REF. EXTERNA

PRODUCTION AND CHARACTERIZATION OF IRRADIATED NUCLEAR FUEL SURROGATES BY DRY POWDER METHOD (IONMAT PROJECT. SUBTASK 1.1)

DIVISIÓN DE FISIÓN NUCLEAR

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

iemat

DIVISIÓN DE FISIÓN NUCLEAR

TITULO: Production and characterization of irradiated nuclear fuel surrogates by dry powder method (IONMAT project. Subtask 1.1)

REF. EXTERNA

AUTORES: N. Rodríguez-Villagra, J.M. Elorrieta; A. Milena-Pérez; S. Fernández-Carretero; A. Nuñez; L.J. Bonales; L. Gutiérrez; S. Durán; L. Anta; H. Galán

ABSTRACT:

Here, a series of Eu-doped (0.02 wt.% Eu_2O_3 , 0.2 wt.% Eu_2O_3 , 2 wt.% Eu_2O_3) Zr-doped UO₂ (20 wt.% ZrO₂, 40 wt.% ZrO₂, 80 wt.% ZrO₂, and 100 wt.% ZrO₂) and undoped UO₂ pellets, were prepared and characterized. Samples were obtained by pressing the powder mixtures of precursor oxide powders in weighted amounts, and then sintered under reducing atmosphere. A detailed characterization of the pellets was carried out.

	NOMBRE	FIRMA	FECHA	
Preparado por:	N. Rodríguez- Villagra			
Revisado por:	J.M. Elorrieta			
Conf por A. C.:	S. Fernández			FECHA DE EMISIÓN
Aprobado por:	E.M. González			

Ciemat	INFORME DFN/RA-05/SP-24	HOJA 2 DE 31		
DIVISIÓN DE FISIÓN NUCLEAR	REF. EXTERNA	REVISIÓN 0 FECHA 12/04/2024		

INDEX

1.	INTRODUCTION	5
2.	EXPERIMENTAL PROCEDURE. EQUIPMENT AND EXPERIMENTAI TECHNIQUES	_ 9
3.	SAMPLES PREPARATION	9
3.1.	UO ₂ -ZrO ₂ pellets	9
3.2.	UO ₂ -Eu ₂ O ₃ pellets	12
4.	EFFECT OF Zr CONTENT ON UO2: CHARACTERIZATION	15
4.1.	SEM, GRAIN SIZE AND SPECIFIC SURFACE AREA	16
4.2.	XRD	17
4.3.	RAMAN SPECTROSCOPY	19
5.	EFFECT OF Eu CONTENT ON UO2: CHARACTERIZATION	20
5.1.	SEM, GRAIN SIZE AND SPECIFIC SURFACE AREA	21
5.2.	XRD	22
5.3.	RAMAN SPECTROSCOPY	23
6.	CONCLUSIONS	25
7.	ACKNOWLEDGEMENTS	26
8.	REFERENCES	27

REF. EXTERNA

INDEX OF FIGURES

Figure 1 Schematic representation of the microstructure of SNF pellet and the distribution of FP, and transuranic elements after irradiation in a reactor. Figure taken from Ewing [19] and adapted from [33, 34]7
Figure 2 Raman spectra of starting UO_2 (a) and ZrO_2 (b)10
Figure 3 XRD patterns of starting UO ₂ (a) and ZrO ₂ (b), together with their respective reference data.
Figure 4 SEM images of starting powders of a) UO ₂ and b) ZrO ₂ 11
Figure 5 Raman spectra of starting UO_2 (a) and Eu_2O_3 (b)13
Figure 6 XRD patterns of starting UO ₂ (a) and Eu ₂ O ₃ (b), together with their respective reference data
Figure 7 SEM images of starting powders of a) UO ₂ and b) Eu ₂ O ₃ 14
Figure 8 Photographs of the sintered pellets of: a) 100 wt.% UO ₂ , b) UO ₂ - 20 wt.% ZrO ₂ , c) UO ₂ - 40 wt.% ZrO ₂ , d) UO ₂ -80 wt.% ZrO ₂ and e) 100 wt.% ZrO ₂ 15
Figure 9 SEM images of the prepared samples: a) 100 wt.% UO ₂ , b) UO ₂ - 20 wt.% ZrO ₂ , c) UO ₂ - 40 wt.% ZrO ₂ , d) UO ₂ -80 wt.% ZrO ₂ and e) 100 wt.% ZrO ₂ 16
Figure 10 Crystal structures of ZrO ₂ and its transformation with temperature: a) monoclinic ($a\neq b\neq c$; $\alpha=\gamma=90^{\circ}\neq\beta$), b) tetragonal ($a=b\neq c$; $\alpha=\beta=\gamma=90^{\circ}$), and c) cubic ($a=b=c$; $\alpha=\beta=\gamma=90^{\circ}$). (taken from Kongkiatkamon <i>et al.</i> [53] and adapted from Sorrentino <i>et al.</i> [54]) [55]17
Figure 11 XRD patterns of the sintered pellets: UO ₂ , UO ₂ - 20 wt.% ZrO ₂ , UO ₂ -40 wt.% ZrO ₂ , UO ₂ - 80 wt.% ZrO ₂ , 100 wt.% ZrO ₂
Figure 12 Raman spectra of the sintered pellets: UO ₂ , UO ₂ - 20 wt.% ZrO ₂ , UO ₂ -40 wt.% ZrO ₂ , UO ₂ - 80 wt.% ZrO ₂ , ZrO ₂ 20
Figure 13 Photographs of the sintered pellets of: a) UO_2 , b) $0.02 \text{ wt.\% } Eu_2O_3 - UO_2$, c) $0.2 \text{ wt.\% } Eu_2O_3 - UO_2$, and d) $2 \text{ wt.\% } Eu_2O_3 - UO_2$
Figure 14 SEM images of the prepared samples: a) UO_2 , b) $0.02 \text{ wt.\% } Eu_2O_3 - UO_2$, c) $0.2 \text{ wt.\% } Eu_2O_3 - UO_2$, and d) $2 \text{ wt.\% } Eu_2O_3 - UO_2$
Figure 15 XRD patterns of the UO ₂ pellets containing 0 wt.%, 0.02 wt.%, 0.2 wt.% and 2 wt.% Eu ₂ O ₃ (a), zoom on the (111) reflection (b), and lattice parameter evolution (c) of the sintered pellets
Figure 16 Normalized Raman spectra of UO ₂ , UO ₂ -0.02 wt.% Eu ₂ O ₃ , UO ₂ -0.2 wt.% Eu ₂ O ₃ , UO ₂ -2 wt.% Eu ₂ O ₃

INDEX OF TABLES

Table I Overview of the composition of various cladding Zr-based alloys used commercially in thermal power reactors (taken from [4] and adapted from [5-7])
Table II Matheda and techniques used in this project
Table II Methods and techniques used in this project
Table III Raw material characterization of UO_2 and ZrO_2 10
Table IV Definition of samples of Zr-doped UO2
Table V Raw material characterization of UO_2 and Eu_2O_3 12
Table VI Raman modes characteristic of starting powders used in this work
Table VII Definition of samples of Eu-doped UO ₂ (<i>x</i> in expressed as per-unit atomic)14
Table VIII Specifications of the as-sintered Zr-doped and undoped UO_2 pellets15
Table IX Average grain size and SSA of the Zr-doped and undoped UO ₂ pellets16
Table X Lattice parameters and identified phases of the as-sintered Zr-doped and undoped UO2 pellets. 19
Table XI Density values of the as-sintered Eu-doped and undoped UO ₂ pellets21
Table XII Average grain size and SSA of the Eu-doped and undoped UO ₂ pellets

REF. EXTERNA

1. INTRODUCTION

A main objective of the High Level Waste Unit (HLWU) of CIEMAT is to reduce uncertainties in Spent Nuclear Fuel (SNF) properties and behaviour in predisposal phase (treatment, conditioning, transport and interim storage) and after disposal closure. Particularly, it aims to understand the most relevant processes driving the chemical evolution of SNF under normal operation and postulated accident scenarios, to identify relevant or typical bounding cases at time of each stage.

The majority of commercial nuclear reactors in the world today are Light Water Reactors (LWRs), either Pressurized Water Reactors (PWRs) or Boiling Water Reactors (BWRs). The nuclear fuel used in these reactors is in the form of UO₂ pellets contained in zirconium-based alloy rods [1]. These tubes, known as nuclear fuel cladding, protect the fuel pellets and constitute the first external barrier against the release of Fission Products (FP) into the environment [2], since the first barrier is the own fuel pellet. Zirconium alloys are extensively used for nuclear fuel cladding because of their small neutron absorption crosssection, good resistance to high-temperature corrosion, adequate mechanical properties, and resistance to radiation damage [3]. Table I (taken from [4] and adpated from [5-7]) sums up the cladding alloys that are commercially used and their compositions [5-8].

