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A B S T R A C T

Premixed flames in narrow heated circular channels subjected to a Poiseuille flow are investigated within
the constant density model for various Lewis numbers using irreversible one-step Arrhenius kinetics. A global
stability analysis of steady-state axisymmetric solutions is carried out, together with time-dependent direct
numerical simulations. The analysis reveals the criteria for the appearance of oscillatory and three-dimensional
cellular flame structures. The problem is also studied separately within the framework of the narrow-channel
approximation.

Among the results obtained, the following can be singled out as the main ones. First, the multiplicity of
stable dynamic modes, oscillatory and steady-state, taking place for the same set of parameters for flames
with 𝐿𝑒 < 1 is demonstrated. The actual occurrence of one mode or another depends on the initial conditions.
Second, the appearance of chaotic regimes is shown for flames with 𝐿𝑒 > 1. The chaotic dynamics occurs in a
narrow range of values of the flow rate, with Feigenbaum period-doubling cascades taking place both before
and after this interval. The results of this study could be useful in the development and use of small-scale
combustion devices.

Novelty and significance statement: A systematic study of premixed flames in narrow heated circular channels
in the presence of Poiseuille flow is carried out for various Lewis numbers using irreversible one-step Arrhenius
kinetics. One of the novelties presented in the paper is the linear global stability analysis of steady state
axisymmetric solutions of this problem, which has not been reported before. Also, for the first time, the
existence of multiple stable dynamic modes, oscillatory and time-independent, which occurs at the same
parameter values, is demonstrated for flames with Lewis number smaller than one. For flames with a Lewis
number greater than one, cases with chaotic dynamics are found that manifest themselves in a narrow range
of the flow rate. Finally, it is demonstrated that the Feigenbaum cycle-doubling cascade can appear before and
after this interval of chaotic dynamics. Such analysis has not been reported before for this problem of flames
in partially heated channels.
1. Introduction

Understanding the structure and dynamics of flames in narrow
channels is a necessary requisite when designing small-scale combus-
tion devices, see general reviews [1–4]. This is the case, for example,
of small scale superadiabatic burners, which present the particular-
ity of reaching a temperature above the adiabatic temperature for
a given mixture [5–9]. Superadiabatic burners, due to the effect of
heat recirculation, are characterized by the possibility of allowing the
burning of ultra-lean mixtures, that is, mixtures below the standard
flammability limit [10–12]. This allows self-sustained combustion to
occur for mixtures with low energy content. Reforming processes (for
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example, for the production of hydrogen), when the oxidant is in a
very scarce amount, have a similar nature [13]. Another characteristic
of these systems is that they are prone to developing instabilities of
various types, which can lead to undesirable consequences, such as
uncontrolled flame behavior or even flame extinction.

One canonical configuration for studying flame dynamics in narrow
channels experimentally is an externally heated channel where only a
part of the wall is heated. This turns out to be convenient for several
reasons. One of the most important is that the flame location is confined
to a region of the channel, preventing flame propagating upstream or
downstream along the channel. Another advantage of this configuration
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is its capability to facilitate the study of the effect of heating on the
complex chemical kinetics of the combustion process. Premixed flames
in heated channel configurations have been investigated experimentally
in [14–21]. In these studies, the emphasis was on studying the time-
dependent flame dynamics [14,21] (in particular, FREI oscillations),
the flame structures [16,19] and complex kinetics of chemical processes
in flames [15,17]. The use of a micro-flow reactor with a controlled
temperature profile is a convenient experimental tool. However, this
system requires more detailed theoretical research.

Perhaps the main difficulty encountered in understanding the dy-
namics of combustion in channels lies in the simultaneous presence
of various effects. Among them one can list the thermal interaction
of the flame with the channel walls, the heat conduction inside the
walls, the thermal expansion of the gas, or the differential diffusion
effect. Although it is difficult to separate these effects experimentally,
the numerical modeling analysis is able to separate them effectively,
pointing the way for future experimental studies. An important obstacle
is also the presence of a large number of parameters in the problem,
which makes an exhaustive experimental study difficult. The develop-
ment of simplified models permits to do parametric investigations in
an effective way.

Heated channels have received some attention through numerical
analysis [22–25]. In most of these studies, a fixed wall temperature
distribution was assigned and an unexpectedly rich set of possible
flame behaviors was demonstrated. In [22,23] the results of numeri-
cal simulations for hydrogen–air mixtures in narrow channels with a
fixed temperature profile were reported. The influence of the Lewis
number on the flame dynamics was studied on the basis of the one-step
Arrhenius model in [24,25].

From the experimental point of view, imposing a given temperature
to the wall is probably not very realistic: as the flame approaches the
channel wall, the wall surface temperature can hardly be constant. Per-
haps an exception would be the case of a channel wall made of a highly
conductive material, which results in a temperature homogenization of
the wall surface [26]. There are also obvious objective difficulties in
measuring the temperature on the inner surface of the wall. For this
reason, the possibility of doing numerical simulations is decisive in this
kind of investigations.

According to the knowledge of the authors, the systematic study
of flame dynamics in heated channels of circular cross section has
not received due attention so far. In the present work, we assume
that the temperature profile on the outer surface of the channel wall
is controlled. Although this assumption may also raise doubts, it is
probably much more realizable and experimentally verifiable than
fixing the inner wall temperature, as was done in some studies [22–
25]. A detailed study of heat transfer between the outer wall of the
channel and the environment would certainly be an interesting topic,
but consideration of this is beyond the scope of this work.

The article is structured as follows. The next section gives a math-
ematical formulation of the problem. The third section offers a brief
description of the methods used in calculations. The fourth section is
devoted to the description of steady-state axisymmetric solutions. In the
fifth section, the results related to stability of axisymmetric solutions
are given compared with time-dependent numerical simulations. The
sixth section considers the limiting case of narrow channels. Finally,
the last section presents a discussion of our results.

2. Mathematical formulation

The sketch of the problem under study is given in Fig. 1. Let us
consider a combustible mixture at initial temperature 𝑇0 and fuel mass
fraction 𝑌𝐹0 flowing in a circular channel of radius 𝑅. The total mass
flow rate through the channel, �̇� , is fixed. In what follows we use the
standard cylindrical coordinates with 𝑧′, 𝑟′ and 𝜑 for the longitudinal,

′

2

radial and angular coordinates, respectively, with 𝑡 denoting the time.
Primes here and hereafter indicate dimensional quantities if the same
notation is used for dimensional and non-dimensional variables.

Let the channel wall thickness be ℎ𝑊 . We assume that the tempera-
ture profile at the outer channel surface is a given function of 𝑧′, namely
𝑇 |𝑟′=𝑅+ℎ𝑊 = 𝑇𝑊 (𝑧′). This assumption appears to be more realistic than
etting the wall temperature as a whole, as has been done in some
tudies. Here, narrow channels with radius of the order of the thermal
lame thickness are considered. If the wall thickness is small compared
o the channel radius, ℎ𝑊 ∕𝑅 ≪ 1, the temperature across the wall can
e approximated by a linear with 𝑟′ profile. Thus, the radial heat flux

through the wall is determined by the temperature difference between
the interior and the exterior surfaces of the wall.

This study deals with a diffusive-thermal or ‘‘constant-density’’
model, according to which the density of the mixture 𝜌, the heat
capacity 𝑐𝑝, the thermal diffusivity 𝑇 , and the molecular diffusivity 
are all assumed constant. Consequently, the flow field, unaffected by
the combustion process, is given by the Poiseuille flow: 𝑢𝑧 = 2𝑈0[1 −
(𝑟′∕𝑅)2] and 𝑢𝑟 = 𝑢𝜑 = 0, where 𝑈0 = �̇�∕𝜋𝜌𝑅2 is the mean flow velocity
value.

