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Abstract. A new two-equation model is proposed for large eddy simulations (LESs) using
coarse grids. The modeled transport equations are obtained from a direct transposition of well-
known statistical models by using multiscale spectrum splitting given by the filtering operation
applied to the Navier–Stokes equations. The model formulation is compatible with the two ex-
treme limits that are on one hand a direct numerical simulation and on the other hand a full
statistical modeling. The characteristic length scale of subgrid turbulence is no longer given
by the spatial discretization step size, but by the use of a dissipation equation. The proposed
method is applied to a transposition of the well-known k-ε statistical model, but the same
method can be developed for more advanced closures. This approach is intended to contribute
to non-zonal hybrid models that bridge Reynolds-averaged Navier–Stokes (RANS) and LES,
by using a continuous change rather than matching zones. The main novelty in the model is the
derivation of a new ε equation for LES that is formally consistent with RANS when the filter
width is very large. This approach is dedicated to applications to non-equilibrium turbulence
and coarse grid simulations. An illustration is made of large eddy simulations of turbulence
submitted to periodic forcing. The model is also an alternative approach to hybrid models.

Key words: large eddy simulation, turbulence, subgrid scale transport model, unsteady flow,
spectral non-equilibrium
PACS: 47.27.Eq

1 Introduction

The methods used in the computation of turbulent flows can be classified with respect to the range of ed-
dies which is modeled in the turbulence spectrum. Direct numerical simulations (DNSs) require a fine grid
resolution for resolving all scales of turbulence including the dissipative scales. To do so, a sufficiently pre-
cise numerical scheme is required in order to correctly capture the time evolution. When one-point models
are used, the whole turbulence spectrum is modeled and the turbulence field is described through mean
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values and correlations. This is a full statistical treatment of turbulence referring to transport models or al-
gebraic models as well. The large eddy simulation (LES) approach consists of a hybrid method based on
statistical modeling of the fine scales within the turbulence spectrum, whereas the large scales are com-
puted. The fraction of the resolved scales compared to the modeled part is determined and controlled by
the filtering operation applied to the Navier–Stokes equations. The usual justification of the latter method
is that the fine scales are more or less universal and thus easier to model than the large scales that are
dependent on the particular turbulent flow considered. A huge reduction of storage and computing time
is then possible. The universality of the fine-grained turbulence remains a good approximation if the cut-
off induced by the filtering operation is located within the inertial range of the spectrum. Many subgrid
scale models have been proposed in the scientific literature since the first proposal by Smagorinsky, which
is based on an implicit equilibrium hypothesis. Since then, more advanced models such as the dynamic
model proposed by Germano et al. [16] and the structure model of Métais and Lesieur [30], have been
devised to reach greater generality in subgrid scale modeling. Another approach, first investigated by Dear-
dorff early in 1973 (Deardorff [9]), relies on the use of transport equations for the subgrid scale Reynolds
stress tensor. Several authors like Schumann [44] and Horiuti and Yoshizawa [21] have used transport equa-
tions for the turbulent kinetic energy for developing one-equation subgrid scale transport models. In these
models, the characteristic turbulent length scale is in all cases, based on the cell size of the computational
mesh.

However, when the mesh is coarse, the filter cutoff may be located at a wavenumber below the iner-
tial range, and the subgrid scale turbulence may embody a part of the energy containing eddies involved
in the production process. This is rather a very large eddy simulation (VLES). In this case, the hypoth-
esis of an inertial range energy transfer based on an equilibrium hypothesis becomes questionable and
there is the need to develop more advanced models. Transport equation models for subgrid scale tur-
bulence show great promise in this prospect. The further developments of these kinds of models have
been made by Krajnovic and Davidson [25] and also by Dejoan and Schiestel [13]. Considerable effort
is also currently being placed on bridging Reynolds-averaged Navier–Stokes (RANS) and LES by the
so-called hybrid technique (Batten et al. [3]; Davidson et al. [8]). These techniques are expected to be
useful in complex flow in which a zonal approach combining RANS and LES would be relevant and
is a topic of active research. An analogous point of view was developed by Hamba [17], who com-
bined LES and RANS in channel flow calculation, the near-wall region being solved by LES whereas
the standard k-ε model is solved away from the wall in a one-dimensional grid. One of the problems
in hybrid techniques is the difficulty to match the two regions that are described using different models.
In recent work, Hamba [18] introduced a new scheme with additional filtering and succeeded to reduce
the mismatch.

