Chapter 8 )
Solar Radiation Interpolation e

Ana M. Martin and Javier Dominguez

Abstract Geographic information systems provide different options to analyze and
represent the spatial heterogeneity of solar radiation incident on a certain area. This
chapter presents a description of the main and well-known methods for determining
interpolation surfaces from a data sample. Moreover, using 3D model of the ana-
lyzed area, computer models of spatial analysis are precise techniques to adjust the
results to the variability of surfaces in a geographic area. Both alternatives offer a
great analysis capacity. The selection of a procedure will depend on the objective of
the study and the available information.

1 Introduction

Studies about the amount of solar radiation that reaches a surface are of great
importance in various areas such as agriculture, ecology, hydrology, biology,
meteorology, architecture or the use of solar energy as an alternative for energy
supply. The use of solar energy is conditioned by the intensity of the incident solar
radiation, so that it is essentially an adequate knowledge of the solar resource
distribution.

Although there are solar radiation maps for large geographic areas, in some
detailed project solar radiation data are required. In this cases, where there are not
measuring stations, will be needed to approximate the data. Sometimes, they can
assume as a valid value, the nearest station data and others can use these mea-
surements, using spatial interpolation techniques, to analyze and model the solar
resource in no data locations within the same area.
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If there are few measuring stations or the installed network is not dense enough,
the addition of data from remote sensors, such as satellite images will improve the
adjustment of the estimations. Another alternative to calculate the solar radiation is
the use of models included in geographic information systems (GIS) software.
These systems incorporate the option of evaluating the influence of elevation,
considering the geospatial variations of solar radiation between areas of more and
less complex relief.

The purpose of this chapter is to feature the capacity of this type of tools in the
determination of solar radiation for a specific geographical area. First, the main
interpolation methods will be summarized and then, one of the existing GIS models
will be described for the estimation of solar radiation considering the influence of
terrain topography.

2 Interpolation of Solar Radiation Data Using GIS

The values obtained by interpolation process would depend on the characteristics of
the studied geographical variables, the available sample, factors associated with the
distribution of the data, the required spatial resolution and the chosen predictor
model (Burrough and McDonnell 1998). In general, interpolation techniques are
classified as deterministic and geostatistical (Johnston et al. 2001; Santos Preciado
and Garcia Lazaro 2008).

The deterministic techniques create interpolated surfaces based on the adjust-
ment of mathematical functions to the measured points. They define a set of
explanatory variables so that the errors were minimal.

The geostatistical techniques generate the prediction surfaces using statistical
models. These methods quantify the spatial correlation of the data and evaluate the
uncertainty of the obtained results.

In addition, interpolation methods are classified as exact and inexact. They are
considered exact when the interpolated values for a location correspond to the
measured data (Fig. 1). Finally, they are divided into global and local methods.
Global interpolations use a single function to create the continuous surface from all
the sample values and, local interpolations adjust the function to different small
areas of the sample points. Local methods are more appropriate when the total trend
of the analyzed data is unknown (Fig. 2).
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Fig. 1 a Exact and b inexact interpolation methods
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Fig. 2 a Global and b local interpolation methods

Table 1 Spatial interpolation methods (Burrough and McDonnell 1998; Johnston et al. 2001)

Method Interpolation Local/global Exact
type interpolation

Global polynomial Deterministic Global No

Local polynomial Deterministic Local No

Inverse distance Deterministic Local Yes

weighted

Radial basis functions Deterministic Local Yes

Kriging Geostatistical Local with global Yes
trend

Cokriging Geostatistical Local with global Yes
trend

Table 1 presents a brief summary of the main methods that can be applied in the
interpolation of solar radiation data.

The amount of interpolation methods available is quite broad, as well as the
parameters susceptible of using for the adjustment in each of them. To calculate
solar radiation values, some studies use other variables such as temperature,
humidity, cloudiness, precipitation or elevation (Evrendilek and Ertekin 2008; Jolly
et al. 2005). Comparative studies have been carried out to establish which is the
optimal method for each variable (Apaydin et al. 2004; Vicente-Serrano et al.
2003), although the kriging method is one of the most applied (Antonanzas et al.
2015; Perea-Moreno and Hernandez-Escobedo 2016; Righini et al. 2005).