In the following, we use a simplified kinetics where the combustible
mixture undergoes a chemical reaction modeled by a global irreversible
step 𝐹 + 𝑂 → 𝑃 + 𝑄. Here 𝐹 , 𝑂 and 𝑃 denote the fuel, the oxidizer
and the products, respectively, and 𝑄 is the heat released per unit
mass of fuel. Assuming that the mixture is lean in fuel, the oxidizer
mass fraction remains nearly constant and the reaction rate is modeled
by an Arrhenius law 𝛺 = 𝜌2𝑌𝐹 exp (−∕𝑇 ), where  is a pre-
xponential factor containing 𝑌𝑂 and the molecular weights. Of course,
ne can consider an equivalent situation where the oxidizer represents
deficient component, as happens when rich mixtures are burned.

The burning speed evaluated at 𝑇 = 𝑇0 of the corresponding planar
eflagration wave, 𝑆𝐿, and the thermal flame thickness defined as
𝑇 = 𝑇 ∕𝑆𝐿 are used below to specify the non-dimensional parameters.
he non-dimensional temperature is defined as 𝜃 = (𝑇 − 𝑇0)∕(𝑇𝑒 − 𝑇0),
here 𝑇𝑒 = 𝑇0 + 𝑄𝑌𝐹0∕𝑐𝑝 is the adiabatic temperature of the planar

lame based on the unburned gas temperature 𝑇0 and the upstream
uel mass fraction 𝑌𝐹0. Choosing 𝛿𝑇 and 𝑅 as the reference length

scales for the 𝑧 and 𝑟 directions, respectively, 𝛿2𝑇 ∕𝑇 as the time scale,
(𝑧, 𝑟) = (𝑧′∕𝛿𝑇 , 𝑟′∕𝑅), 𝑡 = 𝑡′𝑇 ∕𝛿2𝑇 , and 𝑌𝐹0 to normalize the fuel
mass fraction, 𝑌 = 𝑌𝐹 ∕𝑌𝐹0, the dimensionless equations written in the
moving reference frame become

𝜕𝜃
𝜕𝑡

+ 2 𝑚(1 − 𝑟2) 𝜕𝜃
𝜕𝑧

= 𝜕2𝜃
𝜕𝑧2

+ 1
𝑎2

𝛥𝑟𝜑𝜃 + 𝜔 , (1)

𝜕𝑌
𝜕𝑡

+ 2 𝑚(1 − 𝑟2) 𝜕𝑌
𝜕𝑧

= 1
𝐿𝑒

(

𝜕2𝑌
𝜕𝑧2

+ 1
𝑎2

𝛥𝑟𝜑𝑌
)

− 𝜔 , (2)

where 𝛥𝑟𝜑 = 𝜕2∕𝜕𝑟2 + 𝑟−1𝜕∕𝜕𝑟 + 𝑟−2𝜕2∕𝜕𝜑2 and

𝜔 =
𝛽2

2𝐿𝑒 𝑢2𝑝
𝑌 exp

{

𝛽(𝜃 − 1)
1 + 𝛾(𝜃 − 1)

}

. (3)

Eqs. (1) and (2) are to be solved subject to the following boundary
conditions. The functions 𝜃 and 𝑌 are 2𝜋-periodic functions of 𝜑. Using
he linearity of the radial temperature distribution inside the wall, the
imensionless temperature and no-flux mass fraction conditions at the
all lead to

= 1 ∶ 𝜕𝜃∕𝜕𝑟 = −1
2
𝑎2 𝑏 ⋅ [𝜃 − 𝜃𝑊 (𝑧)] , 𝜕𝑌 ∕𝜕𝑟 = 0, (4)

here 𝜃𝑊 (𝑧) = (𝑇𝑊 (𝑧) − 𝑇0)∕(𝑇𝑒 − 𝑇0) is the dimensionless temperature
rofile fixed on the outer surface of the channel wall. Here

= 2
𝜆𝑊
𝜆

⋅
𝛿2𝑇

𝑅ℎ𝑊
(5)

is the heat transfer parameter, where 𝜆𝑊 is the wall thermal conductiv-
ity coefficient. It can be seen that as 𝑏 → ∞, the temperature boundary
condition (4) transforms into a condition with a fixed temperature

profile at the inner wall surface.
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Fig. 1. Sketch of the problem under study, coordinate system, the outer wall temperature and flow velocity profiles.
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The parameter 𝑎 = 𝑅∕𝛿𝑇 appearing in Eqs. (1)–(2) and (4) rep-
esents the dimensionless channel radius measured with the thermal
idth of the planar flame. The purpose of writing these equations in

his form is related with the limiting case of very narrow channels, in
rder to compare the results for 𝑎 = 𝑂(1) and 𝑎 → 0. It should be noted,
owever, that the representation of the boundary conditions in the form
f Eq. (4) is useful only for 𝑎 ≲ 1. For cases 𝑎 ≫ 1, it is better to use the
tandard form �̃� = 𝑏 ⋅ 𝑎 = 2(𝜆𝑤∕𝜆)(𝛿𝑇 ∕ℎ𝑊 ) for the dimensionless heat
ransfer parameter.

For axisymmetric calculations, namely when 𝜕∕𝜕𝜑 ≡ 0 is imposed,
he standard symmetry conditions are used at the axis

= 0 ∶ 𝜕𝜃∕𝜕𝑟 = 𝜕𝑌 ∕𝜕𝑟 = 0. (6)

n cases of three-dimensional calculations, when the azimuthal coordi-
ate 𝜑 is taken into account, a procedure implying the absence of any
hysical singularity at the axis is used for the temperature and mass
raction fields [27,28]. This procedure, which affects the numerical
reatment of the Laplace operator appearing in Eqs. (1)–(2) near the
xis, was described in the Appendix of [27].

The temperature and the fuel mass fraction take their prescribed
pstream values

= 1, 𝜃 = 0 as 𝑧 → −∞. (7)

or outlet boundary condition we require
2𝜃∕𝜕𝑧2 = 𝜕2𝑌 ∕𝜕𝑧2 = 0 as 𝑧 → +∞. (8)

hese weak or mild outlet boundary conditions were used in [29] for
ases with heat losses included, reducing in this way the computational
omain. The numerical simulations reported below showed that the
nfluence of the downstream boundary condition becomes negligible,
s it should be, if the size of the computational domain is reasonably
ong downstream the flame.

In general, any temperature profile on the outer wall of the channel
an be controlled under experimental conditions. For simplicity, in
ost cases, we defined the temperature profile on the outer wall using

he Heaviside step function,

𝑊 (𝑧) = 𝜃𝑤 ⋅ Hev(𝑧), (9)

here Hev(𝑧 ≤ 0) = 0, Hev(𝑧 > 0) = 1 and 𝜃𝑤 is kept constant. However,
or the purpose of showing that the results are robust with respect to
he external temperature profile, a second profile

𝑊 (𝑧) = 𝜃𝑤 ⋅ [1 + tanh(𝑧∕𝓁)]∕2 , (10)

ill also be applied in some cases. Here 𝓁 defines the dimensionless ex-
ent of the smoothing of a sharp step of the wall temperature measured
n terms of 𝛿𝑇 .

Thus, the following non-dimensional parameters appear in the
bove equations: the dimensionless channel radius, 𝑎 = 𝑅∕𝛿 , the
3

𝑇 e
el’dovich number, 𝛽 = (𝑇𝑎 − 𝑇0)∕𝑇 2
𝑎 , the Lewis number, 𝐿𝑒 =

∕𝜌𝑐𝑝, the heat release parameter, 𝛾 = (𝑇𝑎 − 𝑇0)∕𝑇𝑎, the nondimen-
ional flow rate, 𝑚 = 𝑈0∕𝑆𝐿, normalized with the planar flame speed,
𝐿, and the heat transfer parameter 𝑏 given by Eq. (5).

The factor 𝑢𝑝 = 𝑆𝐿∕𝑈𝐿 appearing in Eq. (3) has been introduced to
ccount for the difference between the asymptotic value of the laminar
lame speed,

𝐿 =
√

2𝜌𝑇𝐿𝑒𝛽−2 exp (−∕2𝑇𝑒),

btained for large activation energy (𝛽 ≫ 1) and the numerical value
𝐿 calculated for a finite 𝛽, see [30]. Clearly, the factor 𝑢𝑝 tends to
nity when 𝛽 → ∞. The numerical values of 𝑢𝑝 were reported in [31]

as a function of the Lewis number for 𝛽 = 10 and 𝛾 = 0.7. These values
are kept as representative values in the present study, unless otherwise
stated.