In the present paper, we propose the construction of a hybrid subgrid scale model, which progressively
approaches a RANS model when the mesh becomes coarser. This model can be interpreted as a continuous
version of a hybrid zonal approach. This idea can be related to the detached eddy simulation model DES in-
troduced by Spalart [48]. In principle, a DES model can be derived from a RANS model by switching the
statistical length scale (Travin et al. [52]) to the grid size in the wall-resolved regions of the flow. Indeed, the
DES approach was originally conceived for aerodynamic flows, with juxtaposition of a thin boundary layer
and a large separated region. This model is directed to operate in RANS mode by creating a RANS grid with
large spacings. More recently, Nikitin et al. [33], applied the DES model as a subgrid scale model in LES of
channel flow and obtained fairly accurate results.

We explore here the possibility of developing a k-ε-type subgrid scale model that could be applied both
to RANS and LES in a hybrid non-zonal approach (see Hanjalic et al. [19]). The major ingredient of the
model is a new equation for dissipation rate of turbulence energy from which the characteristic length scale
of subgrid turbulence can be determined. This new approach is expected to be relevant to cases in which the
filter size is no longer a representative estimate of the unresolved (subfilter) turbulence length scale. These
models will also be better suited for turbulent flows with a non-equilibrium spectral distribution produced
by unsteadiness in the mean or by strong spatial perturbations because they allow to take into account some
aspects of turbulence history for both velocity scales and length scales of turbulence.

One relevant feature of the present method is a consistent transposition of statistical transport modeling
to subgrid scale closures. This is achieved by applying the split-spectrum concept, based on the multiscale
modeling approach developed by Schiestel [41, 42] to the portioned turbulence spectrum that occurs in large
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eddy simulations. The derivation of a new ε equation for LES, which is formally consistent with the RANS
approach, is the main original aspect of the proposed model. The method can, in principle, be extended to
most of the well-known one-point closures, leading to the derivation of their subgrid scale counterpart.

So, the present model is conceived as a LES model that is allowed to behave like a RANS model when
the filter is very wide.

The scope of applications of the model is concerned with the LES and the VLES performed on coarse
meshes or involving turbulent flows that are out of equilibrium. In the present paper, three turbulent flows
are considered to test the new method. One is the decay of homogeneous turbulence, which allows one to
check the consistency of the method for different grid sizes. The second flow is the fully developed channel
flow, which includes wall effects. The third case is the pulsed channel flow for which a considerable set of
experimental data was produced by Binder and Kuény [5] and Tardu and Binder [15]. This flow case puts
in light the lag effects appearing between the turbulent field and forcing. Given its non-equilibrium charac-
ter, the latter flow is more relevant for our approach. These three flows constitute a first step for testing the
split-spectrum model. More generally, the present approach is promised to cover a very wide range of appli-
cations, since unsteady turbulent flows are encountered in various situations of the industrial field and also
since using coarse grids is an attractive economical method for practical methods of prediction.

First we present the basic equations of the large eddy simulation and the numerical method. A heuris-
tic derivation of the new dissipation equation for subgrid scale turbulence introduces the basic idea of the
method. A more detailed analytical development of the proposed model is then presented. The model is
tested in simple fully turbulent flows with special attention to the influence of filter width on the results and
also the wall influence. Then, the pulsed turbulent channel flow case gives an illustration of the potentials
of the method in an unsteady situation, with comparisons to experiments and the testing of non-equilibrium
effects. Future developments are suggested in the concluding remarks.

2 Basic equations

Filtered equations

After a filtering operation is applied to the instantaneous Navier–Stokes equations, we obtain the following
well-known equations of motion for LES:





∂Ui

∂t
+ ∂UiUj

∂xj
= Fi −

1

ρ

∂π

∂xi
− ∂τij

∂xj
+ν∇2Ui

∂Ui

∂xi
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(1)

in which Ui is the filtered velocity, Fi is an external force and τij is the subgrid scale stress tensor. In the case
of turbulent stress models using a subgrid scale viscosity hypothesis, the pressure π will be referred to as the
“pseudo-pressure” because it will also include the spherical part of the stress tensor. In this case the subgrid
turbulent stresses are proportional to the filtered deformation of the flow field.