In order to illustrate the interpolation methods, we provide daily solar radiation
data (summer solstice) from 45 radiometric stations in Spain (AEMET 2011)
(Fig. 3).
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Fig. 3 Distribution of radiometric stations from Spain, located in the Iberian Peninsula

2.1 Deterministic Methods

2.1.1 Global Polynomial Interpolation

When the analyzed parameter varies continuously in a certain area, this interpola-
tion method defines the mathematical function that fits the values of the input
sample points. The global polynomial interpolation models a smooth surface that
best represents the trend in the data points, in order to differences of observed errors
are minimal.

This method uses all data available of the study area to produce a prediction
surface. The interpolated values are computed from their geographical location by
multiple regressions using a least squares regression fit. The correlation between the
variable to interpolate z and its coordinates (x, y) is defined with the function:

2xy)= Y (b)) (D)

r+s<p

The number of coefficients b, to be determined would depend on the order p of
the trend surface. First- to third-order polynomial functions are the most common:
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2(x,y) =bo+Dby-x+by-y (2)
2(x,y) =bo+by -x+by-y+b3-x*+by-xy+bs-y (3)

2(x,y) =bo+ by -x+by-y+b3-x>+by-x-y+bs-y +bg-x°
+by x> y+bg-x-y: +by -y

Being a global interpolation method, it is likely to appear outliers at the edges of
the surface, generally related to exceptionally high or low values. The resulting
surfaces modeled with low-order polynomials may be suitable to represent certain
processes. However, using high-order polynomials, a properly description of the
trend surface becomes more complex. In addition, global interpolation is a com-
plementary technique used to identify a general trend that influences on data when a
local analysis is implemented.

2.1.2 Local Polynomial Interpolation

With the local polynomial interpolation, instead of using the points of the entire
surface, the mathematical function is evaluated exclusively on the surface near each
point of estimation. This method fits the function repeatedly to small sections of the
sample points, defined by a window, to cover the whole area. The least squares
procedure is used by minimizing the expression:

> ee.3) = o(x.)’ 5)

where n is the number of points into the window and the weight w; when, for
example, the window is a circle is defined as:

o (1-4) (6)

where d; is the distance between the estimated point and a sample point within the
window and R is the ratio of the window.

The value of the polynomial (x;, y;) for first- and second-order functions are:

to(x,y) = bo+by -x+by-y (7)

Ho(x,y) = bo+b1 - x+by - y+bsx* +by - xy+bs -y (®)

Local polynomial functions are suitable for evaluating data which have small
variations in the nearest region.
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2.1.3 Inverse Distance Weighting

Interpolation method based on the premise that considers, the points closest to a
location are more similar than those further away. Inverse distance weighting
method calculates the value of an unknown point by means of a combining
weighted of the values in a sample of points. Using this method, greater weight is
given to points located in the nearby position, decreasing their influence as a
function of distance. The general formula is the following:

L TL
2(x0) = Dy )

i—1 a7
=1 dj,

where Z(x,) is the figured value for the location x,; n is the number of locations
where a value has been measured; d;, represents the distance between the sample
locations x; and the prediction location xg; and, z(x;) is the value of the location x;
(Slocum et al. 2014).

The power parameter p is the main factor that affecting on the interpolated
values, due to it controls assigned weights to the measured points. Weights are
proportional to the inverse distance d;, raised to the power p. When the parameter
p increases, the weights of the furthest values diminish and nearby points will have
a greater influence on the estimated values.

2.1.4 Radial Basis Functions

Radial basis functions are techniques in which the values are determined by dif-
ferent mathematical functions that force the surface to pass through all the measured
points. These methods generate continuous flexible surfaces by adjusting the
interpolated values to minimize, as much as possible, their total curvature. These
functions are quite appropriate when it is necessary to create large smooth surfaces
without many variations between an area and the contiguous one.