2.1. Narrow-channel approximation

For completeness, the narrow channel approximation is given be-
low. The equation determining the boundary condition at the inner
channel surface is written in a form that allows to consider the limiting
case 𝑎 → 0. To do this, all variables are expanded in power series of
𝑎2, namely, in the form 𝑓 = 𝑓0 + 𝑎2𝑓1 + … , where 𝑓 stands for the
temperature or the mass fraction. To leading order 𝛥𝑟𝜑𝜃0 = 0, 𝛥𝑟𝜑𝑌0 = 0,
which implies 𝜃0 = 𝜃0(𝑧), 𝑌0 = 𝑌0(𝑧).

It can be seen that substitution of the two-term expansions in 𝑎2 into
q. (4) gives

= 1 ∶ 𝜕𝜃1∕𝜕𝑟 = −1
2
𝑏 ⋅ [𝜃0 − 𝜃𝑊 (𝑧)] , 𝜕𝑌1∕𝜕𝑟 = 0 . (11)

ubstituting then the two-term expansions into Eqs. (1)–(2) and inte-
rating over the channel cross-section, we obtain the limit equations
or 𝑎 ≪ 1:
𝜕𝜃0
𝜕𝑡

+ 𝑚
𝜕𝜃0
𝜕𝑧

=
𝜕2𝜃0
𝜕𝑧2

+ 𝜔(𝜃0, 𝑌0) − 𝑏 ⋅ [𝜃0 − 𝜃𝑊 (𝑧)] , (12)

𝜕𝑌0
𝜕𝑡

+ 𝑚
𝜕𝑌0
𝜕𝑧

= 1
𝐿𝑒

𝜕2𝑌0
𝜕𝑧2

− 𝜔(𝜃0, 𝑌0) , (13)

here Eq. (11) was used. When further referring to the limit 𝑎 →

, the index ‘‘0’’ will be omitted. It should be noted that the heat
ransfer coefficient 𝑏 appearing in Eqs. (4) and (12) is the same effective
oefficient that allows one to estimate the influence of the channel
adius on the flame behavior. The boundary conditions for Eqs. (12)–
13) are given by Eqs. (7)–(8). Thus, it can be seen that the factor
was included in the definition of the dimensionless heat exchange

oefficient 𝑏 given by Eq. (5) so that in the limit 𝑎 → 0 the heat
xchange term takes the form as shown in Eq. (12).
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3. Numerical treatment

The numerical procedures used in the present study are similar to
those applied in [28], where the combustion wave in a channel of
circular cross section was considered. However, in the essence of the
subject, the difference in the formulations is obvious. In [28], freely
propagating flames in adiabatic channels were studied, while in the
present work the flame is stabilized at some location due to the wall
heating.

3.1. Steady-state and time-dependent solutions

Steady as well as time-dependent computations were carried out in
a finite domain, 𝑧𝑚𝑖𝑛 < 𝑧 < 𝑧𝑚𝑎𝑥, with typical values 𝑧𝑚𝑖𝑛 = −50 and
𝑚𝑎𝑥 = 50. The size of the domain was significantly varied in order to
heck the independence of the results. In particular, there was a need
o increase the upstream domain segment (𝑧𝑚𝑖𝑛 < 𝑧 < 0) at low values
f the flow rate 𝑚.

The spatial derivatives were discretized on a uniform grid us-
ng second-order, three-point central differences. The typical num-
er of grid points was about 2001 for one-dimensional calculations,
001 × 101 for two-dimensional calculations and 501×51×81 for three-
imensional ones. The number of grid points was doubled in some cases
ithout significant differences in results. Particular attention was paid

o verify that the downstream boundary conditions given by Eq. (8) do
ot affect the resulting numerical solution, in particular the position of
he flame.

In order to determine steady state (but not necessary stable) axisym-
etric solutions, the steady counterparts (𝜕∕𝜕𝑡 = 0) of Eqs. (1) and

(2) were solved using a Gauss–Seidel method with over-relaxation. For
unsteady calculations an explicit marching procedure was used with
first order discretization in time. The typical time step was varied from
𝜏 = 10−4 to 10−5. No significant differences were found in the results
when 𝜏 was halved.

1D and 2D (axisymmetric) simulations were carried out as well.
n the first case, the initial conditions were chosen in the form of
istributions independent of the transverse coordinate,

= 0 ∶ 𝜃 = [1 + tanh(𝜉)]∕2, 𝑌 = [1 − tanh(𝜉)]∕2,

where 𝜉 = (𝑧 − 𝑐1)∕𝑐2 with 𝑐1 and 𝑐2 of order unity. It should be
oted that although the initial stage of the numerical dynamics resulted
ependent on these values, after a transition time the flame dynamics
ecame independent of these specific values.

A number of 3D numerical simulations was carried out. As initial
onditions, the corresponding steady-state axisymmetric distribution
as chosen for the mass fraction, but for the temperature field the

nitial distribution was perturbed for 𝑡 = 0 as

= 𝜃0(𝑟, 𝑧)+
𝐾
∑

𝑘=1
𝐴𝑘 exp

{

−

√

(𝑧 − 𝑧𝑘)2 + 𝑎2(𝑟 cos𝜑 − 𝑥𝑘)2 + 𝑎2(𝑟 sin𝜑 − 𝑦𝑘)2

𝑑𝑘

}

. (14)

Here 𝜃0(𝑟, 𝑧) is the axisymmetric steady-state temperature distribution,
𝐴𝑘 is the perturbation amplitude, (𝑥𝑘, 𝑦𝑘, 𝑧𝑘) is the position of the 𝑘th
center of a perturbation profile in the channel, and 𝑑𝑘 is its character-
istic width. The typical values of 𝐴𝑘 and 𝑑𝑘 were usually chosen of the
order of 0.1 and 1, respectively, and 𝐾 varied from 1 to 3. It should
be noted that three-dimensional calculations resulted to be expensive
from a numerical point of view due to the need to carry out them to
large times in order to investigate the established flame dynamics.

Visual identifications of the 3D flame structure are difficult in some
cases. In order to facilitate the structural analysis, the following tool
was used. The temperature field was presented in terms of the Fourier
series

𝜃(𝑧, 𝑟, 𝜑, 𝑡) = 𝜃 +
∞
∑

(𝑎𝑛 cos 𝑛𝜑 + 𝑏𝑛 sin 𝑛𝜑), (15)
4

𝑛=1
where all 𝑎𝑛 and 𝑏𝑛 are functions of 𝑧, 𝑟 and 𝑡. Upon this, the functions
𝐹𝑛 were calculated as follows

𝐹𝑛(𝑧, 𝑡) = ∫

1

0
𝑟
√

𝑎2𝑛 + 𝑏2𝑛 𝑑𝑟, 𝑛 ≥ 1. (16)

Here 𝜃 = (2𝜋)−1 ∫ 2𝜋
0 𝜃𝑑𝜑 is the 𝜑-averaged temperature and 𝐹𝑛(𝑧, 𝑡)

characterizes the weight of the non-axisymmetric mode 𝑛 in the so-
lution. Clearly, all 𝐹𝑛 are zero (within numerical accuracy) for an
axisymmetric solution, but assume appreciably nonzero values when
the solution is non-axisymmetric. In addition to this, the resulting
distributions of the 𝐹𝑛 function make it possible to determine which
modes are dominant from the point of view of axial symmetry.

In the present study, the flame position, 𝑧𝑓 , is defined as a point
along the axis, 𝑟 = 0, at which the reaction rate 𝜔 reaches its maximum
value. It is also useful to determine a surface 𝑧 = 𝑍𝑓 (𝑟, 𝜑, 𝑡) on which
he reaction rate reaches its maximum value along a line parallel to
he axis. Thus, 𝑧𝑓 = 𝑍𝑓 (𝑟, 𝜑, 𝑡)|𝑟=0. In the case of axisymmetric solutions
𝜕∕𝜕𝜑 ≡ 0), we use also the point with the maximum reaction rate along
he wall, 𝑧𝑤𝑓 = 𝑍𝑓 (𝑟, 𝑡)|𝑟=1.