τij = −2νsgs Sij with Sij = 1

2

�
∂Ui

∂xj
+ ∂U j

∂xi

�
(2)

The present computations use a Gaussian filter in the periodic directions of the flow, with a smooth tran-
sition between resolved and unresolved scales. In the inhomogeneous directions, the filter produced by the
grid discretization is used. The filter width ∆i is generally chosen to be twice the mesh spacing hi in the cor-
responding direction (i) (cf. Kwak et al. [26]). The filtering of the non-linear term in Eq. (1) is performed
using this Gaussian filter. The reason for explicitly filtering the non-linear term is so that every term in the
momentum equation has the same wavenumber content and the Leonard stresses are not neglected. Thus,
in principle, the subgrid scale stress, a non-linear quantity, should also be explicitly filtered. In general,
these equations are not exactly Galilean invariant (Vasilyev et al. [53]), but this point will not be discussed
here.
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Numerical method

The filtered Navier–Stokes equations are solved using a hybrid Adams–Bashforth and Crank–Nicolson time
scheme and the space discretization is based on Hermitian fourth order schemes in the inhomogeneous di-
rections and Fourier pseudo-spectral developments in the homogeneous directions. This technique (Schiestel
and Viazzo [43]; Viazzo and Schiestel [54]) proved to possess good conservation properties and numerical
precision. However, this previous technique applied to the subgrid scale transport equations required a reduc-
tion of the time step to maintain stability. Therefore a different numerical time scheme based on first order
accuracy approximation of derivatives and linearization of source terms was applied to the turbulence trans-
port equations to keep a time step of the same order of magnitude as the one used in the Smagorinsky model
calculation. The loss of accuracy being limited to the model itself, it has no serious drawbacks on the calcula-
tion of the resolved scales. A specific version has been developed for homogeneous turbulence using Fourier
spectral developments in all three directions (for free decay of homogeneous turbulence). A description of
the method is given in Appendix A.

3 An heuristic point of view for the ε-equation in statistical modeling and subgrid modeling in LES

The subgrid scale model will be devised in order to be compatible with the two extreme limits that are the
complete direct numerical simulation (DNS), and the one point full statistical modeling. This feature has to
be dependent on the location of the cutoff produced by the filter. In the DNS, all the turbulent scales are re-
solved and the model is not active, whereas in the one point statistical modeling all the turbulent scales are
modeled. Replaced in spectral space for homogeneous turbulence, this reasoning just indicates that the DNS
is obtained when the filter cutoff κc goes to infinity, and full statistical modeling corresponds to the case of
a vanishing cutoff.

We first give an interpretation of the usual ε equation in statistical modeling of homogeneous turbulence.
Introducing the macro length scale of turbulence L allows to write:

ε = α
k3/2

L
, (3)

where the coefficient α is a dimensionless numerical constant.
It follows from Eq. (3) that:

dε

dt
= 3α

2

k1/2

L

dk

dt
−α

k3/2

L2

dL

dt
. (4)

Using the kinetic energy equation:

dk

dt
= P −ε ,

where P is the production rate, leads to

dε

dt
= 3

2

(P −ε)

T
− T

L

dL

dt

ε2

k
(5)

with T = k/ε the time scale of the turbulence cascade.
The first term in the right hand side of (5) can be interpreted as the relaxation taking place in the spec-

tral pipeline with the characteristic time of the cascade being equal to T . This term corresponds to the pure
Kolmogoroff cascade. The second term shows that, in the absence of any external force, during free decay,
the macroscale of turbulence increases, and consequently the dissipation rate is further decreased. The usual
approximation in the k-ε model consists of the hypothesis:

1√
k

dL

dt
= CL or

T

L

dL

dt
= CT ,
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Fig. 1. Sketch of spectral portioning for filtered turbulence

where CL and CT
∼= 0.42 are numerical constants. This approximation is equivalent to the standard

k-ε model for RANS closures:

dε

dt
= Cε1

Pε

k
−Cε2

ε2

k
with Cε1 = 3

2
and Cε2 = 3

2
+ T

L

dL

dt
(∼= 1.92) . (6)