The interpolated result is defined by a linear combination of the basic functions:

o) = Do B0) + B (10)

where n is the number of sample points; w; are weights to be estimated; [ is a bias
parameter; r is de Euclidean distance between the estimated point and each data
location; and, ¢(r) is the radial basis function.
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Some of the types of radial basis functions commonly used are:
Thin-plate spline function:

Multiquadric function:

B(r)=Vr+a (12)

Inverse multiquadric function:

r)=— 13
=T =

Spline with tension function:
Z(r) =1n (o g) 4 Ko(o - 1)+ Ci (14)

Completely regularized spline function (with tension and smoothing):

@) =~ |in(o- 5)" + 5 (s 5) ] (15)

The parameter ¢ controls the smoothness of the function: K is the modified
Bessel function (Abramowitz and Stegun 1974); Cr is the Euler constant; and, E is
the exponential integral function (MitdSova and Mitas 1993) (Fig. 4).

2.2 Geostatistical Methods

2.2.1 Kriging

Kriging interpolation methods are characterized by creating a surface applying
statistical models and providing information about the accuracy of the results,
including the spatial correlation of the data. They are based on the weighted average
calculation of the sample measurements. The weights are defined with the distance
between the measured points and the location of the prediction, in addition to the
spatial structure of the sample points (Slocum et al. 2014).

The kriging procedure consists first, in examining the spatial distribution of the
data (autocorrelation) and next, generating the interpolation surface with the most
appropriate estimation method.
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Global Solar Radiation (KWh/m?)
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Fig. 4 Estimated global solar radiation for summer solstice (2011) from 45 stations in Spain.
Deterministic interpolation methods: a global polynomial; b local polynomial; ¢ inverse distance
weighted; d thin-plane spline function; and, e completely regularized spline function
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Autocorrelation

Spatial autocorrelation is analyzed by variance, represented graphically with the
variogram, where the spatial variability of a phenomenon is shown according to the
sampling points are further away. Semivariance (%) can be estimated using:

) = 3" elw) <l + ) (16)

i=1

where 7 is the number of sample points separated by a distance interval h; z(x;) is
the sample value in a location x;; and, z(x;+ h) is the value at a distance & from x;
(Burrough and McDonnell 1998).

However, to quantify the scale of spatial variation, it is necessary to adjust the
variogram to a theoretical function. This may help to the extraction of a series of
parameters which will be used in the kriging interpolation.

In the graph of the variogram (Fig. 5), the variance versus distance is represented.
When the distance between points is zero, the semivariance should be zero, but the
curve at this point has a value close to zero. This unexplained semivariance is the
nugget effect, and it indicates measurement errors and variability at a lower scale than
the sample. At high values of distance, there is a point at which the semivariance
between pairs of points does not increase. The distance at which the semivariance
levels off is the range and the sill is the height reached by the variogram at that point.

The equations of the models to adjust the semivariance are summarized in
Table 2.

Types of kriging methods

In general, the predictions of the model for the variable in a location are variants of
the equation:

Zw) = > H{Z(x) - lso) e1)
i=1

y(h) )
Sill {c+co)

Range (a)

Fig. 5 Example of variogram
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Table 2 Semivariance models (Burrough and McDonnell 1998)

Model Equations

Linear p(h) =co+b-h 17)
(b is the slope of the line)

y(h)

Exponential p(h) =co+c- (1 - exp(%h)) (18)

()

Gaussian y(h) = co+c- (1 _ eXP<—2—§)) 19

¥k

2a 2 a
co+c¢ h>a

Spherical J(h) = {Co +c- <M _ L (h)3> O<h<a (20)

¥(h)

where p is a known stationary mean value; n is the number of point for the
estimation; /; is the kriging weight; and u(xp) is the mean of sample data in the
search window.

To carry out a prediction when mapping variables, there are different types of
kriging methods that can be divided into linear and nonlinear (Cressie 2015; Chiles
and Delfiner 2012; Goovaerts 1997; Wackernagel 2003):

Linear methods: The estimates are weighted linear combinations of the data.