.2. Stability analysis method

The method applied for the stability analysis is similar to that used
n [27–29,31]. For the sake of completeness, it is described briefly
elow. The axisymmetric solutions described in the previous section
ave been examined for linear stability. The distributions of the steady-
tate temperature and mass fraction, all now denoted by subindex ‘‘0’’,
re perturbed as usual with small perturbations

𝜃 = 𝜃0(𝑧, 𝑟) + 𝜖𝛷(𝑧, 𝑟) exp(𝜆𝑡 + 𝑖 𝑛 𝜑),
𝑌 = 𝑌0(𝑧, 𝑟) + 𝜖𝛹 (𝑧, 𝑟) exp(𝜆𝑡 + 𝑖 𝑛 𝜑),

(17)

here 𝜆 is a complex number, the real part of which represents the
rowth rate, 𝑛 = 0, 1, 2,… is the azimuthal wave number and 𝜖 is a
mall amplitude. The mode 𝑛 = 0 represents axisymmetric perturba-
ions.

The linearized eigenvalue problem obtained when substituting
q. (17) into Eqs (1)–(2) reduces to finding non-trivial solutions of the
wo-dimensional system

𝛷 = −2𝑚 (1 − 𝑟2) 𝜕𝛷
𝜕𝑧

+ 𝜕2𝛷
𝜕𝑧2

+ 𝛷 + (𝐴𝛷 + 𝐵𝛹 ), (18)

𝜆𝛹 = −2𝑚 (1 − 𝑟2) 𝜕𝛹
𝜕𝑧

+ 𝐿𝑒−1 𝜕
2𝛹
𝜕𝑧2

+ 𝐿𝑒−1𝛹 − (𝐴𝛷 + 𝐵𝛹 ), (19)

here  = 𝑎−2(𝜕2∕𝜕𝑟2 + 𝑟−1𝜕∕𝜕𝑟 − 𝑛2 𝑟−2) and

𝐴 =
𝜕𝜔(𝑌0, 𝜃0)

𝜕𝜃0
=

𝛽3𝑌0
2𝐿𝑒 𝑢2𝑝[1 + 𝛾(𝜃0 − 1)]2

exp
{

𝛽(𝜃0 − 1)
1 + 𝛾(𝜃0 − 1)

}

,

𝐵 =
𝜕𝜔(𝑌0, 𝜃0)

𝜕𝑌0
=

𝛽2

2𝐿𝑒 𝑢2𝑝
exp

{

𝛽(𝜃0 − 1)
1 + 𝛾(𝜃0 − 1)

}

.
(20)

Note that 𝐴 and 𝐵 are both functions of 𝑧 and 𝑟.
Eqs. (18)–(19) should be supplemented by the following boundary

conditions. At the wall we require

𝑟 = 1 ∶ 𝜕𝛷∕𝜕𝑟 = −1
2
𝑎2𝑏 ⋅𝛷, 𝜕𝛹∕𝜕𝑟 = 0. (21)

The following conditions should be imposed at the axis

𝑟 = 0 ∶ 𝜕𝛷∕𝜕𝑟 = 𝜕𝛹∕𝜕𝑟 = 0, for 𝑛 = 0,
𝛷 = 𝛹 = 0, for 𝑛 > 0.

(22)

he difference in the boundary conditions on the channel axis for
odes with 𝑛 = 0 and 𝑛 > 0 is obtained from inspecting the eigen-

unction behavior at small 𝑟. Indeed, it can be shown that 𝛹 ∼ 𝛷 ∼ 𝑟𝑛

since the leading terms in Eqs. (18)–(19) are 𝛷 = 0 and 𝛹 = 0 at
𝑟 → 0.

Far upstream and downstream the boundary conditions are given
by

𝑧 → −∞ ∶ 𝛷 = 𝛹 = 0; 𝑧 → +∞ ∶ 𝜕2𝛷∕𝜕𝑧2 = 𝜕2𝛹∕𝜕𝑧2 = 0. (23)
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Fig. 2. Flame propagation in a channel with a uniform temperature of the outer wall, 𝜃𝑊 (𝑧) = 𝜃𝑤. Left plot: the dependence of axisymmetric flame speed in a channel with 𝜃𝑤 = 0
on the flow rate, for 𝑏 = 1, 𝐿𝑒 = 1 and various 𝑎. Propagation upstream (𝑢𝑓 > 0) is impossible to the right of the turning points (open circles). Right plot: the critical flow rate,
𝑚𝑐 , plotted versus the outer wall temperature, 𝜃𝑤, calculated for 𝑎 = 3 and 5 with 𝐿𝑒 = 1 and 𝑏 = 1. The flame is blown away downstream for 𝑚 > 𝑚𝑐 .
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In the same manner reported in [28,31], the eigenvalue with a
argest real part, or the main eigenvalue, was calculated. If the real part
f this eigenvalue is positive, 𝜆𝑅 = ℜ(𝜆1) > 0, then the steady state
s unstable, and conversely, if it is non-positive, 𝜆𝑅 = ℜ(𝜆1) ≤ 0, the
teady state is linearly stable. The imaginary part of this eigenvalue,
𝐼 = ℑ(𝜆1), represents the frequency of oscillations. It is important
o underline that obtaining the main eigenvalue of the problem com-
letely answers the question of whether the corresponding steady-state
olution is stable or not.

. Steady-state axisymmetric flames

.1. Blow-off and flash-back conditions

Before describing the steady-state results, the following details
hould be noted. Although the temperature of the outer wall surface
s kept hot and constant for 𝑧 > 0, there is a critical value of the flow
ate above which the flame will be blown off downstream. This value
epends on the parameters of the problem, in particular on the channel
adius, 𝑎, and the heat transfer coefficient, 𝑏. To find this critical value,
t is necessary to consider the case of a freely propagating flame in

channel with a uniform temperature of the outer wall, namely, to
et the wall boundary condition given by Eq. (4) using 𝜃𝑊 (𝑧) = 𝜃𝑤,
here 𝜃𝑤 = 𝑐𝑜𝑛𝑠𝑡, for −∞ < 𝑧 < ∞. Writing down the governing
quations in a moving frame of reference, 𝑥 → 𝑥 + 𝑢𝑓 ⋅ 𝑡, and then
onsidering 𝜕∕𝜕𝑡 ≡ 0, the value of 𝑢𝑓 becomes an eigenvalue of the
roblem to be solved. The flashback point, or the value of the flow
ate 𝑚 = 𝑚𝑐 at which the flame is motionless relative to the wall,
𝑓 = 0, determines this critical value. Apparently, this problem was not
onsidered when setting the temperature profile on the outer surface
f the channel by means of Eq. (11). Nevertheless, the present study
oes not aim at a detailed study of this item. For adiabatic conditions
n the inner channel surface, (imposing 𝑏 = 0 in Eq. (4)) this problem
as considered, for example, in [28]. Here we confine ourselves only

o the case with 𝐿𝑒 = 1. Let us only note, however, that the blow-off
ondition essentially depends on the Lewis number and that non-
xisymmetric flames with faster propagation speeds can appear for
𝑒 < 1, e.g. [28,31,32].

Fig. 2 (right) illustrates the values of 𝑚𝑐 plotted versus 𝜃𝑤 calculated
ith 𝑎 = 3 and 𝑎 = 5 for 𝐿𝑒 = 1 and 𝑏 = 1. It can be seen that 𝑚𝑐

ncreases rapidly with increasing values of 𝜃𝑤. In the present study,
𝑤 is varied from 0.4 to 0.6 and the considered values of 𝑚 (about
< 𝑚 < 3) are appreciably lower than the critical values corresponding
5

o 𝜃𝑤 = 0.4 (𝑚 > 6). o
The external wall surface temperature is also maintained constant
cold) for 𝑧 < 0. Theoretically, the flame can move upstream (leftward)
f the flow rate is smaller than a certain value. Fig. 2 (left) shows
he axisymmetric combustion front speed calculated for 𝑏 = 1 and
𝑒 = 1 plotted as a function of the flow rate. All curves have a typical
-shape in which the lower branch of solutions is unstable and the
pper branch is stable. The turning points are marked with open circles.
he upstream flame propagation corresponds to 𝑢𝑓 > 0. There are no
olutions corresponding to the flame freely propagating upstream to
he right of the turning point. Thus, for 𝜃𝑤 = 0, the critical radius value
open circles) rapidly decreases. For 𝑎 ≈ 8.8, the turning point is located
t 𝑚 ≈ 0 and upstream flame propagation with flow rate 𝑚 ≥ 0 becomes
mpossible at 𝑎 < 8.8 (for 𝐿𝑒 = 1 and 𝑏 = 1). In the present study, for all
he considered cases, the radius is sufficiently small to avoid upstream
lame propagation.