Table I Overview of the composition of various cladding Zr-based alloys used commercially in thermal power reactors (taken from [4] and adapted from [5-7]).

Allow		Wt.%			Immunities	Structure	Reactor			
Anoy	Sn	Fe	Cr	Ni	0	Nb	impuriues	Structure	utilization	
Zircaloy-2	1.2– 1.7	0.07- 0.2	0.05-0.15	0.03-0.08	0.09–0.16	-	Hf	Recrystallized	BWR	
Zircaloy-4	1.2– 1.7	0.18– 0.24	0.07–0.13	_	0.09–0.16	_	Hf	Cold Work Stress Relieved, Recrystallized	PHWR & PWR	
ZIRLO	0.80- 1.1	0.1	-	-	0.105-0.145	0.99–1.01		Cold Work Stress Relieved	PWR	
Optimized ZIRLO	0.67	0.1	-	-	0.105-0.145	1		Partially Recrystallized	PWR	
M5	-	0.03- 0.05	0.015	-	0.118-0.148	1		Recrystallized	PWR	
E110	1	0.014	-	0.0035	0.06	1		Recrystallized	PWR, RBMK & VVER	

During in-reactor operation, fluctuations (transients) in the reactor power may occur, which are related to radiation effects, thermal expansion, and microstructural alterations, *e.g.* the production of gaseous elements (mainly Xe and Kr) and other FP, concurrently inducing dimensional changes and swelling of the fuel pellet [9, 10]. Particularly, the thermal gradient across the fuel during operation is one of the reasons for the deformation caused in the pellet

CSV : GEN-48d9-a2ed-1039-3642-2eb4-c3e8-e59a-cd55

Ciemat	INFORME DFN/RA-05/SP-24	HOJA 6 DE 31
DIVISIÓN DE FISIÓN NUCLEAR	REF. EXTERNA	REVISIÓN 0 FECHA 12/04/2024

and the highly stressed cladding, leading to pellet-clad gap closure (initially filled with inert gas). Pellet-Cladding Interaction (PCI) (general description that takes account of Fuel Cladding Chemical Interaction (FCCI) and Fuel-Cladding Mechanical Interaction (FCMI)), entails a chemical and mechanical interaction between the fuel pellets and their encasing zirconium alloy, and occurs in the majority of commercial fuel rods [10]. This interaction, given through a chemical bonding layer, occurs first at the inter-pellet spaces while a continuing pellet fragmentation (radial and axial cracks) takes place simultaneously [11]. The fuel-cladding interface can be described as composed of two zones, one closer to the cladding (polycrystalline ZrO₂) and a second one nearer the fuel, which is mainly formed by solid solutions of $(U,Zr)O_2$ (usually tetragonal or cubic) [12, 13], however few data are available from a structural perspective. Moreover, the occurrence of the PCI phenomenon grows with burn-up, and given the current trend towards increasing burn-up supports the importance of studying PCI. Because PCI might induce cladding fuel failure under certain circumstances [14-16], it is considered a mid-priority phenomenon in the investigation of the safety approach under dry storage [16] that are not currently accounted for in fuel performance codes, partially owing to the absence of data [10, 17, 18]. As a result, understanding the properties of the pellet-clad bonding layers is worthy of study.

After the operation of nuclear fuel in LWR reactor, it results in cracked fuel pellets; production of fission gases (Cs, Rb, Te, I), solid FPs, transuranic elements (*e.g.* Pu, Cm and Am), and activation products; thermal expansion and cladding creep resulting in gap closure; and radioactivity [19-24]. Furthermore, FPs formed during nuclear fuel operation are found as oxide precipitates and solid solutions, and as metallic inclusions (ε -particles), among others (Figure 1). The physico-chemical properties of the irradiated fuel also get considerably modified [19, 22, 23] as a function of time and radial position. Among the FPs, the rare earth elements (REE) form a substantial fraction; and particularly, around 4-20 wt.% of light REE corresponds to two lanthanides (Ln), europium and gadolinium [25]. REE are typically present as solid solutions within the uranium oxide fuel matrix, due to their capacity to substitute U atoms in the lattice [26-28]. The knowledge of the influence of FPs on SNF integrity is relevant for the physico-chemical processes involved in the pre-disposal and final disposal stages. After discharge from the reactor, the spent fuel is stored in pools at the reactor site to allow for the residual heat removal and decay of the very short-lived nuclides. Subsequently, the fuel is transferred to wet or dry interim storage. Interim storage solutions

Ciemat	INFORME DFN/RA-05/SP-24	HOJA 7 DE 31
DIVISIÓN DE FISIÓN NUCLEAR	REF. EXTERNA	REVISIÓN 0 FECHA 12/04/2024

for SNF are needed regardless of the fuel cycle strategy. The long-term integrity of SNF is almost ensured; however, the likely lifetime extension programs of such storage facilities should include ageing and degradation studies to demonstrate safe long-term performance, including that of undetected damaged fuel [29, 30]. Here, we initiate our studies by addressing the Eu as a solely dopant, because its average ionic radius from lanthanides [31]. The combined influence of Gd and Eu will be further investigated. The solid solubility of Eu₂O₃ in UO₂ and defect chemistry have been studied and reported in the literature [26, 27, 32].

Figure 1 Schematic representation of the microstructure of SNF pellet and the distribution of FP, and transuranic elements after irradiation in a reactor. Figure taken from Ewing [19] and adapted from [33, 34].

The experimental work with SNF is a challenging matter, inherently difficult and expensive because of its radiological constraints and requirements, added to its physico-chemical complexity that can steadily change with time (Figure 1) [19, 21, 33-35]. The SNF is one of the most complex materials in terms of chemical composition in different phases and states. A deep understanding of complex phenomena occurring in this material is a requirement for building predictive models including all back-end stages at short, medium and long-time scales in safety assessments of SNF. The above-mentioned constraints and the fact that U is essentially the main element present in SNF matrix (in the form of UO₂) are consequently motivation for research of surrogate UO₂-based systems (using non-irradiated nuclear fuel

	INFORME DFN/RA-05/SP-24	HOJA 8 DE 31
DIVISIÓN DE FISIÓN NUCLEAR	REF. EXTERNA	REVISIÓN 0 FECHA 12/04/2024

and model U-based materials) that can show some of the important behaviours of the irradiated fuel. Knowing that working with SNF is more representative of the realistic scenario, the results are complicated to interpret and make a full understanding of the systems difficult. To gain knowledge on separate and synergic effects and also to conduct fundamental research, the use of non-irradiated alternatives is important before carrying out experimentation on real irradiated systems presenting radiological risks that must be handled with particular care (in hot-cells which capability is limited to some countries). Therefore, it is necessary to produce suitable non-radioactive analogues that closely resemble nuclear fuel in terms of crystallography and microstructure so that we can better understand how changes in the sample surface affect it.

One of the specific goals of IONMAT project, carried out at the HLWU, is the <u>fabrication</u> <u>and characterization of SNF surrogates</u>, with physico-chemical features similar to those reported for irradiated nuclear fuel at medium and high burn-ups, including microstructural and mechanical characterization. It includes from traditional procedures followed in industry (dry route) to advanced techniques (wet route). In particular, task 1.1 aims to mimic some chemical composition of SNF through the manufacturing of irradiated nuclear fuel surrogates by dry powder method. To this end, and based on the above mentioned details, "model materials" that represent some physico-chemical properties maintaining a certain degree of conservatism are obtained and examined in detail. Particularly, we focused on UO₂-Eu₂O₃ and UO₂-ZrO₂ pellets:

The specific objectives of subtask 1.1 are:

- 1. Sintering conditions:
 - \circ Sintering atmosphere: reducing (4.7%H₂/N₂).
 - Sintering temperature/time: 1675°C for 4 h.
 - Pressing pressures (uniaxial): 700 MPa
- 2. Effect of dopant content
 - Tetravalent Zr(IV) as ZrO₂: 0-100 wt.%.
 - \circ Trivalent Eu(III) as Eu₂O₃: 0-2 wt.%.

iemat

DIVISIÓN DE FISIÓN NUCLEAR

2. <u>EXPERIMENTAL PROCEDURE. EQUIPMENT AND EXPERIMENTAL</u> <u>TECHNIQUES</u>

REF. EXTERNA

For the accomplishment of the objectives, the methods/techniques listed in Table II were used.