Indeed, in unconstrained homogeneous turbulence the integral scale L increases.
In the case of subgrid scale modeling, the relaxation time scale T in the first term of (5) representing the

pure Kolmogoroff transfer is replaced by ks/ε, with ks being the subgrid scale kinetic energy of turbulence.
This relaxation time scale is thus smaller than previously, which is physically consistent because the spectral
zone of cascade is reduced to [κc,∞]. The production is also obviously replaced by the total energy flux FC
entering the subgrid zone (see Fig. 1). The second term in the right hand side of Eq. (5), however, does not
change because physically the value of ε has not to be influenced by the choice of the cutoff. If one considers
an equilibrium flow with P = FC = ε, the first term vanishes and the second term must remain the same if we
want ε to reach the same value as in the RANS ε equation. For instance, in channel flow this second term is
balanced by the turbulent diffusion term. It can be written as T

L
dL
dt

ks
k

ε2

ks
in order to derive the new ε-equation

in the form:

dε

dt
= C1s

Fcε

ks
−C2s

ε2

ks
with C1s = 3

2
and C2s = 3

2
+ T

L

dL

dt

ks

k
, (7)

where FC is the rate of energy entering the considered spectral zone, including production by the mean flow
and the transfer through the splitting wavenumber, i.e., the energy flux transferred from the resolved scales
to the subgrid scale non-resolved scales. It appears that the C2s term goes to 3/2 when κc → ∞(ks → 0) and
goes to 1.92 when κc → 0(ks → k).

Hereafter we present the detailed assessment of the ks/k ratio using integration of an analytical spectrum
function. Also, the subgrid scale transport equations for partial kinetic energy and dissipation rate are derived
on more analytical grounds.

4 Subgrid scale closure using partially integrated transport modeling (PITM)

We look now for a more detailed derivation of the method. The formulation of the transport equations for the
turbulence energy ks and for the dissipation rate relies on the multiscale approach (Schiestel [41]) applied to
the splitted spectrum described in Fig. 1. The model for homogeneous turbulence is thus based on an integra-
tion in spectral space. The resulting characteristic length scale of the subgrid turbulence (κ > κc zone) will

be given by Lsgs ≈ k3/2
s
ε

.
In coarse meshes, indeed, the spectral cutoff can be located before the inertial spectral range and the cal-

culation will indeed be a sort of VLES. If, in addition, the turbulence field is out of equilibrium, the space
step size of the mesh will no longer be an acceptable estimate of the characteristic turbulence length scale
for the subgrid scale turbulence. Such models that are able to separately calculate the subgrid turbulence are
an appealing route in these cases.
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In the following, we present an analytical derivation of the model using integration on spectral slices. The
coefficients of the model are then calibrated in the particular case of the decay of homogeneous grid turbu-
lence. Indeed, in this particular flow, the ratio ks/k can be easily calculated from a given analytical spectrum
shape. This allows the calibration of the C1s and C2s coefficients. The method can be easily extended to more
general models such as non-linear models or stress transport models.

Model for partial energies

The application of the multiscale approach is developed by choosing the spectral portioning sketched on
Fig. 1. A first spectral portioning is made by introducing a cutoff κc located in the medium range of eddies
and that figures out the filter operation in a large eddy simulation. The wavenumber κc is determined by the
choice of the filter width. Secondly, as in the usual multiscale method (Schiestel [41]), a large wavenumber
κd is introduced such that:

κd −κc = ξ
ε

k3/2
s

. (8)

The turbulence Reynolds number effect will not be considered at this stage, so that turbulence will be at
high Reynolds number.

The constant ξ is chosen sufficiently large for κd to be located several logarithmic decades higher than κc
at a point where the spectrum has strongly decreased and the energy located after κd will be considered as
negligible. The energy contained in the [κc, κd] range is denoted ks . Actually, this practice only implies that
the transfer of energy through the wavenumber κd can be made equal to the dissipation rate, without dealing
with infinite limits.