.2. Steady-state results

Consider the steady-state axisymmetric solutions obtained imposing
∕𝜕𝑡 = 𝜕∕𝜕𝜑 = 0 in Eqs. (1)–(2). Anticipating the results of the stability
nalysis, not all of these solutions are stable. However, knowledge
f the steady-state solutions, even unstable ones, allows to better
nderstand the influence of parameters on the flame structure and
ynamics.

The changes in the flame structure with the Lewis number are
llustrated in Fig. 3 for 𝑚 = 1, 𝑎 = 5, 𝑏 = 1 and 𝜃𝑤 = 0.6. The colored
hadings show the temperature field while the isolines represent the
eaction rate plotted for 𝜔 = 0.1, 0.5, 1 and 2. It can be seen that for
𝑒 < 1 (upper plot) the peak of the reaction rate is located at a distance

rom the channel axis. Proximity to the wall leads to a decrease of the
emperature in the reaction zone. As the Lewis number increases, the
eaction rate peak moves toward the channel axis. Besides, at large
ewis numbers, the flame profile becomes almost planar near the axis,
s the case with 𝐿𝑒 = 4 shows (lower plot).

Fig. 4 shows, as functions of the flow rate 𝑚, the flame position
n the axis (left plot) and the maximum temperature reached in the
omain (right plot), calculated for 𝑎 = 5, 𝑏 = 1, 𝜃𝑤 = 0.6 and different
ewis numbers. It can be seen in the left figure that the curves 𝑧𝑓 versus
are qualitatively similar despite the difference in the Lewis number.
This non-monotonic behavior of the steady-state flame position with

gradual increase of the flow rate is not a new effect. For example, a
imilar behavior was observed for flames stabilized near a porous-plug
urner maintained at a constant temperature, see [33,34]. Intuitively,

ne would assume that as the flow rate increases, the steady-state flame
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𝜔

Fig. 3. Examples of temperature (color plot) and reaction rates (isolines) distributions calculated for 𝑚 = 1, 𝑎 = 5, 𝑏 = 1 and various Lewis number; the isolines are shown for
= 0.1, 0.5, 1 and 2.
Fig. 4. The position of the flame on the channel axis (left plot) and the maximum temperature reached in the domain (right plot) as a function of the flow rate, for 𝑎 = 5, 𝑏 = 1,
𝜃𝑤 = 0.6 and various Lewis numbers.
Fig. 5. Examples of temperature distributions for the cases 𝑏 = 0.02 (upper plot) and 𝑏 = 1 (lower plot), for 𝑚 = 3, 𝑎 = 5 and 𝐿𝑒 = 1.
position should move downstream monotonically due to the increasing
convection effect. However, a low flow rate provides only a small
amount of fuel delivering to the combustion zone. As a result, the
flame is weak and it can only be located quite far downstream from
the beginning of the heating zone due to heat losses. With an increase
6

i

of 𝑚, an increase in the fuel supply produces stronger flames which can
move upstream. However, with further increase in 𝑚, the flame again
shifts downstream due to increased convective drift.

The flame structures calculated for 𝑏 = 0.02 and 𝑏 = 1 are illustrated
n Fig. 5 for 𝑚 = 3, 𝑎 = 5 and 𝐿𝑒 = 1. The corresponding temperature
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a

a

Fig. 6. Temperature and mass fraction distributions along the channel axis (solid lines)
nd along the wall (dashed lines) calculated for 𝑏 = 0.02 and 𝑏 = 1; the dash-dotted

lines show the temperature on the outer side of the wall.

and mass fraction distributions along the channel axis (solid lines) and
along the wall (dashed lines) are shown in Fig. 6. As expected, at
low values of 𝑏, a longer distance is required to reach a temperature
sufficient for mixture burning.

The influence of other parameters on the steady-state flame position
was also investigated. Fig. 7 (left plot) presents 𝑧𝑓 as a function of
the flow rate 𝑚 for different values of the coefficient 𝑏. All curves
are plotted for 𝑎 = 5, 𝜃𝑤 = 0.6 and 𝐿𝑒 = 1. It can be seen that
with a decrease in 𝑏, the minimum value of the flame position also
decreases, approaching the beginning of the heating zone 𝑧 = 0. The
flame position 𝑧𝑓 versus the flow rate 𝑚 is drawn in Fig. 7 (right plot)
for different values of 𝜃𝑤, for 𝑎 = 5, 𝐿𝑒 = 1 and 𝑏 = 0.02. As expected,
as the heating temperature decreases, the flame shifts downstream.

It should be noted that at low values of 𝜃𝑤, in addition to the
combustion mode characterized by a relatively narrow reaction zone
of fuel consumption, there is another steady-state solution of Eqs. (1)–
(2) characterized by a very slow chemical reaction. Strictly speaking,
this mode cannot be classified as a combustion regime, although the
reaction rate also reaches its maximum value along the channel axis.
7

This branch is indicated with a dashed line in Fig. 8 for 𝜃𝑤 = 0.4
where the standard combustion mode is also shown by a solid line. The
temperature and mass fraction profiles along the axis corresponding to
the open circles in Fig. 8 are drawn in Fig. 9. The upper plot illustrates
the combustion regime corresponding to the circle on the solid curve in
Fig. 8, the normal combustion mode, while the lower plot illustrates a
low reaction rate mode corresponding to the circle on the dashed line.
It is evident that a slow fuel conversion into products is presented for
the latter case. It is interesting to note that for the combustion regime
illustrated in the upper plot of Fig. 9, incomplete fuel consumption
occurs due to the low temperature in the reaction region near the wall.
Apparently, the regime with a slow chemical reaction at low heating
temperatures can be classified as a cold flame. It is also obvious that
this solution must strongly depend on the Zel’dovich number.

Quite often in studies of flame dynamics in channels, the narrow-
channel approximation is used. As the dimensionless channel radius
𝑎 = 𝑅∕𝛿𝑇 decreases, the solutions of Eqs. (1)–(2) become independent
on 𝑟, approaching the limit case 𝑎 → 0 described by Eqs. (12)–(13).
Fig. 10 shows with solid lines the dependence of the position of the
flame on the channel axis, 𝑧𝑓 , versus 𝑚 for various decreasing values
of 𝑎. The curves for 𝑧𝑤𝑓 , the position of the flame near the channel wall,
are drawn with a long-dashed line for 𝑎 = 3, with a dashed line for
𝑎 = 2 and with a dash-dotted line for 𝑎 = 1. The open triangles in this
figure show the flame position in the limiting case 𝑎 → 0 (for which
𝑧𝑓 = 𝑧𝑤𝑓 ). This result demonstrates that for 𝑎 ≲ 1 the difference of the
flame positions at the axis and at the wall becomes really small and the
one-dimensional approximation given by Eqs. (12)–(13) describes the
flame structure satisfactorily.

5. Stability analysis versus unsteady calculations

Although the steady-state axisymmetric flame structures described
above appear to be qualitatively similar for different Lewis numbers as
the flow rate changes, the stability properties turn out to be noticeably
different. To facilitate understanding, it is worth starting the presen-
tation with the case of Lewis number equal to unity when there is no
differential diffusion effect.