Technique	Parameter	Equipment
BET	N ₂ -BET Surface Area	ASAP 2020 (Micromeritics)
	V abs $(N_2, cm^3 \cdot g^{-1})$ vs P/P ₀	ISO 12800E
XRD	Identification of major and minor single or	D8 ADVANCE Eco (Bruker) – ICDD
	multiple phases / Structure determination	Cu K α radiation (λ =1.54056 Å), 40 kV
	Intensity vs diffraction angle	and 25 mA
	Lattice parameters	Bragg-Brentano configuration
	Quantification of phase mixtures	geometry Software EVA&TOPAS
		(Bruker Analytical X-Ray Systems)
Raman	Structural / speciation	LabRam HR Evolution (HORIBA)
spectroscopy	Characteristic spectrum ("fingerprint")	He-Ne laser with wavelength=632.8
	Intensity vs frequency (Δv incident-	nm.
	scattered)	
SEM-EDX	Surface morphology/grain size/Elemental	TM4000 Plus 15 kV (HITACHI)
	identification (quantification)	ASTM E 112-96 ;UNE-EN ISO
	Lineal intercept method (Heyn)	643:2012
	Scattered electrons from the surface.	
	(I vs ev)	
Laser	Particle size distribution	Malvern Particle Analyser 2600
diffraction		Malvern Mastersizer 3000 Hydro EV
		and Aero S
Archimedean	Density	Sartorious kit
method		
Furnace	1700°C, atmosphere control	Termolab
Polisher		Vector LC250 (Buehler)
Mixer Mill	Max. frequency of 30 Hz	MM 400 (Retsch)
Uniaxial Press	25 T	C256C (Power team, Johannesburg,
1		South Africa)

Table II Methods and techniques used in this project.

3. <u>SAMPLES PREPARATION</u>

3.1. UO₂-ZrO₂ PELLETS

A series of ZrO₂-doped and undoped UO₂ pellets (UO₂, UO₂-20 wt.% ZrO₂, UO₂-40 wt.% ZrO₂, UO₂-80 wt.% ZrO₂ and pure ZrO₂) were manufactured. in this case, zirconium oxide of 99.98 % purity (Alfa Aesar) and natural uranium dioxide [36] were the powders used for preparing the samples. These raw powders were characterized in terms of the

Ciemat	INFORME DFN/RA-05/SP-24	HOJA 10 DE 31
DIVISIÓN DE FISIÓN NUCLEAR	REF. EXTERNA	REVISIÓN 0 FECHA 12/04/2024

Specific Surface Area (SSA) by BET method with N_2 and the mean particle size by Laser Diffraction. The results of this characterization can be seen in Table III.

Material	SSA (BET) (m ² ·g ⁻¹)	Average particle size (µm)	Lattice parameter (nm)	Space group
UO ₂	3.75 ± 0.04	3.68 ± 0.06	a = b = c = 0.547120(13)	Cubic, Fm3m
ZrO ₂	6.41 ± 0.03	2.02 ± 0.01	a = 0.514594(5); b = 0.521081(4); c = 0.531393(5); $\alpha = \gamma = 90^{\circ}$; $\beta = 99.2084(2)$	Monoclinic, P1 21/c 1

Table III Raw material characterization of UO₂ and ZrO₂.

Starting powders were also measured by XRD, Raman spectroscopy and SEM.

Raman spectrum of UO₂ powder (Figure 2 at left) shows the well-known features of slightlyhyperstoichiometric uranium dioxide: a) the triply degenerate T_{2g} mode at 445 cm⁻¹; b) the lattice-distortion-related LO phonon mode at about 570 cm⁻¹; c) the band at ~630 cm⁻¹ associated with oxygen-sublattice defects provoked by the excess of oxygen atoms; and d) the first overtone of the LO mode (2LO) centered at about 1140 cm⁻¹ [37-39]. In addition, ZrO₂ spectrum (Figure 2 at right) shows the typical bands and features described in the literature for this compound with the monoclinic structure [40].

Figure 2 Raman spectra of starting UO_2 (a) and ZrO_2 (b).

XRD patterns of the UO₂ and ZrO₂ starting powders were acquired and compared with their corresponding reference data, thus confirming the purity of these materials (see Figure 3). The obtained lattice parameters are given in Table III. The XRD analysis indicates the structure of UO₂ is fluorite-type phase and monoclinic for ZrO_2 (m-ZrO₂).

FORMATO PT-FN-04.2		
Ciemat	INFORME DFN/RA-05/SP-24	HOJA 11 DE 31
DIVISIÓN DE FISIÓN NUCLEAR	REF. EXTERNA	REVISIÓN 0 FECHA 12/04/2024

Figure 3 XRD patterns of starting UO₂ (a) and ZrO₂ (b), together with their respective reference data.

Finally, SEM images were also acquired from each starting powder. A representative example of each one is shown inFigure 4.

Figure 4 SEM images of starting powders of a) UO₂ and b) ZrO₂.

The procedure through which the target pellets were fabricated consisted of mechanical dry blending of the ceramic powders (together with the binder EBS (Ethylene bis stearamide), where the powders were homogenized together with the binder in a mill-homogenizer at 15 Hz for 15 minutes, followed by cold compaction at 700 MPa (uniaxial press) to obtain green pellets. The latter were then calcined at three temperature steps (100, 300, and 500 °C) and sintered at 1675 °C for 4 h (5°C·min⁻¹). Both treatments were conducted under a reducing atmosphere (4.7% H₂/N₂) –to avoid UO₂ oxidation – in an alumina tubular furnace. Finally, polishing and thermal annealing were carried out to reveal grains (10 minutes at 1590°C under a 4.7% H₂-N₂ atmosphere). This fabrication process has been previously tested in our laboratory [41]. Table IV shows the samples fabricated by this pathway.

Table IV Definition of samples of Zr-doped UO₂.

Labelled Material	ZrO ₂ added (ppm)
UO ₂	0
UO2-20 wt.% ZrO2	200
UO2-40 wt.% ZrO2	400
UO2-80 wt.% ZrO2	800
100 wt.% ZrO ₂	-

3.2. UO₂-Eu₂O₃ PELLETS

A series of undoped and Eu-doped UO₂ pellets (UO₂, UO₂-0.02 wt.% Eu₂O₃, UO₂-0.2 wt.% Eu₂O₃ and UO₂-2 wt.% Eu₂O₃) were manufactured by pressing mixtures of precursor oxide powders in weighted quantities. Europium oxide (99.99 %, Aldrich) and natural UO₂ [36] were the powders used for preparing the samples. The Eu₂O₃ commercial reagent was initially thermally treated at 1000 °C in air for its dehydration.

Before the samples sintering, raw powders were characterized in terms of the Specific Surface Area (SSA) by BET with by N_2 adsorption [42] and the mean particle size by Laser Diffraction. The results of this characterization can be seen in Table V.

Table V Raw material characterization of UO2 and Eu2O3.

Material	SSA (BET) (m ² •g ⁻¹)	Average particle size (µm)	Lattice parameter (nm)	Space group
UO ₂	3.75 ± 0.04	3.68 ± 0.06	a = b = c = 0.547093 (1)	Cubic, Fm3m
Eu_2O_3	6.72 ± 0.03	5.85 ± 0.10	a = b = c = 1.087040 (3)	Cubic, Ia3

Starting powders were also measured by Raman spectroscopy, XRD and SEM. Raman spectrum of UO_2 powder (Figure 5 at left) shows the formerly explained features. In addition, Eu_2O_3 spectrum (Figure 5 at right) shows the typical bands and features described in the literature for this compound [43-45]. The absence of $Eu(OH)_3$ characteristic Raman vibration modes at 302.5, 377.4, and 384.8 cm⁻¹ [46, 47], which are generally found as a mixed phase, suggests that the calcined Eu_2O_3 is of a high purity. The corresponding Raman shifts and modes assignments of both powder materials are shown in Table VI.

Raman shift (cm⁻¹)

Figure 5 Raman spectra of starting UO₂ (a) and Eu₂O₃ (b).