The partial turbulence kinetic equation related to the range [κc, ∞] is

dks

dt
= Fc −Ec

dκc

dt
−ε . (9)

This relation states that the net transfer Fc = Fc −Ec
dκc
dt through the cutoff κc is the sum of the spectral

flux at this wavenumber and the rate of energy exchange due to the variation of the splitting wavenumber.
We can write a similar equation, ε = Fd −Ed

dκd
dt , for the transfer occurring at the wavenumber κd , taking

into account that the energy located after κd is negligible and thus Fd = ε.
Using both of theses relations in Eq. (8), gives after taking the derivative:

d

dt
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and then, using (9) and (10):
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The second term inside the large brackets is supposed to be negligible because Ed � Ec and also because
the grid size is almost fixed or slowly variable (in the case of variable step size of the grid), implying that
Fc

∼= Fc. So,

dε

dt
= 3

2���
Cs1

ε

ks
F −

�
3

2
− ks

κdEd

�
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ε
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Cs2

ε2
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. (12)

When κc goes to zero the usual RANS ε equation is recovered with ks → k and C2s → Cε2 = 3
2 −

k
κdEd

�Fd
ε

−1
�
. By comparing the expressions of Cε2 (previous relation) and C2s (Eq. (12)), we can deduce

the values of the coefficients in the subgrid scale ε equation:

Cs1 = 3

2
and Cs2 = 3

2
+ ks

k

�
Cε2 − 3

2

	
. (13)
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These relations highlight the dependency of the coefficient Cs2 on the ratio ks/k, explained earlier in the
heuristic presentation of the method (cf. Eq. (7)). This dependence allows one to link the large-scale part of
the spectrum to the modeled subgrid-scale part.

Calibration on decay of grid turbulence

The particular case of the decay of turbulence behind a grid in the initial period of decay is considered for
estimating the shape spectrum ratio ks/k and then to calibrate the model coefficients. It is usually admitted
that the energy spectrum at very low wavenumbers (Lesieur [29]) behaves like:

E ≈ Cκµ for κ → 0 ,

whereas in the inertial range at high wavenumbers, the Kolmogoroff spectrum has to be recovered:

E ≈ χε2/3κ−5/3 for large κ.

Some authors (Aupoix [2]) have developed modeling from piecewise integration of an energy spectrum
approximated by the two previous laws joined by a knee. Smoother approximations have been proposed by
Von Karman (cf. Hinze [20]) that also have the nice property of leading to easily integrable functions. For
convenience, we shall use here a function of this kind, that has the correct behavior both at small wavenum-
bers and in the inertial range:

E(κ) = χε2/3κµ

��
χε2/3

C

� m−1
m+µ +κm−1


m+µ
m−1

with m = 5/3 , (14)

where χ is the Kolmogorov constant.
Using partial integration (cf. Appendix B), the ratio ks/k can be calculated analytically:

ks

k
= 1−


 η

2/3
c

χ
1+µ

+η
2/3
c




3
2 (µ+1)

(15)

with ηc = κc
κref

and κref = ε/k3/2.
This result is then inserted in (13) for coefficient Cs2.
The important feature of this approximation is that:

ks

k
≈ 3

2
χη

−2/3
c when ηc → ∞ . (16)

This behavior is in agreement with the equations derived in Rubinstein and Zhou [37, 38]. In their work,
these authors propose to derive the ε equation from integration of analytical models. The connection with the
multiscale approach is developed in Rubinstein and Zhou [38].

Also, when ηc → 0, it is verified that ks → k, corresponding to full statistical modeling.
So, in principle the analytic formula (15) allows one to specify the variations of the Cs2 coefficient in the

subgrid scale ε-equation (Eq. (12)). The analytical expression for ks/k allows the coefficient Cs2 to vary in
compliance with the grid mesh size. So, the variation of Cs2 acts as a dynamical parameter that determines
the asymptotic spectral shape in which the turbulence relaxes (regardless of the other processes of production
and diffusion).
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Practical formulation of the PITM model

A dimensionless cutoff wavenumber can be defined by:

Nc = κcL , (17)

where L is the characteristic length scale of the whole spectrum. In the general case, the characteristic length
scale L can be evaluated according to the previous definition:

L ≈ (ksimul +ks)
3/2

ε
. (18)

The cutoff wavenumber κc will be approximated by the filter width of the LES:

κc = π

�
1

∆x∆y∆z

	1/3

. (19)

This choice does not account for the anisotropy of the grid. When the grid is very elongated, like in the
near wall region, useful approximation formulas have been introduced (Scotti, Meneveau and Lilly [45]) to
account for grid anisotropies. However, we preferred to keep the model as simple as possible. Such improve-
ments can be incorporated in future work.

