modes were
ound in the range of the cylinder temperature where the total heat flux

is noticeably different from zero.

.2. Solution for the cylinder with non-fixed temperature

All the above results were obtained for cases with a fixed cylinder
emperature. In a mathematical sense, this corresponds to the limit
→ ∞ in Eq. (8). At finite values of the parameter 𝐶, Eq. (8) should

e taken into account and the cylinder temperature varies with time.
Carrying out time-dependent calculations under arbitrary initial

onditions would have a limited interest. Instead, small perturbations
ere introduced into the distributions of variables obtained at a fixed

ylinder temperature and corresponding to  = 0. The resulting
istributions were chosen as initial conditions for calculations with a
inite value of 𝐶 in Eq. (8). The main purpose of these calculations was
o find out whether a given steady-state solution corresponding to the
ondition  = 0 is stable or not.

There is a well known method to draw a conclusion about the
tability of a particular steady state (corresponding to the condition

= 0) based on the profile of the response curve. Indeed, if the
unction  =  (𝜃𝑤) is given, and  (𝜃𝑤0) = 0 is fulfilled, then, based
n Eq. (8), one could conclude that if 𝑑∕𝑑𝜃𝑤|𝜃𝑤=𝜃𝑤0

< 0, then the
tate with 𝜃𝑤 = 𝜃𝑤0 is stable. Typical reasoning usually says that if
he cylinder temperature increases slightly (randomly), the heat flux
o the cylinder decreases and its temperature should then decrease to
ts original state corresponding to the  = 0 state. Conversely, with a
mall perturbation resulting in a decrease of the cylinder temperature,
he heat flux increases and the cylinder heats up, returning again to the
nitial temperature 𝜃𝑤0.

However, as it was demonstrated in [20] within the constant density
odel, this method may not lead to a correct conclusion about the

tability of the steady states corresponding to  = 0. Firstly, a situa-
ion is possible when, at a given (fixed) 𝜃𝑤 = 𝜃𝑤0, oscillatory flame
5

ynamics takes place. Let us assume that the shape of the response d
Fig. 8. Time history after small perturbations of state (c). At sufficiently small values
of 𝐶, the system approaches the hot mode (a), but at 𝐶 greater than a certain critical
value, the system experiences oscillatory dynamics.

curve corresponds to a negative slope at this point. However, since an
oscillatory mode occurs at 𝜃𝑤 = 𝜃𝑤0, if the amplitude of the oscillations
is sufficiently large, the system switches to one of the stable states, cold
or hot, depending on the initial disturbances introduced.

Secondly, the stability of the state with 𝜃𝑤 = 𝜃𝑤0 may depend on
the value of the parameter 𝐶. A similar situation was reported in [25],
where the stabilization of a flame in a channel in the presence of a
highly conductive wall segment and its interaction with the flame were
studied. It is this case that was observed also in the present study. Fig. 7
shows the time history of the cylinder temperature for one of the cases
with 𝑑 = 9 (see Fig. 1), the intermediate case (d). A small disturbance

as applied to 𝜃𝑤 and Eqs. (2)–(6) were calculated together with Eq. (8)
sing as initial conditions the solution (d) and different values of 𝐶.

One can see in the upper plot of Fig. 7, calculated for 𝑅𝑒 = 20
nd 𝜎 = 0, that for 𝐶 = 5, the system approaches the hot state (a)
fter a transition period, while for 𝐶 = 100, the cylinder temperature
pproaches the cold state (b). It is interesting to note that for the
ntermediate value, 𝐶 = 7.5, the cylinder temperature experiences
mall oscillatory dynamics around state (c). This oscillatory behavior
s illustrated in the lower plot of Fig. 7. Of course, these results cannot
ive an exhaustive answer to the question of which is the stable state
o which the system transitions to when it is perturbed, since this also
epends on the magnitude of the initial perturbation. However, one
an conclude confidently that states (a) and (b), namely the hottest and
oldest states of the cylinder, are both stable. At the same time, these
alculations show that state (d) is unstable. The same conclusion about
he instability of state (e) can be made (the time history of this case is
ot included here for brevity).