Raman shift (cm⁻¹)

I able vI Naman moues characteristic of starting bowders used in this wor	Fable	• VI	Raman	modes	characteristic	of starting	powders us	ed in f	this wor
---	--------------	------	-------	-------	----------------	-------------	------------	---------	----------

Raman shifts for UO ₂ (cm ⁻¹)	Raman mode assigned
by other authors [38, 39]	(UO ₂) [38, 39]
445	T_{2g}
575	LO phonon
1150	2LO phonon
Raman shifts for Eu ₂ O ₃ (cm ⁻¹)	Raman mode assigned
by other authors [48]	(Eu_2O_3) [48]
91.5	Fg
116.6	Ag
132.9	Fg
142.7	Eg
176.0	Fg
284.3	$F_g + E_g$
315.6	Ag
338.5	Fg
385.6	Ag
425.9	Fg
566.1	Fg

XRD patterns of the UO_2 and Eu_2O_3 starting powders were acquired and compared with their corresponding reference data, thus confirming the purity of these materials (see Figure 6). The obtained lattice parameters are given in Table V.

Figure 6 XRD patterns of starting UO_2 (a) and Eu_2O_3 (b), together with their respective reference data.

Finally, SEM images were also acquired from each starting powder. A representative example of each one is shown in Figure 7.

Figure 7 SEM images of starting powders of a) UO₂ and b) Eu₂O₃.

The pellets were fabricated by conventional ceramic processing with the same sequential steps as the previous section (see section 3.2).

Once sintered, a detailed characterization of the pellets was carried out. Table VII shows the samples fabricated by this pathway.

Table VII Definition of samples of Eu-doped UO_2 (x in expressed as per-unit atomic).

Labelled Material	Eu ₂ O ₃ added (ppm)	x in U _{1-x} Eu _x O ₂
UO_2	0	0.00000
UO ₂ -0.02 wt.% Eu ₂ O ₃	200	0.00031
UO ₂ -0.2 wt.% Eu ₂ O ₃	2000	0.00307
UO2-2 wt.% Eu2O3	20000	0.03037

4. EFFECT OF Zr CONTENT ON UO2: CHARACTERIZATION

Likewise, the effect of zirconium on the sintered pellets will be studied in the following sections. The characteristics of the as-sintered undoped and Zr-doped UO₂ pellets (Figure 8) are given in Table VIII.

Figure 8 Photographs of the sintered pellets of: a) 100 wt.% UO₂, b) UO₂ - 20 wt.% ZrO₂, c) UO₂-40 wt.% ZrO₂, d) UO₂-80 wt.% ZrO₂ and e) 100 wt.% ZrO₂.

The bulk density of the pellet was measured by the general water immersion Archimedean method. The density values were calculated and showed in Table VIII, using mean plus one standard deviation ($\pm 1\sigma$), on a several measurements (between four and twelve). The average bulk density decreased from the undoped UO₂ pellet (9.1 g·cm⁻³) with increasing ZrO₂ content in the UO₂ sintered pellets, as expected.

SAMPLE	UO ₂	20 wt.% ZrO ₂ - UO ₂	40 wt.% ZrO ₂ - UO ₂	80 wt.% ZrO ₂ - UO ₂	100 wt.% ZrO ₂
Density immersion (g·cm ⁻³)	9.1 ± 0.1	8.6 ± 0.1	8.1 ± 0.1	6.1 ± 0.6	5.5 ± 0.3
Density geom. (g·cm ⁻³)	9.6 ± 0.3	8.5 ± 0.1	8.0 ± 1.0	5.7 ± 0.1	5.1 ± 0.1

Table VIII Specifications of the as-sintered Zr-doped and undoped UO_2 pellet

4.1. SEM, GRAIN SIZE AND SPECIFIC SURFACE AREA

The morphology of the pellets surface was examined by SEM, revealing a nonhomogeneous grain structure for the highest dopant amounts (Figure 9). As the composition becomes richer in ZrO_2 , small grains located between the matrix grains start to appear, probably due to ZrO_2 -rich particles [49] and once the solubility of ZrO_2 in cubic UO_2 is achieved. Representative images shown in Figure 9 were used for the calculation of grain size (

Table IX). The average grain sizes of the undoped and ZrO₂-doped UO₂ pellets are in the range $5 - 7.6 \,\mu\text{m}$ and again, all the SSA values are in the same order of magnitude, around $0.3 \,\text{m}^2 \cdot \text{g}^{-1}$.

Figure 9 SEM images of the prepared samples: a) 100 wt.% UO₂, b) UO₂ - 20 wt.% ZrO₂, c) UO₂-40 wt.% ZrO₂, d) UO₂-80 wt.% ZrO₂ and e) 100 wt.% ZrO₂.

Fable IX Average	grain siz	ze and SSA	of the	Zr-doped	and	undoped	UO ₂ pellets.
-------------------------	-----------	------------	--------	----------	-----	---------	--------------------------

SAMPLE	UO ₂	20 wt.% ZrO ₂ - UO ₂	40 wt.% ZrO ₂ - UO ₂	80 wt.% ZrO ₂ - UO ₂	ZrO ₂
Grain size (µm) SSA (m ² ·g ⁻¹)	$\begin{array}{c} 7.6 \pm 0.6 \\ 0.28 \pm 0.01 \end{array}$	5 ± 2 0.3 ± 0.01	$\begin{array}{c} 5.2 \pm 0.4 \\ 0.32 \pm 0.02 \end{array}$	$\begin{array}{c} 7.1 \pm 0.5 \\ 0.30 \pm 0.01 \end{array}$	$\begin{array}{c} 5.8 \pm 0.6 \\ 0.35 \pm 0.01 \end{array}$

4.2. XRD

To study the lattice parameter evolution of the UO₂ pellets due to the presence of zirconium, XRD patterns were acquired under the same conditions (Figure 11) and the corresponding lattice parameters were obtained by Rietveld refinement (Table X). It is known that the crystal structure of UO₂ is cubic, fluorite-type, so the lattice is characterized by only one lattice parameter (*a*). Pure ZrO₂ under atmospheric pressure shows three thermodynamically stable polymorphs depending on temperature: monoclinic (m-ZrO₂), tetragonal (t-ZrO₂) and cubic (c-ZrO₂) structures (Figure 10) [49-51]. Generally, m-ZrO₂ is the stable form of ZrO₂ at low temperature [49, 50]. As shown in Figure 10, there is a transition to a tetragonal structure [50] around 1170 °C and exist up to around 2300 °C [50, 51]. Then, there is a controversy about the existence of c-ZrO₂ allotropic form at greater than 2370 °C [52], or it could reach its melting temperature (around 2700 °C) [50].

Figure 10 Crystal structures of ZrO₂ and its transformation with temperature: a) monoclinic $(a\neq b\neq c; \alpha=\gamma=90^{\circ}\neq\beta)$, b) tetragonal $(a=b\neq c; \alpha=\beta=\gamma=90^{\circ})$, and c) cubic $(a=b=c; \alpha=\beta=\gamma=90^{\circ})$. (taken from Kongkiatkamon *et al.* [53] and adapted from Sorrentino *et al.* [54]) [55].

The XRD patterns of the undoped UO₂ or ZrO₂, and ZrO₂-doped sintered pellets (Figure 11) show that the main peak positions shift to higher angles with increasing ZrO_2 content up to 40 wt.% of ZrO₂, indicating that the lattice contracts when Zr(IV) is incorporated into the UO₂ lattice substituting U(IV) atoms, as stated in the literature [56]. After the mixture composition, the cubic fluorite structure of UO₂ is lost and then, the existence of

Ciemat	INFORME DFN/RA-05/SP-24	HOJA 18 DE 31
DIVISIÓN DE FISIÓN NUCLEAR	REF. EXTERNA	REVISIÓN 0 FECHA 12/04/2024

polymorphic forms of pure ZrO_2 , whose main phases are found in the form of tetragonal and monoclinic (Table X).

Figure 11 XRD patterns of the sintered pellets: UO₂, UO₂ - 20 wt.% ZrO₂, UO₂-40 wt.% ZrO₂, UO₂-80 wt.% ZrO₂, 100 wt.% ZrO₂.

ZrO₂ found in the PCI layers closer to the fuel has been shown to be either cubic or tetragonally stabilised at room temperature [10, 13, 57-59]. The t-ZrO₂ phase seems to be gradually replaced by c-ZrO₂ as burnup increases [60]. A combination of factors including radiation damage, FPs dopants, accommodation of U in solid solution and others are the cause of this stabilization of both the cubic and tetragonal phases in nuclear fuel [10, 13]. Consequently, the addition of ZrO₂ to UO₂ shows polymorphic transformations in ZrO₂ because of changes in crystal lattice from the monoclinic phase, observed in pure ZrO₂. Urania-zirconia solid solutions have been previously studied by Cohen *et al.* [49], who prepared a range of (U,Zr)O₂ solid solutions by dry powder route at 1725-1750 °C in H₂(g) for 72-110 h. They observed the following: (i) Below 1660 °C, there is a "miscibility gap" with a sharp decrease of the ZrO₂ solubility in UO₂ (from around 5 to 20 wt.% ZrO₂ and also 60 wt.% ZrO₂); (ii) a two-phase region of cubic and tetragonal at 1600-2300 °C. At 1690 °C, the solubility limit is in the range of 30 – 60 wt.% ZrO₂, however it is around 30 wt% ZrO₂ at 1875 °C; (iii) stabilization of a cubic solid solution in the temperature range 2366 to 2556 °C.