5.1. Flames with 𝐿𝑒 = 1

As the dimensionless channel radius decreases, not only the steady-
state solutions approach that of the 𝑎 → 0 limit based on Eqs. (12)–(13),
Fig. 7. Left plot: the flame position 𝑧𝑓 as a function of the flow rate 𝑚 for different values of 𝑏; all curves are plotted for 𝑎 = 5, 𝜃𝑤 = 0.6 and 𝐿𝑒 = 1. Right plot: the flame position
s a function of 𝑚 for various 𝜃𝑤, plotted for 𝑎 = 5, 𝑏 = 0.02 and 𝐿𝑒 = 1.
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Fig. 8. Dependence of the position of the maximum reaction rate 𝜔𝑚𝑎𝑥 on the channel
axis for the combustion mode (solid line) and the slow reaction mode (dashed line),
for 𝑎 = 5, 𝑏 = 1, 𝐿𝑒 = 1 and 𝜃𝑤 = 0.4.

Fig. 9. Examples of the combustion mode (upper plot) and the slow reaction rate
ode (lower plot) calculated for 𝑚 = 0.3, 𝑏 = 1 and 𝜃𝑤 = 0.4. Solid and dashed lines

orrespond to distributions along the channel axis and near the wall, respectively.

s illustrated in Fig. 10. This also happens with the main eigenvalue
orresponding to axisymmetric perturbations, 𝑛 = 0. The dependencies
f 𝜆𝑅 on 𝑚 are shown for perturbations with azimuthal wave numbers
= 0 and 𝑛 = 1, see Eq. (17), on Fig. 11. All curves were calculated

or 𝐿𝑒 = 1, 𝑏 = 1 and decreasing values of 𝑎. These curves are
ompared with that for the limiting case 𝑎 → 0. One can see that as 𝑎
ncreases, the real part of the main eigenvalue, 𝜆𝑅 calculated for 𝑛 ⩾ 1

becomes negative and the mode 𝑛 = 0 determines the flame stability.
Observe also that the narrow channel limit model (marked as 𝑎 → 0)
approximates satisfactorily 𝜆𝑅 for the most unstable mode as 𝑎 ≲ 1
already. This allows to investigate effectively the stability properties
within the one dimensional approximation. It should be remarked that
this comparison is possible because Eq. (5) was used to define the heat
transfer coefficient 𝑏.

The curves in Fig. 11 show that within a short segment of small
values of 𝑚 the values of 𝜆 remain real and negative. This segment is
plotted in the inset of Fig. 11 with a dashed line for 𝑎 = 1. As the flow
rate increases, 𝜆 becomes complex (marked with an open circle in the
inset), and, after this, 𝜆𝑅 becomes positive: the steady-state solution
turns to be unstable. However with a further increase in the flow rate,
the solution is re-stabilized. The re-stabilization points are marked in
8

t

Fig. 10. The variation with 𝑚 of the flame position on the axis 𝑧𝑓 (solid lines for all 𝑎)
nd that at the channel wall 𝑧𝑤𝑓 (long-dashed line for 𝑎 = 3, dashed line for 𝑎 = 2 and
ash-dotted line for 𝑎 = 1). The open triangles show the flame position in the limiting
ase of the narrow channel approximation based on Eqs. (12)–(13).

Fig. 11. Real parts of the main eigenvalues versus the flow rate calculated for channels
with different cross-section radii and for the limiting case 𝑎 → 0; for 𝐿𝑒 = 1, 𝑏 = 1 and
𝑤 = 0.6. The inset shows the behavior of 𝜆𝑅 at small 𝑚 for 𝑎 = 1 and 𝑛 = 0. For purely
eal values of 𝜆, a dashed line is used, for 𝜆𝑅 with 𝜆𝐼 > 0, solid lines are used.

ig. 11 with open circles. It should be noted that the re-stabilization
low rate increases rapidly with increasing channel radius and in order
o get this effect at higher radii a significantly large value of 𝑚 should
e applied.

Numerical 3D simulations carried out using non-axisymmetric ini-
ial conditions revealed that for all cases with 𝐿𝑒 = 1 (at least for all
he cases considered in this paper) the temperature and mass fraction
istributions become axisymmetric after some time. This is explained
y the fact that functions 𝐹𝑛 defined by Eqs. (15)–(16) become about
10−12 for 𝑛 ≥ 1. Because of this, only the results of the axisymmetric

imulations are presented below for 𝐿𝑒 = 1.

The time-dependent flame dynamics calculated for 𝑚 = 0.3, 2 and 3
s presented in Fig. 12 for 𝑎 = 1, 𝐿𝑒 = 1, 𝑏 = 1 and 𝜃𝑤 = 0.6 illustrating
he re-stabilization effect. These calculations are in good agreement
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Fig. 12. Examples of time-dependent flame behavior illustrating the re-stabilization effect shown in Fig. 11, for 𝑎 = 1, 𝐿𝑒 = 1, 𝑏 = 1 and 𝜃𝑤 = 0.6.
Fig. 13. Real (left plot) and imaginary (right plot) parts of the main eigenvalue calculated for the first four azimuthal wave numbers as a function of the flow rate 𝑚, for 𝑎 = 5,
= 1, 𝜃𝑤 = 0.6 and 𝐿𝑒 = 1. The segments on the left figure corresponding to 𝜆𝐼 = 0 are drawn with dashed lines and the transition points of the eigenvalue from an imaginary to
real number are marked with open circles. The black circles in the right plot show the oscillation frequencies obtained from time-dependent simulations based on Eqs. (1)–(2).

he vertical dash-dotted line shows the stability boundary.
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ith the results of the linear stability analysis: the flame is stable at
mall 𝑚, then becomes oscillatory as 𝑚 increases, and finally becomes
table again at sufficiently high flow rates.

Fig. 13 shows the real (left plot) and imaginary (right plot) parts of
he main eigenvalue as functions of the flow rate 𝑚 for different modes
ith 𝑛 = 0, 1, 2 and 3. All curves are calculated for larger channel radii,
= 5, 𝑏 = 1 and 𝜃𝑤 = 0.6. The segments shown with dashed and solid

ines in the left plot correspond to the eigenvalues with 𝜆𝐼 = 0 and
𝐼 > 0, respectively. Open circles indicate the transition points.

This figure shows that, as for small 𝑎, the steady-state axisymmetric
olution is stable at low flow rates. With a gradual increase in 𝑚, the
igenvalue for 𝑛 = 0 first becomes imaginary and then its real part
asses to the right half-plane of the complex 𝜆 plane, that is, Hopf’s
9

ifurcation occurs. This critical flow rate value is marked by vertical
ash-dotted lines on both figures. One can see that 𝜆𝑅 for eigenvalues
ith 𝑛 > 0 becomes also positive with increasing values of 𝑚, but

ts magnitude remains always less than that for 𝑛 = 0. It means that
he modes with 𝑛 > 0 are less unstable than the axisymmetric mode
= 0. Another distinctive feature that appears at large radii is that

he principal eigenvalues become purely real for sufficiently high 𝑚, as
hown by the dashed lines in Fig. 13.

The real part of the main eigenvalue of the axisymmetric mode is
iven also in Fig. 14 for 𝑎 = 3 and 𝑎 = 8 showing that 𝜆𝑅 calculated for
= 0 exceeds that for 𝑛 > 0. These results indicate that for 𝐿𝑒 = 1, the

flame oscillations are determined by the axisymmetric mode 𝑛 = 0, at
least for the considered range of parameters.
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Fig. 14. The main eigenvalues real parts for different modes as a function of flow rate calculated for 𝐿𝑒 = 1, 𝑏 = 1, 𝑎 = 3 (left panel) and 𝑎 = 8 (right panel). Dashed lines
correspond to purely real eigenvalues, for solid lines 𝜆𝐼 ≠ 0.
Fig. 15. Time histories of the flame position on the channel axis and the maximum
temperature in the domain for the case with 𝐿𝑒 = 1, 𝑎 = 5 and 𝑏 = 1. The curves in
the top two plots are calculated for 𝑚 = 0.5 (close to the lower limit of instability) and
in the bottom two plots for 𝑚 = 3 (in the zone with a purely real eigenvalue).