— Ordinary kriging is the most general and widely used kriging methods. The
estimated points are allocated values with a weighted linear combination using
sample values. The method assumes that the mean value is constant and
unknown over the search neighborhood.

— Simple kriging uses the average of the total set of data. It considers the premise
that both, the mean value and the semivariance of the process, are known and
remain constant in all locations.
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— Universal kriging is a method that performs the estimation of the variable in the
presence of a trend or drift. The analyzed phenomenon consists of a deter-
ministic component and the corresponding residue. The variable is determined
as the sum of the deterministic function of the drift and a random function with
zero mean, which represents the fluctuation or residual error.

Nonlinear methods: The estimates depend on the statistical distribution of the
variables.

— Indicator kriging is a method in which continuous data are transformed to a
binary scale. A binary indicator variable is obtained by establishing a threshold
and assigning value 1 to those that are less or equal than it and O to the others. In
the resulting interpolation, the distribution of the data will reflect being in a
class, depending on whether the data exceeds or falls below the specified
threshold.

— Probability kriging is a technique based on indicator kriging that uses binary
data (0 or 1) and then, applies cokriging to perform a better estimation of the
resulted probability. The indicator values are used as the primary variable and
the original sample data as the secondary one in the cokriging.

— Disjunctive kriging is also a nonlinear method in which the global distributions
of the data are normalized by Hermite polynomials. The estimate of the variable
is developed with a linear combination of the estimated polynomial values. In
addition, this method estimates the probability that a random variable shows of
exceeding, or not exceeding, a predetermined level in the analyzed area.

2.2.2 Cokriging

Sometimes the phenomena analyzed depend on the values of an analyzed variable,
but other times several phenomena are related to each other. Cokriging offers the
option of identifying the characteristics of a primary variable from the data of
another variable. This method considers secondary information that can be obtained
about the variable investigated, referring to other attributes related to the main one
(Goovaerts 1997). The general equation that shows the estimated interpolation of
the combination between the primary and secondary variables is:

n, N

Z1i600) 1 = 3 221 — )+ 303 4 Z) ()] (22)

i=1 =2 i=1

where p; is a known stationary mean value of the primary variable; n; is the number
of points for the estimation in the search window; 4;; is the weight of the primary
variable; Z(x;;) is the data of primary variable; u,(x;;) is the mean of sampled data
in the search window; n, is the number of secondary variables; n; number of
J secondary variable in the search window; 4, is the weight of secondary variable;
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Zj(x;) is the data of secondary variable; and, p,(x;) is the mean of sample secondary
variable in the search window.

In cokriging, the spatial dependency relationships are specified by the autocor-
relation of the different variables and the cross-correlation between the data. To
define the coherence between the variables, a crossed variogram is elaborated,
where the variance represented will no longer be between points of the same
variable, but between the values of one variable in relation to the other. To verify
that there is a covariation, between the primary and secondary variable, a semi-
variogram can be estimated from the following equation:

to =Sl ~ale B o) - b)) (@)
i=1

where #n is the number of pairs of sampled points of variable z; and z, in locations x;
and x; + h separated by a distance 4 (Burrough and McDonnell 1998).

There are several cokriging methods that include ordinary cokriging, simple
cokriging, universal cokriging, indicator cokriging, probability cokriging and dis-
junctive cokriging (Cressie 2015; Chiles and Delfiner 2012; Goovaerts 1997; Isaaks
and Srivastava 1989) (Fig. 6) (Table 3).

3 Modeling Solar Radiation Using GIS

When the objective is to determine more precisely the distribution of the incident
solar radiation in a region or a specific location, establishing a single value for an
area that is too wide may be insufficient. At regional and local scales, altitude,
orientation, slope, and shading can generate microclimates and, a more or less
homogeneous distribution of solar radiation. In these cases, the topography of the
area helps to incorporate these factors into the analysis, improving the estimation of
solar radiation when the variations caused by the terrain effect are considered.