The decreased solubility of UO₂ in tetragonal and monoclinic ZrO_2 [49] in the sample doped with 80 wt.% ZrO_2 may induce segregated UO₂. Then, according to these data and under our sintering conditions, a conservative estimation for the solubility limit in this case would therefore be around 30 - 60 wt.% ZrO_2 .

Table X Lattice parameters and identified phases of the as-sintered Zr-doped and undoped UO₂ pellets.

SAMPLE U	JO ₂	20 wt.% ZrO ₂ -	40 wt.% ZrO ₂ -	80 wt.% ZrO ₂ -	100 wt.%
		UO ₂	UO ₂	UO ₂	ZrO ₂
Lattice param. 10 (nm) a=	00% UO ₂ <i>Fm-3m</i> =b=c= 0. 5470(2)	$\begin{array}{l} 92\% U_{1,y} Zr_y O_2 \\ (y=0.48) \ Fm-3m \\ a=b=c=0.5403 \ (1) \\ < 8\% \ Zr O_2 \ SG \ P \\ 42/nmc \\ a=0.3686(2) \\ b=0.3686(2) \\ c=0.5138(3) \end{array}$	$\begin{array}{c} 67^{\circ} \ U_{0.5} \text{Zr}_{0.5} \text{O}_2 \\ Fm-3m \\ a=b=c=0.5404(1) \\ 33\% \ t\text{-}Zr\text{O}_2 \ \text{SG P} \\ 42/nmc \\ a=0.3688(4) \\ b=0.3688(4) \\ c=0.5150(1) \end{array}$	91% $U_{1,x}Zr_xO_2$ (x = 0.04) P1 21/c1 a=0.5161(2); b=0.5214 (2); c= 0.5324(2) 4% t-ZrO_2 SG P 42/nmc a=0.3660; b=0.3660; c= 0.5206 (8) ~3% $U_{1,y}Zr_yO_2$ (y = 0.5) Fm-3m a=b=c= 0.5461(9) 2% UO_2 Fm-3m a=b=c= 0.5471(2)	100% m-ZrO ₂ <i>P1 21/c1</i> a=0.5156(3) b=0.5211(1) c= 0.5324(7)

4.3. RAMAN SPECTROSCOPY

Figure 12 shows the Raman spectra of the as-prepared undoped UO₂ and ZrO₂-doped samples. Raman spectrum of undoped UO₂ shows the typical fingerprint of this compound, already described in section 3.1. As the theoretical U/Zr ratio decreases, it induces changes in the Raman spectra, such as the T_{2g} , LO and 2LO bands broadening and their shift towards higher wavenumber (up to 40 wt.% ZrO₂), which indicates that Zr has been incorporated into the UO₂ lattice, and an increase of local disorder is taking place [84]. Conversely, for the sample doped with 80 wt.% ZrO₂ several peaks centred at 183, 301, 335, 381, 476, 536, 559, 613, and 636 cm⁻¹ appear, which correspond to a dominant monoclinic phase of ZrO₂ [61]. This confirms that at 40 wt.% ZrO₂ we are still within the solubility range, but not at 80 wt.% ZrO₂.

FORMATO PT-FN-04.2			
Ciemat	INFORME DFN/RA-05/SP-24	HOJA 20 DE 31	
DIVISIÓN DE FISIÓN NUCLEAR	REF. EXTERNA	REVISIÓN 0 FECHA 12/04/2024	

Figure 12 Raman spectra of the sintered pellets: UO₂, UO₂ - 20 wt.% ZrO₂, UO₂-40 wt.% ZrO₂, UO₂-80 wt.% ZrO₂, ZrO₂.

5. EFFECT OF Eu CONTENT ON UO2: CHARACTERIZATION

In the following sections, the effect of europium on UO_2 sintered pellets using the above-mentioned techniques will be studied. An overview of the density values obtained for the as-sintered Eu-doped and undoped UO_2 pellets (Figure 13) is given in Table XI.

Figure 13 Photographs of the sintered pellets of: a) UO₂, b) 0.02 wt.% Eu₂O₃ - UO₂, c) 0.2 wt.% Eu₂O₃ - UO₂, and d) 2 wt.% Eu₂O₃ - UO₂.

FORMATO PT-FN-04.2				
Ciemat	INFORME DFN/RA-05/SP-24	HOJA 21 DE 31		
DIVISIÓN DE FISIÓN NUCLEAR	REF. EXTERNA	REVISIÓN 0 FECHA 12/04/2024		

The bulk density of the pellet was measured by the general water immersion Archimedean method. The density values were calculated and showed in Table XI, using mean plus one standard deviation ($\pm 1\sigma$), on a several measurements (between four and twelve). The average bulk density decreased from the undoped UO₂ pellet (9.8 g·cm⁻³) with increasing Eu₂O₃ content in the UO₂ sintered pellets, as expected.

SAMPLE	UO ₂	0.02 wt.% Eu2O3-UO2	0.2 wt.% Eu2O3-UO2	2 wt.% Eu ₂ O ₃ -UO ₂
Density immersion	9.8 ± 0.1	9.6 ± 0.1	9.3 ± 0.2	9.3 ± 0.8
(g•cm⁻³)				
Density geom.	9.6 ± 0.3	10.0 ± 0.7	9.7 ± 0.1	9.8 ± 0.3
(g•cm ⁻³)				

5.1. SEM, GRAIN SIZE AND SPECIFIC SURFACE AREA

Representative SEM images are shown in Figure 14, revealing a uniform grain structure related to a solid solution, and isolated porosity. This might confirm the phase homogeneity in the pellets through the studied compositions.

Figure 14 SEM images of the prepared samples: a) UO₂, b) 0.02 wt.% Eu₂O₃ - UO₂, c) 0.2 wt.% Eu₂O₃ - UO₂, and d) 2 wt.% Eu₂O₃ - UO₂.

From these images, the average grain size of the different samples was estimated via the linear intercept method [62, 63]. These results are depicted in Table XII. The grain size of the pellets doped with 0.02 wt.% Eu_2O_3 remains unchanged with regard to undoped UO₂; however, this value increases a little for the 0.2 wt.% Eu_2O_3 doped sample and then it

Ciemat	INFORME DFN/RA-05/SP-24	HOJA 22 DE 31
DIVISIÓN DE FISIÓN NUCLEAR	REF. EXTERNA	REVISIÓN 0 FECHA 12/04/2024

decreases for the highest dopant amount, *i.e.* $2 \text{ wt.}\% \text{ Eu}_2\text{O}_3$. The corresponding results of the SSA (BET, N₂) are all in the same order of magnitude.

Table XII Average grain size and SSA of the Eu-doped and undoped UO₂ pellets.

SAMPLE	UO ₂	0.02 wt.% Eu2O3-UO2	0.2 wt.% Eu2O3-UO2	2 wt.% Eu ₂ O ₃ -UO ₂
Grain size (µm)	6.9 ± 0.8	6.7 ± 0.5	11.0 ± 1.0	5.000 ± 1.0
SSA (m ² ·g ⁻¹)	0.43 ± 0.01	0.55 ± 0.02	0.26 ± 0.01	0.21 ± 0.01

5.2. XRD

To study the lattice parameter evolution of the UO_2 pellets due to the presence of europium, XRD patterns were acquired under the same conditions and the corresponding lattice parameters were obtained by Rietveld refinement (Figure 15). As it has been formerly shown, crystalline structure of UO_2 is cubic fluorite-type structure characterized by only one lattice parameter (*a*). The patterns of UO_2 pellets containing 0.02 wt.%, 0.2 wt.% and 2 wt.% Eu_2O_3 also correspond to a fluorite-type structure (Figure 15.a), meaning that they conform a (U,Eu)O₂ solid solution, which is in agreement with the literature [28, 64, 65]. No segregated Eu_2O_3 is observed in any of the samples, implying that the dopant is well dissolved into UO_2 grains, as already suggested by the SEM images. Comparison of XRD patterns of the undoped material with Eu-doped samples indicates that the presence of increasing content of Eu additive does not affect the crystalline structure significantly. There is a shift to higher 2 θ values with increasing Eu_2O_3 concentration, observed in the 28.2° doublet (see the steady shift in (111) reflection in Figure 15.b), indicating that the lattice parameter of the doped sample is smaller than the undoped UO_2 , and the higher the concentration of dopant is, the lower lattice parameter value (Figure 15.c) [65].