For simplicity, Eqs. (13) and (15) can be replaced by a simpler function that retains the correct asymptotic
behavior:

Cs1 = 1.5 and Cs2 = 1.5+0.42
1

1+βN
2/3
c

. (20)

We again emphasize the fact that coefficient Cs2 varies in compliance with spatial step size variations. It
is interesting to remark that the difference:

Cs2 −Cs1 = 0.42

1+βN
2/3
c

(21)

varies from 0.42 for full statistical modeling down to zero when DNS is approached and looks like the indica-
tor of the relative proportion of the spectrum that is modeled. Indeed, when Cs2 = Cs1 the turbulence cannot
be sustained. In the opposite limit of full statistical modeling, ksgs → k and the usual k-ε model is exactly
retrieved with Cs2 = 1.92 and Cs1 = 1.50.

The parameter β is a constant of order unity determined from Eq. (16) that gives β ≈ 2/3χ ≈ 0.44. The
practical value has been calibrated in the case of homogeneous decaying turbulence and plane channel flow.
The best results have been obtained for β = 0.375, a value that is very close to the theoretical estimate.

Subgrid scale eddy viscosity

The subgrid scale turbulent stresses are obtained in the present model by an eddy viscosity hypothesis. The
subgrid turbulence diffusion can be estimated according to the Heisenberg hypothesis (cf. Hinze [20]):

νsgs = Cκ

� ∞

κ

κ−3/2E(κ)1/2dκ . (22)

Using the Kolmogoroff spectrum E(κ) = χε2/3κ−5/3, one finds:

νsgs = 3

4
Cκχ

1/2ε1/3κ−4/3 or νsgs = 3

4
Cκχ

1/2 k2

ε
η

−4/3
c (23)

and remarking that ks
k ≈ 3

2χη
−2/3
c , this implies:

νsgs = 1

3
Cκχ

−3/2 k2
s

ε
. (24)
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In order to satisfy the necessary compatibility with the asymptotic value in the k-ε full statistical model-
ing, we are led to choose:

νsgs = Cµ

k2
s

ε
with Cµ = 0.09 . (25)

The use of Eq. (23) implies that the cutoff is near the inertial zone. For more generality, a variable Cµ

would probably be useful, but we have not considered this issue in the present paper.
In practice, hypothesis (25) may generate too much fluctuation in viscosity and some averaging is ne-

cessary by using νsgs = CµLsgs
√

ks with an averaged characteristic scale Lsgs =
�

k3/2
s
ε

�
. In such a case, the

statistical averaging is made in homogeneous directions and/or in time.

Inhomogeneous flows

In non-homogeneous flows the turbulent diffusion terms have to be taken into account in the partial kinetic
energy equation and the dissipation equation:

dks

dt
= Fc −ε+Dksgs (26)

dε

dt
= C1s

Fc P

ks
−C2s

ε2

ks
+Dεsgs (27)

with a gradient diffusion hypothesis:
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ε, j

	

, j

. (28)

In order to compare with the standard full k-ε model, the previous equations are averaged in the mean:
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with: Uj = 	Uj
+u�
(e) j� � �

Uj

+u�
(i) j and ks = 	ks
+ k� where u�

(e) j and u�
(i) j denote respectively the resolved part

and the modeled part of the fluctuating velocity.
The diffusion terms verify the property: 	u�

jφ
�
 = 	u�

(e) jφ
�
+ 	u�

(i) jφ
�
.

We have also used the approximations 	Fc P
 ≈ 	Fc
	P
 and 	ε2
 ≈ 	ε
2.
These equations clearly exhibit the diffusion term 	u�

(e) jk
�
, j and 	u�

(e) jε
�
, j due to the resolved fluctua-

tions of turbulence whereas 	u�
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, j
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(i) jε
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σεsgs

	ε
, j

�
, j

are the modeled

terms of diffusion due to non-resolved microturbulence.
Written in the particular case of the logarithmic boundary layer near a wall, the ε-equation then gives:

(Cs2 −Cs1)
	ε
2

	ks
 = Cµ

k2

σεsgs

�	ε
, j

	ε

	