There are different GIS software packages that have models for estimating solar
radiation. The r.sun model designed for the free software GRASS GIS (GRASS
Development Team 2018) calculates the three components of solar radiation (direct,
diffuse and reflected) with clear sky conditions. It incorporates the possibility of
including the effect of shading due to topography and a cloud attenuation factor
(Hofierka et al. 2007; Stri and Hofierka 2004).

In addition, the models developed for the ArcGIS software by ESRI
(Environmental Systems Research Institute) (Esri 2018), provided the tool ‘Area
Solar Radiation’ available with the extension ‘Spatial Analyst’. This tool of ArcGIS
represents and analyzes the insolation for a period of time in a geographical area
that is represented by terrain raster file (Digital Surface Model—DSM). The
analysis result is the global solar radiation for each location of a surface and is
calculated as the addition of the direct and diffuse solar radiation (Esri 2017a). It is
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Fig. 6 Estimated global solar radiation for summer solstice (2011) from 45 stations in Spain.
Geostatistical interpolation methods: a ordinary kriging; b simple kriging; ¢ universal kriging;
d disjunctive kriging; and, e ordinary cokriging

designed to work on local scales because it only defines a latitude value for the
entire area. It can also be used for national and continental scales if the input DSM
is divided into small areas (Fig. 7).
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Table 3 Errors statistic of the prediction values of global solar radiation interpolation (summer
solstice of 2011) from 45 stations in Spain

Interpolation method ME RMAE | MSE RMSSE | ASE
Global polynomial 10.26 | 727.53 - - -
Local polynomial 71.28 | 790.75 - - -
Inverse distance weighted 17.23 820.78 - - -
Thin-plate spline function 5.34 829.69 - = —
Completely regularized spline 2.52 774.18 - - -
function

Ordinary kriging 13.85 | 759.95 0.004 0.98 793.58
Simple kriging 5.38 763.89 0.006 0.93 841.38
Universal kriging 14.09 | 759.88 0.004 1.003 783.74
Disjunctive kriging 18.05 | 752.12 0.008 0.87 821.30
Ordinary cokriging 9.63 782.54 0.00004 | 1.02 777.97

ME Mean Error, RMSE Root Mean Square Error, MSE Mean Standardized Error, RMSSE Root
Mean Square Standardized Error, ASE Average Standard Error (Mean Error (ME) shows the
average difference value between the measured data and the prediction. Root Mean Square Error
(RMSE) indicates the grade of bias from the predictions with the measured values. The smaller this
error, the prediction is better. Mean Standardized Error (MSE) is the average of the standardized
error whose value should be nearby 0. Root Mean Square Standardized Error (RMSSE) should be
close to 1. If the error is greater than 1, the prediction is underestimated and if the error is less than
1, the prediction is overestimated. Average Standard Error (ASE) is the mean of the prediction
standard error.) (Esri 2017b)

- ALTITUDE -
1808 m.

B74 m.

Fig. 7 Digital surface model (pixel 25 m). Area of Guadalajara and Madrid provinces (Spain).
Coordinates: 40° 51’ 59.56"N, 3° 21’ 15.18"0 (IGN 2015)
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3.1 Calculation of Solar Radiation with ArcGIS

‘Area Solar Radiation’ tool is based on algorithms developed by Fu and Rich
(1999) that determine the hemispheric viewshed, the sunmap and the skymap that
calculate the amount of solar radiation on a location:

1.

The viewshed shows, by searching in a series of directions, those areas of the
sky that are visible or hidden due to topography or nearby structures, when they
are observed from a certain point.

In the raster representation of the viewshed, each cell is assigned a value relative
to the visibility of the direction of the sky and its location (row and column) is
represented for the zenith and azimuth angles.

. The sunmap determines the way of the Sun in the sky over a period of time. In the

resulting raster map, the apparent position of the Sun is calculated with the
latitude of the area, and it is represented with intervals that vary during the periods
of the day (hours) and of the year (days or months). Each sector of the sunmap is
assigned an identifying value together with the zenith and azimuthal angles.