In particular, it shows a linear decrease (Vegard's law) with increasing Eu content, similar to what has been previously observed in this kind of samples [65] and when UO₂ is doped with other trivalent elements [66, 67]. In the selected range of *x* in U_{1-x}Eu_xO₂ (between 0 and 3.04 mol%, see Table VII), Eu₂O₃ content ≤ 2 wt.%, the solubility limit is not reached (around 60 – 65 mol% [64]). Vegard's law-like behavior has been confirmed to be valid only in the region where a complete solid solution is established [68], as in this case. Therefore, a regression analysis was performed on the measured lattice parameters of Eu-doped UO₂ solid solution, which can be expressed as:

$$\mathbf{a} = (\mathbf{0.54713} \pm \mathbf{2.33} \cdot \mathbf{10^{-6}}) + (-\mathbf{0.01225} \pm \mathbf{2.4} \cdot \mathbf{10^{-4}}) \cdot \mathbf{x}$$
(1)

where a is the lattice parameter in nm, and x is the Eu content in UO₂. The coefficients of eq. (1) are determined by using a least-squares method where the relative coefficient is 0.99922.

Figure 15 XRD patterns of the UO₂ pellets containing 0 wt.%, 0.02 wt.%, 0.2 wt.% and 2 wt.%
Eu₂O₃ (a), zoom on the (111) reflection (b), and lattice parameter evolution (c) of the sintered pellets.

5.3. RAMAN SPECTROSCOPY

It has been recognised that Raman spectroscopy is capable of distinguishing defects of the O sublattice in UO_2 [67, 69-71], thus, a Raman analysis could allow us to identify oxygen vacancies (due to Eu^{3+} incorporation) present in each of the prepared Eu-doped samples. The acquired Raman spectra on the undoped UO_2 and Eu-doped samples are shown

Ciemat	INFORME DFN/RA-05/SP-24	HOJA 24 DE 31
DIVISIÓN DE FISIÓN NUCLEAR	REF. EXTERNA	REVISIÓN 0 FECHA 12/04/2024

in Figure 16. All of them reveal the main features of the typical fingerprint of UO_2 fluorite structure (see section 3.1).

The broad feature at 500 - 650 cm⁻¹, mainly formed in this case by the peak centered at ~530 cm⁻¹ (marked with an arrow in Figure 10), can be interpreted as a "defects band" due to oxygen-vacancy-induced lattice distortion associated with the presence of trivalent cations. The intensity of this peak remains low at 0 and 0.02 wt.% Eu₂O₃, but it noticeably increases with increasing Eu loading, as shown in similar cases like Gd-, Nd- and La-doped UO₂ [67, 69, 72] for similar doping level. The other band featured in that region, at ~575 cm⁻¹ (LO mode), is related to structure distortions and, as expected, it behaves equivalently to that at ~530 cm⁻¹. This behaviour can be interpreted as due to Eu₂O₃ incorporation into the cubic lattice of UO₂, which also agrees with XRD results. The intensity of the 2LO band at ~1050 cm⁻¹ is retained at 0-0.2 wt.% Eu₂O₃, but significantly decreases at 2 wt.%, as a result of the distortion of the fluorite lattice structure induced by doping. These observations are consistent with those of Lee *et al.* [67] and Talip *et al.* [69] who observed similar results analyzing Gd- and La -doped UO₂ samples, *i.e.* an intensity decrease of the 2LO band when increasing the La or Gd content, respectively.

Figure 16 Normalized Raman spectra of UO₂, UO₂-0.02 wt.% Eu₂O₃, UO₂-0.2 wt.% Eu₂O₃, UO₂-2 wt.% Eu₂O₃.

REF. EXTERNA

6. CONCLUSIONS

Mixtures of ZrO_2 -doped UO_2 , in a wide range of likely compositions within the PCI layer that simulates the ZrO_2/UO_2 bonding (chemical adhesion) in HBU fuels, *i.e.* the PCI phenomenon, and undoped UO_2 have been obtained and characterized. Regarding the fabrication of these surrogate samples via "dry powder route", it is a complex process and it is susceptible of inducing segregated ZrO_2 phases (depending on the solubility limit) and polymorphism of ZrO_2 in samples depending on the sintering conditions.

Preliminary results indicate that the "dry powder route" route seems to be relatively acceptable for the obtained samples. Work is currently underway to produce Zr-doped UO_2 via "wet route" using advanced fabrication techniques from the co-precipitation of zirconyl and uranyl stock solutions followed by pressing and sintering, that will need to be characterized in terms of crystal structure, oxygen-to-metal ratio, and impurity content. The aim is to compare the samples microstructure with that from dry route.

Additionally, a series of UO₂ pellets doped with different amounts of Eu_2O_3 (0–2 wt.%) have been sintered by "dry powder" route, and analyzed by SEM, BET, XRD and Raman. In agreement with prior studies, our XRD data reveal that an increase in Ln dopant concentration produces a contraction of the fluorite structure possibly due to the joint effects of smaller cation size of Eu and shorter U/Eu-O bonds and/or hypo-stoichiometry [73], shown by the refined lattice parameters. Raman spectroscopy confirmed the presence of oxygen vacancies in the structure as a consequence of Eu doping, demonstrated by increasing intensity of the so-called "defects band" with Eu concentration.

7. <u>ACKNOWLEDGEMENTS</u>

This research is part of the project of R+D+i PID2021-124913OA-I00, IONMAT project funded by MICIU/AEI/10.13039/501100011033/, Proyectos de Generación de Conocimiento 2021. Authors also want to thank the funding for this research from the European Commission Horizon 2020 Research and Training Programme of the European Atomic Energy Community (EURATOM) (H2020-NFRP-2016-2017-1) under grant agreement n° 847593 (EURAD project).

FORMATO PT-FN-04.2		
Ciemat	INFORME DFN/RA-05/S	BP-24 HOJA 27 DE 31
DIVISIÓN DE FISIÓN NUCLEAR	REF. EXTERNA	REVISIÓN 0 FECHA 12/04/2024

8. <u>REFERENCES</u>

- [1] IAEA, Thermophysical Properties of Materials for Nuclear Engineering: A Tutorial and Collection of Data. Vienna: International Atomic Energy Agency, 2009.
- [2] A. T. Motta, A. Couet, and R. J. Comstock, "Corrosion of Zirconium Alloys Used for Nuclear Fuel Cladding", *Annual Review of Materials Research*, vol. 45, pp. 311-343, 2015.
- [3] U. Stoll and N. Slavinskaya, "Corrosion behavior of zirconium alloys in the aqueous environment. Phenomenological aspects. Overview", *Journal of Nuclear Science and Technology*, vol. 60, pp. 573-602, 2023.
- [4] M. H. A. Piro, D. Sunderland, S. Livingstone, et al., "2.09 Pellet-Clad Interaction Behavior in Zirconium Alloy Fuel Cladding", in *Comprehensive Nuclear Materials* (Second Edition), R. J. M. Konings and R. E. Stoller, Eds., ed Oxford: Elsevier, 2020, pp. 248-306.
- [5] B. Cox, F. Garzarolli, and P. Rudling, "Corrosion of Zr-Nb Alloys. ZIRAT-9 Special Topic.", Advanced Nuclear Technology International, Sweden, 2004.
- [6] R. B. Rebak, "The Long-Term Environmental Degradation of Zirconium Alloys in Contact With Spent Nuclear Fuel: A Review", in *ASME 2008 Pressure Vessels and Piping Conference*, 2008, pp. 209-214.
- [7] T. Alam, M. K. Khan, M. Pathak, *et al.*, "A review on the clad failure studies", *Nuclear Engineering and Design*, vol. 241, pp. 3658-3677, 2011.
- [8] K. Komuro, "Welding of zirconium alloys", *Welding International*, vol. 8, pp. 141-148, 1994.
- [9] C. Ciszak, L. Desgranges, P. Garcia, *et al.*, "On the origins and the evolution of the fuelcladding bonding phenomenon in PWR fuel rods", *Journal of Nuclear Materials*, vol. 520, pp. 110-120, 2019.
- [10] D. G. Frost, C. O. T. Galvin, M. W. D. Cooper, *et al.*, "Thermophysical properties of urania-zirconia (U,Zr)O₂ mixed oxides by molecular dynamics", *Journal of Nuclear Materials*, vol. 528, p. 151876, 2020.
- [11] J. T. A. Roberts, Structural Materials in Nuclear Power Systems: Springer New York, NY, 1981.
- [12] C. Gibert, "Influence de l'irradiation et de la présence de lithium sur la nature cristallographique de la zircone dans le cadre de l'étude de la corrosion du zircaloy 4 en milieu réacteur à eau pressurisée," Châtenay-Malabry, Ecole centrale de Paris, 1998.
- [13] K. Nogita and K. Une, "Formation of Pellet-Cladding Bonding Layer in High Burnup BWR Fuels", *Journal of Nuclear Science and Technology*, vol. 34, pp. 679-686, 1997.
- [14] IAEA, Review of Fuel Failures in Water Cooled Reactors vol. No. NF-T-2.1. Vienna, 2010.
- [15] J. B. Minne, "Contribution à la modélisation du couplage mécanique-chimique de l'évolution de l'interface pastille-gaine sous irradiation," Laboratoire Interdisciplinaire Carnot de Bourgogne École Doctorale Carnot-Pasteur, Université de Bourgogne, 2013.
- [16] OCDE/NEA, Pellet-clad Interaction in Water Reactor Fuels : Seminar Proceedings. Aixen-Provence, France, 9-11 March 2004.: OCDE, Paris, 2005.