The time histories related to perturbations of state (c) are illustrated
n Fig. 8 for two values of the parameter 𝐶. It can be seen that the
teady state (c) is oscillatory unstable for sufficiently large values of the
arameter 𝐶, but the amplitude of cylinder temperature oscillations are
imilar to those shown in Fig. 7. However, for values of the parameter 𝐶
elow a critical value, a transition to the hot state (a) occurs. Thus, we
an conclude that the intuitive method for determining stability based
n the slope of the response curve gives the correct answer only for the
teady-state solutions corresponding to the hottest and coldest cylinder
emperatures.

. Conclusions and discussions

In this work, we conducted the study of flame stabilization by a
luff body, a cylinder, located perpendicularly in a homogeneous flow
f the combustible mixture within the framework of a model described
y the Navier–Stokes equations with variable density combined with
he equations of conservation of energy and mass of the fuel. It is also
ssumed that the thermal conductivity of the cylinder is so high that
ts temperature is uniform. The main attention is focused on the cases
here the cylinder is in contact only with the flame and is isolated

rom the external environment. Therefore, the cylinder temperature is

etermined as part of the solution to the problem.
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Numerical calculations have shown that at a sufficiently high inten-
sity of the combustion process, (high Damköhler number), the flame-
cylinder system ends up in a state where the cylinder temperature is
close to the adiabatic temperature of the flame. At a low combustion
intensity (small Damköhler number), the flame is located behind the
cylinder and its temperature is relatively low, about one tenth of the
adiabatic flame temperature.

The most interesting result of this work is the confirmation of the ex-
istence of a fairly wide intermediate range of Damköhler numbers when
hot and cold regimes exist simultaneously. Moreover, time-dependent
numerical calculations showed that the hottest and coldest solutions
turn out to be both stable, that is, each of them can be achieved
under appropriate initial conditions. It is also interesting that the results
obtained are in good agreement with previous research based on a
constant density model [20]. It is also shown that the results obtained
are robust with respect to the model for the transport coefficients. This
indicates that the main cause of the solution multiplicity effect is the
thermal interaction of the flame with the cylinder. In this case, the flow
modification due to thermal expansion may play a secondary role. It
can also be assumed that the multiplicity effect will most likely persist
at Reynolds numbers greater than 𝑅𝑒 = 400 studied in the present

ork, including at turbulent regimes. However, this should be tested
n appropriate models.

Although the time-dependent calculations presented in this work are
mportant for answering the question of the stability of steady states,
he main research method is the calculation of the combustion field for
given and fixed cylinder temperature 𝜃𝑤. Knowing the temperature

ield already, the heat flux into the cylinder is easily determined,
roviding the response curve  =  (𝜃𝑤). The resulting response curve
llows us to determine all the steady-state states, including unstable
tates, as the states corresponding to zero heat flux, that is, the roots
f the equation  (𝜃𝑤) = 0.

The proposed procedure for finding solutions makes it easy to
eneralize the problem and also to take into account possible heat
osses from the cylinder to the environment. To do this, one just need
o include in Eq. (8) an additional term, 𝐶𝑑𝜃𝑤∕𝑑𝑡 =  (𝜃𝑤) − 𝑆, where
𝑆 is the corresponding heat sink term, while  (𝜃𝑤) remains the same.

Novelty and significance statement

The novelty of this work lies in the fact that for the first time
the possibility of multiplicity of flames stabilized using a bluff body
(a cylinder) based on the Navier-Stokes equations associated with
the equations of balance of energy and fuel mass is demonstrated.
The investigation was carried out within the approximation of high
thermal conductivity of the cylinder, which implies a uniform surface
temperature unknown beforehand. Dynamic states are governed by
time-dependent calculations of the gas mixture equations coupled with
the heat balance equation of the cylinder. The steady state solutions
are determined by zero total heat flux to the cylinder. Using numerical
modeling, the existence of hot and cold modes for the same set of
parameters is demonstrated. The results are significant when applied
to flame stabilization in combustion devices.
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