. A skymap consists of the division of the sky into a series of sectors in which

diffuse radiation can be originated. The sectors that shape the map of the sky are
also assigned an identifying value. They defined by the zenith and azimuthal
angles, which calculate the diffuse solar radiation in each sky sector (Fig. 8).

Then viewshed is overlaid with the sunmap and the skymap to calculate,

respectively, the direct and diffuse solar radiation that are originated from each
direction of the sky (Esri 2017a; Kodysh et al. 2013) (Fig. 9).

Analyzing solar radiation in a specific area requires taking into account factors

that are responsible for attenuating the amount of radiation that finally reaches the
surface. Topography, atmospheric agents, and seasonal variation of insolation are
major factors that affect the spatial distribution of solar radiation.

Fig. 8 a Viewshed, b sunmap for winter to summer solstices y ¢ a skymap with sky sectors
defined by 16 zenith and azimuth divisions (Fu and Rich 2000)
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Fig. 9 a Overlay of viewshed with sunmap y b overlay of viewshed with skymap (Fu and Rich
2000)

Shading limits the amount of insolation in a specific location and the charac-
teristics of the surfaces, their slope, and orientation determine the angle of incidence
of solar radiation. In addition, the weather conditions and the effect of the atmo-
sphere also influence the attenuation of the final values of insolation. These factors
are considered by estimating atmospheric transparency (transmissivity) and diffuse
proportion of solar radiation.

‘Area Solar Radiation’ tool has options to establish parameters to fit the variables
that define the study area and influence on the insolation levels. The inclusion of
atmospheric parameters to adjust the calculation of solar radiation with ArcGIS can
be done using different methodologies. Sun et al. (2013) apply an annual value for
these factors. However, other studies use monthly data provide by agencies such as
NASA or the PVGIS databases (Brito et al. 2012; Fogl and Moudry 2016), which
adapt the results better to the monthly and seasonal variations of the solar radiation.
Cloud coverage data from meteorological stations and weather databases are also
utilized in the parameter calculation for ArcGIS (Oloo et al. 2015; Wong et al.
2016).

Some works use models to calibrate and obtain adequate data for each month of
the year. With the solar radiation values get in different measuring stations, Tooke
et al. (2011) determine the atmospheric transparency index, from which the diffuse
proportion derives, using a first-order model proposed by Orgill and Hollands
(1977). Mavromatidis et al. (2015) calculate the global radiation for all possible
combinations of transmissivity and diffuse proportion, selecting a set of monthly
values that give a result closer to the values calculated with the Meteonorm software
(Meteotest 2017).

We propose to estimate the monthly values of atmospheric parameters, using a
reference day for each month of the year and the horizontal radiation data of a
location. First, analytically the transmissivity is determined and subsequently the
diffuse proportion is derived with a linear correlation. To show the temporal vari-
ation of the insolation, global solar radiation map is calculated for all the months of
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the year and then, adds the results of the twelve maps to obtain the total annual
value (Figs. 10 and 11).

3.1.1 Transmissivity

Transmittivity is the proportion of the solar radiation that goes through the atmo-
sphere and reaches the surface of the Earth with respect to the solar radiation
received outside the atmosphere (extraterrestrial). The values that this parameter can
take values between O (without transmission) and 1 (complete transmission), con-
sidering that a value of 0.5 corresponds to a generally clear sky.

To establish the monthly transmissivity values, the monthly average clearness
index K7 is calculated. This parameter is defined as the ratio between is the monthly
average daily radiation on a horizontal surface H;, and the extraterrestrial solar
radiation incident on a horizontal plane Hy:

Kp = Hh/HO (24>

The global radiation on a horizontal surface values Hj for each month is
obtained from the PVGIS database by selecting a location on the interactive map
(European Commission 2012).

Fig. 10 Global solar radiation for some months (March, June, September, and December). Area
of Guadalajara and Madrid provinces (Spain)
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Global Solar
Radiation

- 2028 (MWh/m?)