FORMATO PT-FN-04.2				
Ciemat	INFORME DFN/RA-05/SP-24	HOJA 28 DE 31		
DIVISIÓN DE FISIÓN NUCLEAR	REF. EXTERNA	REVISIÓN 0 FECHA 12/04/2024		

- [17] G. Rossiter, "Development of the ENIGMA fuel performance code for whole core analysis and dry storage assessments", *Nuclear Engineering and Technology*, vol. 43, pp. 489-498, 2011.
- [18] J. D. Hales, R. L. Williamson, S. R. Novascone, *et al.*, "BISON theory manual the equations behind nuclear fuel analysis", Idaho National Lab.(INL), Idaho Falls, ID (United States), 2016.
- [19] R. C. Ewing, "Long-term storage of spent nuclear fuel", *Nat Mater*, vol. 14, pp. 252-257, 2015.
- [20] B. Kienzler and H. Geckeis, "Radioactive wastes and disposal options", *EPJ Web Conf.*, vol. 189, p. 00014, 2018.
- [21] C. Corkhill and N. Hyatt. (2018). *Nuclear Waste Management*. Available: https://dx.doi.org/10.1088/978-0-7503-1638-5
- [22] J. Bruno, L. Duro, and F. Diaz-Maurin, "13 Spent nuclear fuel and disposal", in Advances in Nuclear Fuel Chemistry, M. H. A. Piro, Ed., ed: Woodhead Publishing, 2020, pp. 527-553.
- [23] K. Spahiu, "State of the Knowledge Report Spent Nuclear Fuel Domain 3.1.1. EURAD -European Joint Programme on Radioactive Waste Management (847593)", 2021.
- [24] S. Caruso, E. Vlassopoulos, R. Dagan, *et al.*, "EURAD project Deliverable 8.1: State-of-the-art report. Work Package 8", NAGRA, 2022.
- [25] S. Bourg and C. Poinssot, "Could spent nuclear fuel be considered as a non-conventional mine of critical raw materials?", *Progress in Nuclear Energy*, vol. 94, pp. 222-228, 2017.
- [26] T. Ohmichi, S. Fukushima, A. Maeda, et al., "On the relation between lattice parameter and O/M ratio for uranium dioxide-trivalent rare earth oxide solid solution", Journal of Nuclear Materials, vol. 102, pp. 40-46, 1981.
- [27] K. Park and D. R. Olander, "Defect models for the oxygen potentials of gadolinium-and europium-doped urania", *Journal of Nuclear Materials*, vol. 187, pp. 89-96, 1992.
- [28] R. Venkata Krishnan, G. Jogeswararao, G. Panneerselvam, *et al.*, "Solid solubility and thermal expansion studies of uranium–europium mixed oxides", *Journal of Nuclear Materials*, vol. 465, pp. 719-723, 2015.
- [29] P. Mcconnell, B. Hanson, M. Lee, *et al.*, "Extended dry storage of used nuclear fuel: Technical issues: A USA perspective", *Nuclear Engineering and Technology*, vol. 43, pp. 405-412, 2011.
- [30] OCDE/NEA, "The Safety of Long-Term Interim Storage Facilities in NEA Member Countries", 2017.
- [31] S. K. Potts, P. Kegler, G. Modolo, *et al.*, "Structural incorporation of europium into uranium oxides", *MRS Advances*, vol. 8, pp. 278-284, 2023.
- [32] T. Fujino, K. Ouchi, Y. Mozumi, *et al.*, "Composition and oxygen potential of cubic fluorite-type solid solution EuyU1-yO2+x (x ≥ 0) and rhombohedral Eu6UO12+x' (x'< 0)", *Journal of Nuclear Materials*, vol. 174, pp. 92-101, 1990.
- [33] D. W. Shoesmith, "Fuel corrosion processes under waste disposal conditions", *Journal of Nuclear Materials*, vol. 282, pp. 1-31, 2000.

CSV : GEN-48d9-a2ed-1039-3642-2eb4-c3e8-e59a-cd55

FORMATO PT-FN-04.2				
Ciemat	INFORME DFN/RA-05/SP-24	HOJA 29 DE 31		
DIVISIÓN DE FISIÓN NUCLEAR	REF. EXTERNA	REVISIÓN 0 FECHA 12/04/2024		

- [34] E. C. Buck, B. D. Hanson, and B. K. McNamara, "The geochemical behaviour of Tc, Np and Pu in spent nuclear fuel in an oxidizing environment", *Geological Society, London, Special Publications*, vol. 236, pp. 65-88, 2004.
- [35] H. Charlton, G. Baldinozzi, and M. Patel, "A review of the oxygen vacancy ordering in surrogate structures simulating Pu-based nuclear ceramics", *Frontiers in Nuclear Engineering*, vol. 1, 2023.
- [36] A. Milena-Pérez, N. Rodríguez-Villagra, S. Fernández-Carretero, et al., "Thermal air oxidation of UO₂: Joint effect of precursor's nature and particle size distribution", Progress in Nuclear Energy, vol. 159, p. 104629, 2023.
- [37] T. Livneh and E. Sterer, "Effect of pressure on the resonant multiphonon Raman scattering in UO₂", *Physical Review B*, vol. 73, p. 085118, 2006.
- [38] H. He and D. Shoesmith, "Raman spectroscopic studies of defect structures and phase transition in hyper-stoichiometric UO_{2+x}", *Physical Chemistry Chemical Physics*, vol. 12, pp. 8109-8118, 2010.
- [39] J. M. Elorrieta, L. J. Bonales, N. Rodriguez-Villagra, *et al.*, "A detailed Raman and X-ray study of UO_{2+x} oxides and related structure transitions", *Physical Chemistry Chemical Physics*, vol. 18, pp. 28209-28216, 2016.
- [40] S. N. Basahel, T. T. Ali, M. Mokhtar, *et al.*, "Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange", *Nanoscale Research Letters*, vol. 10, p. 73, 2015.
- [41] S. Fernandez, M. I. Nieto, J. Cobos, *et al.*, "CeO₂ pellet fabrication as spent fuel matrix analogue", *Journal of the European Ceramic Society*, vol. 36, pp. 3505–3512, 2016.
- [42] S. Brunauer, P. Emmet, and E. Teller, "Adsorption of Gases in Multimolecular Layers", *Journal of the American Chemical Society*, vol. 60, p. 309, 1938.
- [43] L. A. Tucker, F. J. Carney, P. McMillan, et al., "Raman and Resonance Raman Spectroscopy of Selected Rare-Earth Sesquioxides", Applied Spectroscopy, vol. 38, pp. 857-860, 1984.
- [44] J. Yu, L. Cui, H. He, *et al.*, "Raman spectra of RE₂O₃ (RE=Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, Sc and Y): laser-excited luminescence and trace impurity analysis", *Journal of Rare Earths*, vol. 32, pp. 1-4, 2014.
- [45] M. V. Abrashev, N. D. Todorov, and J. Geshev, "Raman spectra of R₂O₃ (R—rare earth) sesquioxides with C-type bixbyite crystal structure: A comparative study", *Journal of Applied Physics*, vol. 116, 2014.
- [46] M. Y. Yang, D. Huang, P. H. Hao, *et al.*, "Study of the Raman peak shift and the linewidth of light-emitting porous silicon", *Journal of Applied Physics*, vol. 75, pp. 651-653, 1994.
- [47] J.-G. Kang, Y. Jung, B.-K. Min, *et al.*, "Full characterization of Eu(OH)₃ and Eu₂O₃ nanorods", *Applied Surface Science*, vol. 314, pp. 158-165, 2014.
- [48] S. Jiang, J. Zhang, and S. Yan, "Shear stress induced phase transitions of cubic Eu₂O₃ under non-hydrostatic pressures", *AIP Advances*, vol. 13, 2023.
- [49] I. Cohen and R. M. Berman, "A metallographic and X-ray study of the limits of oxygen solubility in the UO₂-ThO₂ system", *Journal of Nuclear Materials*, vol. 18, pp. 77-107, 1966.