, j
(31)

in which the diffusion term includes the resolved and the non-resolved parts.
Taking into account (Cs2 −Cs1)

k
ks

= Cε2 −Cε1 and
� 	ε
, j

	ε

�

, j
= 1

z2 , we find that the value σεsgs = 1.3 has

to be the same as in the standard k-ε model. For compatibility with the standard k-ε model we also have
σksgs = 1.0.
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In confined wall flows, the relation (18) can be replaced by Lw = Kz, where z is the distance from the
nearest wall and K is the Von Karman constant. The correspondence with Eq. (20) is obtained by considering
the logarithmic law of the wall with:

k ≈ a u2∗ and ε = u3∗
Kz

with a = 3.3

and using the previous definitions, one easily finds:

L = k3/2

ε
= a3/2 Kz = a3/2Lw

and then Nc = a3/2κcLw.
Therefore Eq. (20) can be written equivalently:

Cs2 = 1.5+0.42
1

1+βw

��
1

∆x∆y∆z

�1/3
Lw


2/3 with βw = aπ2/3β . (32)

Low Reynolds number extension

The final model is then complemented by low Reynolds number extensions that are important very near
a wall. In this respect, a transposition of the Jones and Launder [24] k-ε model is made, for implementing
lower order terms in the pseudo-dissipation equation. The coefficients that are functions of the turbulence
Reynolds number are derived from the Launder and Sharma [28] variant:

∂ε̃

∂t
+U j

∂ε̃

∂xj
= C1s
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�
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+ ∂
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� ε̃2
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(33)

and ε = ε̃+2ν
�

∂
√

ks
∂xj

�2
for dissipation rate, with fεsgs = 1.0−exp

�− R2
sgs

�
, νsgs = 0.09 exp

�
−3.4

(1.+Rsgs/50)2

�
k2

s
ε̃

,

Rsgs = k2
s
ε̃

.
The fεsgs term has been chosen such that when κc → 0 and ks → k, the usual k-ε model of Launder and

Sharma is approximately recovered. For this, the two corresponding terms are identified:

�
Cs1 + (Cs2 −Cs1) fεsgs

�ε2

k
= Cε2

�
1.−0.3 exp

�− R2
sgs

��ε2

k

giving:

fεsgs = 1.− 0.3Cε2

Cε2 −Cε1
exp

�− R2
sgs

� ≈ 1.−exp
�− R2

sgs

�
. (34)

Limiting behaviors

The limit of the model when κc → 0 is obviously identical to the standard k-ε model with full statistical
modeling.

However, we must mention that if the cutoff wavenumber κc is very small (smaller than the wavenumber
corresponding to the maximum of the energy spectrum), then the use of a pure eddy viscosity model becomes
questionable and more general models including backscatter may be necessary.
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Fig. 2. Decay rate of homoge-
neous isotropic turbulence, LES
with two-equation subgrid scale
model, effect of filter width

When κc → ∞, the behavior of the model is more subtle. In this case, the ratio ks/k goes to zero and
the limit Cs2 → Cs1 in Eq. (12) corresponds to a pure Kolmogoroff behavior. Indeed, in the general case,
changes in ε occur when imbalance is present between FC and ε. But, in an equilibrium situation FC = ε,
and ε does not change and consequently Cs2 = Cs1. This reasoning is made for infinite Reynolds numbers. In
real cases however, the subgrid scale Reynolds number Resgs goes to zero when κ approaches the Kolmogo-
roff scales and then, to get ks = 0, a low Reynolds number version of the model is necessary. To enforce the
model to give a true DNS in this limit, it would be possible to introduce a viscous cutoff by taking Cµ = 0
if κη/κc < 1 where κη is the Kolmogoroff wavenumber ε1/4/ν3/4 (but it is useless in practice, because the
model is obviously not intended to run as a DNS).

5 Preliminary tests in fully developed turbulence

Decay of homogeneous turbulence

The decay of homogeneous isotropic turbulence is the simplest test case to check the correct behavior of the
model. A specific spectral Fourier version of the code (Schiestel [40]) has been used in this case. An ana-
lytical homogeneous pseudo-random field has been generated as initial condition with a prescribed energy
spectrum defined by:

E ≈ Cκ1.4 for κ ≤ κ0 ,

E ≈ χε2/3κ−5/3 for κ ≥ κ0 .
(35)

The maximum of the spectrum is obtained for κ0 defined by the continuity of the two expressions in
Eq. (35). Both the resolved part of the initial energy and the subgrid part are determined from Eq. (35).