The results obtained for circular channels differ from those for
planar channels (slots) reported in [25]. In that paper, it was found
that in the planar channel when the flow rate exceeds a certain critical
value, the non-symmetric perturbations of flames with 𝐿𝑒 = 1 become
more unstable than the symmetric ones. This led to the emergence
of non-symmetric flame dynamics in a slot. If we draw an analogy
associating the modes with 𝑛 ≥ 1 (in a circular channel) with the non-
symmetric modes in a slot, then one can see a clear difference between
these two cases.

The time histories of the flame position and the maximum tem-
perature reached in the domain are shown in Fig. 15 for 𝑚 = 0.5
and 𝑚 = 3 calculated with 𝑎 = 5, 𝑏 = 1, 𝐿𝑒 = 1 and 𝜃𝑤 = 0.6.
The oscillation frequencies calculated numerically for these and other
flow rates are shown in Fig. 13 (right plot) with dark circles. For the
10
first case, 𝑚 = 0.5, the flow rate exceeds slightly the critical value
above which the flame becomes unstable. Although the amplitude of
the oscillations is noticeable, the frequency evaluated using the time-
dependent simulations is close to 𝜆𝐼 obtained from the linear stability
analysis. However, as the flow rate increases, an appreciable difference
appears between the frequencies of time dependent simulations and 𝜆𝐼 .
This is especially evident for the case with 𝑚 = 3 for which 𝜆𝐼 = 0 for
the 𝑛 = 0 mode, and, in contradiction, the flame shows oscillations
in the simulations. This can be attributed to a repetitive extinction and
ignition regime (FREI) when the flame is first carried away downstream
from the beginning of the heating zone, almost blows away, but then
a process of re-ignition occurs followed by a flame motion upstream.
Figs. 13 and 15 clearly indicate that the flame instability obtained from
the linear analysis, namely when we have 𝜆𝑅 > 0, only indicates that
the steady-state solution is unstable. The specific implementation of
unstable dynamics cannot be predicted.

5.2. Flames with 𝐿𝑒 < 1

The instabilities for flames with 𝐿𝑒 = 1 described above arise solely
due to the channel heating. Indeed, the Darrieus–Landau instability
does not take place within the constant density model and the differ-
ential diffusion effect is also excluded for 𝐿𝑒 = 1. However this is not
the case for flames with the Lewis number not equal to one. It is well
known that thermo-diffusive instabilities of a planar flame front lead to
a cellular structure for 𝐿𝑒 < 1 with no oscillations: the imaginary part of
the eigenvalue remains always equal to zero, 𝜆𝐼 = 0, see, for example,
[35,36]. The results presented below show that in the case of flames in
channels with heating, a combination of the cellular instability and the
heating-induced instability occurs.

Fig. 16 shows 𝜆𝑅 calculated for various modes with different 𝑛
plotted versus the flow rate for 𝑎 = 5, 𝐿𝑒 = 0.7 and two values of
the heat exchange coefficient, 𝑏 = 0.3 (left plot) and 𝑏 = 1 (right plot).
As in previous figures, solid lines indicate the eigenvalues with 𝜆𝐼 ≠ 0
while dashed lines correspond to a purely real eigenvalue. It can be
seen that with an increase in the flow rate the axisymmetrical mode,
𝑛 = 0, becomes unstable first and that this mode has an oscillatory
nature (𝜆𝐼 ≠ 0). However, with an increase in the flow rate, cellular
instability modes (𝜆𝐼 = 0) with 𝑛 > 0 begin to prevail and the wave
number of the most unstable mode increases with 𝑚. It is interesting
that for 𝑏 = 0.3 (left plot) the mode with 𝑛 = 4 becomes the most
unstable one, whereas for 𝑏 = 1 the most unstable mode has 𝑛 = 3.
As various calculations showed, this trend (an increase of the wave
number of the most unstable mode with 𝑚) has a universal character

for flames with 𝐿𝑒 < 1.
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Fig. 16. Real parts of the main eigenvalue for different modes as a function of flow rate calculated for 𝐿𝑒 = 0.7, 𝑎 = 5, 𝑏 = 0.3 (left panel) and 𝑏 = 1 (right panel). Dashed lines
correspond to purely real eigenvalues, for solid lines 𝜆𝐼 ≠ 0.
Fig. 17. Real parts of the main eigenvalue for different modes as a function of flow rate calculated for 𝐿𝑒 = 0.5, 𝑎 = 5, 𝑏 = 0.1 (left panel) and 𝑏 = 1 (right panel). Dashed lines
correspond to purely real eigenvalues, for solid lines 𝜆𝐼 ≠ 0.
w

Fig. 18. Time history of the flame position in the center of the channel, 𝑧𝑓 , for 𝑚 = 1.3,
= 5, 𝑏 = 1, 𝐿𝑒 = 0.5. Calculations were initiated from the axisymmetric steady-

tate subjected to two different small non-axisymmetric perturbations imposed on the
emperature field. Open circles and triangles correspond to the distributions shown in
igs. 19 and 20.

It can be expected that at even lower Lewis numbers, cellular
nstability becomes dominant. This is illustrated in Fig. 17 for 𝐿𝑒 = 0.5
here the real parts of principal eigenvalues are shown for different
odes calculated for 𝑎 = 5. The left plot corresponds to a low value

f the heat transfer coefficient, 𝑏 = 0.1, and the right one to 𝑏 = 1.
ne can see in the left figure that almost all curves (those shown with
ashed lines) correspond to purely real eigenvalues, 𝜆𝐼 = 0. The only
xceptions are the modes 𝑛 = 0 and 𝑛 = 1 for which there are segments
11
ith 𝜆𝐼 ≠ 0 (solid lines), but these modes do not affect the linear
stability since 𝜆𝑅 < 0.

The curves shown in the right plot of Fig. 17 were calculated for a
larger value of the heat transfer coefficient, 𝑏 = 1. It can be seen that the
loss of flame stability occurs for increasing 𝑚 due to the cellular modes
(𝜆𝐼 = 0). Nevertheless, the figure shows also that the axisymmetric
(𝑛 = 0) perturbation mode still has also 𝜆𝑅 > 0 and 𝜆𝐼 ≠ 1 for the
corresponding segment is drawn with a solid line. This means that the
cellular instability and the axisymmetric oscillatory instability occur
simultaneously.

The numerical results based on three-dimensional simulations pre-
sented below showed that for 𝐿𝑒 < 1 a multiplicity of time-dependent
solutions can take place. When this multiplicity happens, the flame dy-
namics depends on the initial conditions. Obviously, it is impossible to
enumerate all possible situations. For this reason, the results presented
below perhaps cover only a subset of possible flame dynamics.

Fig. 18 presents two cases of the flame position history (the position
of the point with maximum 𝜔 at the channel axis) for 𝑚 = 1.3,
𝑎 = 5, 𝑏 = 1 and 𝐿𝑒 = 0.5. As initial condition for the calculations,
an axisymmetric steady-state distribution for the mass fraction and
temperature was chosen to which two different small temperature
perturbations were superimposed. The smallness of the perturbation
amplitude ensures that during a certain period of time the deviation
of the flame position from its steady state value remains small, as can
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Fig. 19. An illustration of the cellular structure of the flame shown for 𝜃 − 𝜃 appearing during the flame oscillation process; distributions corresponding to the points indicated by
the open circles in Fig. 18.

Fig. 20. An illustration of the cellular structure of the flame shown for 𝜃 − 𝜃 appearing during the flame oscillation process; distributions corresponding to the points indicated by
the open triangles in Fig. 18.
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Fig. 21. An example of two different flame dynamics identified for the same set of parameters. The top plot shows the oscillatory dynamics, in the bottom plot the flame ceases
to oscillate and the cellular structure becomes dominant.
Fig. 22. Example of temperature iso-surface and temperature distribution in section 𝑧 = 𝑧𝑓 ; left plots illustrate the oscillatory dynamics, right plots show the time independent
cellular structure.
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be seen from the figure at 𝑡 ≲ 10. It is also seen that the further
dynamics of the flame becomes different (for 10 ≲ 𝑡 ≲ 150) for these two
cases. At large times, the oscillations of 𝑧𝑓 become similar in amplitude.
However, a more detailed analysis showed that the flame structures are
different for these two cases.