CSV : GEN-48d9-a2ed-1039-3642-2eb4-c3e8-e59a-cd55

FORMATO PT-FN-04.2				
Ciemat	INFORME DFN/RA-05/SP-24	HOJA 30 DE 31		
DIVISIÓN DE FISIÓN NUCLEAR	REF. EXTERNA	REVISIÓN 0 FECHA 12/04/2024		

- [50] R. Terki, G. Bertrand, H. Aourag, *et al.*, "Structural and electronic properties of zirconia phases: A FP-LAPW investigations", *Materials Science in Semiconductor Processing*, vol. 9, pp. 1006-1013, 2006.
- [51] A. Arafati, E. Borhani, S. M. S. Nourbakhsh, *et al.*, "Synthesis and characterization of tetragonal / monoclinic mixed phases nanozirconia powders", *Ceramics International*, vol. 45, pp. 12975-12982, 2019.
- [52] S. Kumar, S. Bhunia, and A. K. Ojha, "Effect of calcination temperature on phase transformation, structural and optical properties of sol–gel derived ZrO₂ nanostructures", *Physica E: Low-dimensional Systems and Nanostructures*, vol. 66, pp. 74-80, 2015.
- [53] S. Kongkiatkamon, D. Rokaya, S. Kengtanyakich, *et al.*, "Current classification of zirconia in dentistry: an updated review", *PeerJ* 11:*e*15669, 2023.
- [54] R. Sorrentino, C. O. Navarra, R. Di Lenarda, et al., "Effects of Finish Line Design and Fatigue Cyclic Loading on Phase Transformation of Zirconia Dental Ceramics: A Qualitative Micro-Raman Spectroscopic Analysis", *Materials*, vol. 12, p. 863, 2019.
- [55] Y. Han and J. Zhu, "Surface Science Studies on the Zirconia-Based Model Catalysts", *Topics in Catalysis*, vol. 56, pp. 1525-1541, 2013.
- [56] H. Xiao, X. Wang, C. Long, *et al.*, "Investigation of the mechanical properties of ZrO2doped UO2 ceramic pellets by indentation technique", *Journal of Nuclear Materials*, vol. 509, pp. 482-487, 2018.
- [57] R. M. Berman, "Homogenization of two-phase mixtures of ZrO₂-UO₂ by irradiation", *Journal of Nuclear Materials*, vol. 17, pp. 313-323, 1965.
- [58] L.-G. Liu, "New high pressure phases of ZrO₂ and HfO₂", *Journal of Physics and Chemistry of Solids*, vol. 41, pp. 331-334, 1980.
- [59] S. Van den Berghe, A. Leenaers, B. Vos, *et al.*, Observation of a pellet-cladding bonding layer in high-power fuel. Nuclear Energy Agency of the OECD (NEA): Organisation for Economic Co-Operation and Development Nuclear Energy Agency, 2005.
- [60] K.-T. Kim, "UO₂/Zry-4 chemical interaction layers for intact and leak PWR fuel rods", *Journal of Nuclear Materials*, vol. 404, pp. 128-137, 2010.
- [61] C. Ciszak, M. Mermoux, S. Miro, et al., "Micro-Raman analysis of the fuel-cladding interface in a high burnup PWR fuel rod", *Journal of Nuclear Materials*, vol. 495, pp. 392-404, 2017.
- [62] K. W. Kang, J. H. Yang, J. H. Kim, *et al.*, "Improvement of UO₂ Pellet Properties by Controlling the Powder Morphology of Recycled U₃O₈ Powder", *Journal of Nuclear Science and Technology*, vol. 45, pp. 1150-1154, 2008.
- [63] ISO, "ISO/FDIS 643:2012 Steels-Micrographic determination of the apparent grain size", ed, 2012.
- [64] R. Venkata Krishnan, R. Babu, A. Senapati, *et al.*, "Thermophysical properties of uranium– europium mixed oxides", *Journal of Advanced Ceramics*, vol. 4, pp. 253-259, 2015.
- [65] E. K. Papynov, O. O. Shichalin, I. Y. Buravlev, *et al.*, "UO₂-Eu₂O₃ compound fuel fabrication via spark plasma sintering", *Journal of Alloys and Compounds*, vol. 854, p. 155904, 2021.

CSV : GEN-48d9-a2ed-1039-3642-2eb4-c3e8-e59a-cd55

FORMATO PT-FN-04.2				
Ciemat	INFORME DFN/RA-05/SP-24	HOJA 31 DE 31		
DIVISIÓN DE FISIÓN NUCLEAR	REF. EXTERNA	REVISIÓN 0 FECHA 12/04/2024		

- [66] K. Iwasaki, T. Matsui, K. Yanai, *et al.*, "Effect of Gd2 O3 Dispersion on the Thermal Conductivity of UO2", *Journal of Nuclear Science and Technology*, vol. 46, pp. 673-676, 2009.
- [67] J. Lee, J. Kim, Y.-S. Youn, *et al.*, "Raman study on structure of $U_{1-y}Gd_yO_{2-x}$ (y=0.005, 0.01, 0.03, 0.05 and 0.1) solid solutions", *Journal of Nuclear Materials*, vol. 486, pp. 216-221, 2017.
- [68] M. M. Bućko, "Ionic conductivity of CaO-Y₂O₃-ZrO₂ materials with constant oxygen vacancy concentration", *Journal of the European Ceramic Society*, vol. 24, pp. 1305-1308, 2004.
- [69] Z. Talip, T. Wiss, P. E. Raison, *et al.*, "Raman and X-ray Studies of Uranium–Lanthanum-Mixed Oxides Before and After Air Oxidation", *Journal of the American Ceramic Society*, vol. 98, pp. 2278-2285, 2015.
- [70] J. M. Elorrieta, L. J. Bonales, S. Fernández, *et al.*, "Pre-and post-oxidation Raman analysis of (U, Ce)O₂ oxides", *Journal of Nuclear Materials*, vol. 508, pp. 116-122, 2018.
- [71] A. Milena-Pérez, L. J. Bonales, N. Rodríguez-Villagra, et al., "Raman spectroscopy coupled to principal component analysis for studying UO₂ nuclear fuels with different grain sizes due to the chromia addition", *Journal of Nuclear Materials*, vol. 543, p. 152581, 2021.
- [72] J. Lee, J. Kim, Y.-S. Youn, *et al.*, "Surface characterization of (U,Nd)O2: the influence of trivalent-dopant on structure of UO2", *Progress in Nuclear Science and Technology*, vol. 5, pp. 33-36, 2018.
- [73] T. A. Olds, S. E. Karcher, K. W. Kriegsman, *et al.*, "Oxidation and anion lattice defect signatures of hypostoichiometric lanthanide-doped UO₂", *Journal of Nuclear Materials*, vol. 530, p. 151959, 2020.

FIRMANTE	NOMBRE	FECHA	NOTAS
FIRMANTE[1]	MARIA NIEVES RODRIGUEZ	16/01/2025 14:17 Sin	
	VILLAGRA	acción específica	
FIRMANTE[2]	JONE MIREN ELORRIETA	16/01/2025 14:32 Sin	
	BAIGORRI	acción específica	
FIRMANTE[3]	M.SOLEDAD FERNANDEZ	17/01/2025 11:36 Sin	
	FERNANDEZ	acción específica	
FIRMANTE[4]	ENRIQUE MIGUEL GONZALEZ	17/01/2025 11:57 Sin	
	ROMERO	acción específica	

CÓDIGO SEGURO DE VERIFICACIÓN **GEN-48d9-a2ed-1039-3642-2eb4-c3e8-e59a-cd55** DIRECCIÓN DE VALIDACIÓN https://sara.ciemat.es:8443/csv/CsvRecoverService?c sv=48d9a2ed103936422eb4c3e8e59acd55 GEN-48d9-a2ed-1039-3642-2eb4-c3e8-e59a-cd55

GEN