Fig. 11 Global solar radiation for some months (March, June, September, and December) and
annual. Set of buildings in the town of Alpedrete (Madrid)

Analytically, the extraterrestrial solar radiation incident on a horizontal plane H,
can be calculated by the expression:

Hy = (24/7) - Isc - [140.033 - (360 - n/365)] (25)
- [cos ¢ - cos O - sinwy + (7 - ws/180) - sin ¢ - sin ]
where Isc is the solar constant (1367 W/m? day); n is the selected day for each
month (Table 4); and, ¢ is the latitude.
There are different approaches for the determination of declination angle J.
According to the equation of Cooper (1969), for a Julian day n of year, the
declination is expressed as:
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Table 4 Recommended average day for each month (Klein 1977)

Month Day of the year Date Month Day of the year Date
January 17 17 Jan. July 198 17 Jul.
February 47 16 Feb. August 228 16 Aug.
March 75 16 Mar. September 258 15 Sep.
April 105 15 Apr. October 288 15 Oct.
May 135 15 May. November 318 14 Nov.
June 162 11 Jun. December 344 10 Dec.

§=2345. sin (360 aiad ”)

365 (26)

Sunset hour angle w; is calculated by the equation (Duffie and Beckman 2013):

coswy = —tan ¢ - tan o (27)

3.1.2 Diffuse Proportion

Diffuse proportion is the fraction of the global solar radiation that is diffuse. The
values of this parameter vary from O to 1, establishing as a value of 0.3 for generally
clear sky conditions.

The coefficient of monthly average diffuse ratio Kp, which represents the relation
between the global solar radiation and the diffuse component of the radiation, is
calculated to determine the diffuse proportion. This parameter is based on the
monthly average clearness index Ky and is calculated using the correlation of
Gopinathan and Soler (1995) (Table 5).

Kp =091138 —0.6225 - Ky (28)
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Table 5 .V.alues Of_ Month H;, (Wh/ Transmissivity | Diffuse

transm1§s1v1ty and diffuse m?) proportion

proportion
January 1930 0.45 0.47
February 2980 0.39 0.54
March 4430 0.34 0.59
April 5260 0.38 0.55
May 6330 0.36 0.57
June 7430 0.29 0.64
July 7800 0.25 0.69
August 6710 0.27 0.66
September 5090 0.32 0.62
October 3510 0.36 0.57
November | 2230 0.42 0.50
December 1770 0.45 0.48

Area of Guadalajara and Madrid provinces (Spain)

4 Conclusions

The purpose of this chapter has been to describe some of the available options for
estimating the distribution of solar radiation in geographic areas. Several methods
of interpolation and approximation were developed to predict the values of a spatial
phenomenon in a location. In the interpolation examples shown previously,
although the polynomial global method has the smallest root mean quadratic error
that results in interpolations closer to the real value, it is observed that the geo-
statistical methods, in general show very low quadratic errors. Within this group,
the universal kriging and ordinary Cokriging methods are the ones that show the
greatest adjustment in the results. The mean standardized error close to O and the
root mean square standardized error nearby 1 (Table 3).

Although all interpolation techniques are valid, it is important to analyze whe-
ther the interpolation method and the selected criteria are the most appropriate.
A method that conforms well to a data set may not be the most appropriate for a
different data set. The application of each method will consider the objective of the
interpolation, the properties of the available data and the distribution of the sample.

Sometimes, there are not enough measurement points or the solar radiation
distribution changes on a very short spatial scale, such as mountainous regions or
urban areas with a complex morphology. An alternative to interpolation procedures
are the modeling techniques developed for GIS software that manage large amounts
of geo-referenced data. Models for estimating solar radiation are mainly based on a
three-dimensional surface model and, using a series of zonal parameters, they are
adjusted as much as possible to the characteristics of the geographical area under
study.

javier.dominguez@ciemat.es



8 Solar Radiation Interpolation 241

GIS analysis tools for the prediction and mapping of the solar resource are
increasingly powerful. The objective is to highlight the potential presented by this
type of tools for the representation of this phenomenon without forgetting the
purpose of carrying out a specific study. Users will have to choose the technology
that best suits each one and analyze the results according to the method and
parameters that defines it.
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