In order to highlight the differences in the structure of the flames
more clearly, Figs. 19 and 20 show the distributions of 𝜃 − 𝜃, where 𝜃
s the 𝜑-averaged temperature defined in Eq. (15). All plots are drawn
or sections 𝑧 = 𝑧𝑓 (𝑡) and correspond to open circles and open triangles
ndicated in Fig. 18. It is clearly seen that the flame structures reveal
wo different types of cells for these two cases. Indeed, Fig. 19 shows
he structure corresponding to the 𝑛 = 1 mode, while in Fig. 20 the
ellular structure corresponds to 𝑛 = 2.
13
Although the structures of the flames obtained for 𝑚 = 1.3 are
clearly different, the values of 𝜃− �̄� shown in Figs. 19 and 20 are quite
mall. However, it turns out that for larger values of 𝑚, the differences
n structure and dynamics can be more significant. Fig. 21 shows two
ases obtained for 𝑚 = 1.5. The upper plot demonstrates the oscillatory
lame dynamics while the lower case shows the dynamics leading to

time-independent cell structure after a transitional period of time.
he corresponding temperature distribution snapshots for these two
ases are shown in Fig. 22, where the temperature iso-surfaces and
emperature distributions are shown. The left drawings illustrate the
scillatory mode in which the cellular structure of the flame is also
learly visible while the right plots show the final four-cell steady-state
ime-independent structure.
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Fig. 23. Real parts of the principal eigenvalue plotted versus 𝑚 for various 𝑏 calculated in the limit 𝑎 → 0, for 𝐿𝑒 = 1 (left plot) and 𝐿𝑒 = 4 (right plot). Dashed lines correspond
o purely real eigenvalues, for solid lines 𝜆𝐼 ≠ 0.
Fig. 24. Time histories of the flame position for the case of 𝐿𝑒 = 4, 𝑏 = 0.3 and 𝑎 → 0
t different values of the flow rate 𝑚.

.3. Flames with 𝐿𝑒 > 1

Just as for flames with 𝐿𝑒 < 1, when the oscillatory instability
aused by the heating of the channel walls is mixed with the intrinsic
ellular thermal-diffusion instability that occurs at low Lewis numbers,
or flames with 𝐿𝑒 > 1 the flame instability caused by heating is
ombined with the intrinsic oscillatory thermo-diffusive instability. As
hown below, this effect can cause chaotic flame behavior.

Numerical three-dimensional simulations carried out for 𝐿𝑒 > 1
howed that, as for cases with 𝐿𝑒 = 1, the resulting flames turn out
o be axisymmetric, at least in the considered range of parameters. For
his reason, the results obtained for Lewis number greater than one are
ocused below on axisymmetric flames.

Fig. 23 compares the stability curves obtained in the limit 𝑎 → 0
or 𝐿𝑒 = 1 (left plot) and 𝐿𝑒 = 4 (right plot) and various 𝑏. Solid
14
Fig. 25. The first return map of the relative maximum 𝑧𝑓 plotted for 𝐿𝑒 = 4, 𝑏 = 0.3 and
various 𝑚. The figure illustrates the appearance of the forward and reverse Feigenbaum
cascades with a gradual increase in the flow rate.

curves correspond to eigenvalues with nonzero imaginary part, while
for dashed curves 𝜆𝐼 = 0. The transition points are indicated by open
circles. It can be seen that the stability curves look similar, although
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Fig. 26. The first return map of the relative maximum 𝑧𝑓 plotted for 𝐿𝑒 = 4, 𝑏 = 0.3, 𝑚 = 1.77 and different values of the parameter 𝓁 appearing in Eq. (10) which determines
the outer wall temperature profile 𝜃𝑊 (𝑧).
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one should note the appearance of an interval of real eigenvalues for
𝑏 = 0.5 and 𝐿𝑒 = 4.

Fig. 24 shows examples of the time histories of the flame position
calculated for 𝐿𝑒 = 4, 𝑏 = 0.3 and three values of the flow rate. It can be
seen that at 𝑚 = 1.7 and 𝑚 = 1.83 an oscillatory dynamics of the flame
is observed, while for an intermediate value 𝑚 = 1.77 the behavior of
the flame is disordered.

Variations of the flame dynamics are investigated with the first
return map technique. Using the dependence of the flame position
versus time the series of the local maxima of 𝑧𝑓 are identified, {𝑧𝑓𝑛, 𝑛 =
, 2,…}, where 𝑛 is the maximum number. The dependence 𝑧𝑓 (𝑛+1)
ersus 𝑧𝑓𝑛 is plotted in Fig. 25 for 𝑏 = 0.3 and various 𝑚. These plots
ere created using 𝑛 > 100 after the starting of simulations, in order to
llow the flame dynamics to approach the corresponding attractor.

Fig. 25 shows only the selected first return cards. However, it
an be seen that the simple periodic dynamics observed for 𝑚 = 1.7

experiences successive bifurcations of the Feigenbaum cycle doubling
with a gradual increase in the flow rate. At 𝑚 = 1.77, the first return
map becomes continuous (four continuous parts), indicating chaotic
behavior. However, with a further increase in the flow rate, the reverse
Feigenbaum cascade occurs and the flame dynamics returns to simple
oscillatory behavior. It is interesting to note that the stability curve
shown in Fig. 23 for 𝑏 = 0.3 does not have any features in the vicinity
of the value 𝑚 = 1.77.

In order to be sure that the emergence of a chaotic flame behavior
is a stable trend, and is not caused, for example, by a specific profile
of the outer wall temperature, numerical simulations were carried out
imposing the outer wall temperature according to Eq. (10). In this case,
15
the temperature profile is continuous and the width of the temperature
change interval is determined by the parameter 𝓁. Fig. 26 compares
the first return maps for various 𝓁 calculated for 𝐿𝑒 = 4 and 𝑚 = 1.77.
t is clearly seen that the chaotic behavior of the flame is enhanced
n a certain sense, namely, for 𝓁 = 2, the first return map consists of
wo continuous parts (the upper left plot), and not four, as for the case
ith 𝓁 = 0. However, for larger values of 𝓁, the reverse cascade of cycle
oubling occurs, as can be seen from the other figures in Fig. 26.

. Conclusions

Combustion problems are typically non-linear, a characteristic linked
o the non-linear chemical reaction rate dependence on temperature, or
he non-linearity of the flame–wall interactions, among other effects. As
consequence of non-linearity, several steady and dynamic modes may
ppear as solutions of the problem for a single set of parameters, and
everal of them may be simultaneously stable. The actual realization
f one or another of the stable modes depends on the initial condi-
ions. For this reason, the experimental verification of the existence
f multiple modes might be difficult, given that initial conditions (for
xample, ignition) are not always easy to control. This is why the
ole of mathematical modeling becomes important in the study of the
ultiplicity phenomenon.

In this work, we showed that multiple modes can occur even in
he fairly simple configuration of a flame in a channel with a partially
eated wall. For flames with fuel Lewis number smaller than one, the
ombination of cellular instabilities with the instability caused by the
eating of the channel walls can lead to several different simultaneous
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dynamic regimes. For Lewis number greater than one, oscillations
induced by thermo-diffusive instabilities and from the heating of the
wall result in complex oscillatory dynamics. In this last case, we showed
that the oscillatory dynamics can even become chaotic, at least for a
narrow parametric region.

We should mention that a number of simplifications were made in
the study, in order to obtain a relatively simple model for which a
parametric study together with a stability analysis were feasible. The
authors believe that if some phenomena are observed in simplified
models, then they are likely to occur within more complete models.
A recent example of this is our study of flame symmetry breaking in
circular channels in [28,32]. This phenomenon was first studied within
the framework of a constant density model in [28], and then it was
shown that for a variable density model based on the full Navier–Stokes
equations qualitatively similar results were obtained [32]. The present
study demonstrates clearly that when the channel is partially heated,
the multiple combustion modes can appear. It can be expected that,
when the simplifying assumptions are relaxed, at least some of these
effects will be preserved. This will be the object of further studies.
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