Keeping the same number of grid points 803, the filter width was varied. Two values have been consid-
ered, a large cutoff κc = κmax and a small cutoff κc = κmax/2, where κmax is the maximum wavenumber of
the grid. The practical choice of the cutoff is such that κmax ≈ 4κ0. In the present case the general definition
Nc = κc

(ksimul+ks)
3/2

ε
is retained for the dimensionless cutoff wavenumber involved in the Cs2 coefficient. The

value of the parameter β = 0.375 established in Sect. 4 has been found to give satisfactory results. Figure 2
shows the decay of kinetic energy. All quantities have been normalized on the initial total kinetic energy and
the initial value of the length scale L0 = π

κ0
defined on the initial energy spectrum. As is found in experi-

mental grid turbulence in the initial period (Comte-Bellot and Corrsin [6, 7]), the decay law is faster than the
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Fig. 3. Decay rate of homoge-
neous isotropic turbulence, LES
with two-equation subgrid scale
model

αt−1 power law. As mentioned before, the time variable t is normalized using L0√
kinitial

in Figs. 2 to 5. The tur-

bulence Reynolds number is about 800 in the initial conditions and decays down to 250 for t = 5 and 190 for
t = 10. In order to obtain the law of decay, the time scale τ = k/(−dk/dt) is plotted versus time in Fig. 2. The
slope is then the inverse of the decay exponent found to be nearly 1.2 . Figure 3, which uses the more usual
log-log plot confirms this value of decay rate. This latter figure also shows that changing the value of κc does
not modify the evolution of the total kinetic energy. However, as expected, the ratio of the resolved part to the
modeled part is strongly different. Figure 4a and b confirm that the evolution of the energy spectrum of the
resolved field for both values of the filter width remain consistent during decay and so the low wavenum-
ber part of the spectrum is found to be independent of the cutoff location, showing the good behavior of the
model when the filter width is varied.

Figure 5 shows the evolution of the characteristic length scale k3/2
s /ε of the subgrid turbulence for the two

filter widths. In this quasi-equilibrium situation (slow decay), the model gives a characteristic length that is
almost constant with an asymptotic value that is very close to the scale given by the filter itself, equal to π/κc
and that takes the values 0.4 and 0.8, respectively, for the sharp filter and for the large filter.

Standard fully developed turbulent channel flow

The model has first been tested on the classical case of fully developed turbulent channel flow that cor-
responds to quasi-equilibrium turbulence. For this case, the low Reynolds number extensions of the model
presented above (Sect. 4) have been introduced in the computations. The same value of the parameter
β = 0.375 (or βw = 2.5) has been used throughout all applications.

The channel flow has been simulated for a Reynolds number (the Reynolds number is based on center
line velocity and channel half width) equal to 13 800 with a relatively coarse mesh composed of 32×64×62
points in the domain with box sizes (Lx = 2πδ, L y = πδ, Lz = 2δ). The calculation has been made with
imposed mean pressure gradient corresponding to Reτ = 640 as in the LES of Moin and Kim [31]. The
statistically steady state is approximately reached after a total time of about integration Tuτ/δ = 5, cor-
responding to more than ten thousand time steps. The LES calculation of Moin and Kim [31] has been
extended to DNS for approximately the same Reynolds number by Moser et al. [32] (Reτ = 590). The
mean velocity profile (Fig. 6) is compared to the DNS result of Moser et al. [32] and to the usual log law.
Compared to the DNS of the Moser et al. [32] the two-equation model prediction has a wall friction co-
efficient that is approximately 10% higher, probably partly because the statistic is not perfectly attained
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Fig. 4. Decay of homogeneous
isotropic turbulence, LES with
two-equation subgrid scale model,
energy spectrum, (a) large cutoff,
(b) small cutoff

(imposed pressure gradient calculations have very slow statistical convergence (see Deschamps [14]). The
main discrepancy in the mean velocity profile is a departure from the log law. Several reasons can be put
forward to explain this discrepancy. The main reason involves the well-known deficiencies of the statis-
tical low Reynolds number k-ε model as discussed in the paper of Sarkar and So [39]. In particular, the
paper of Patel et al. [34] shows that the Launder and Sharma model leads to some overshoot above the
usual log law. This type of weakness can surely be cured by a better choice of the low Reynolds num-
ber functions in the k-ε model and will not be considered in the present paper. It is worth mentioning
here that our approach used by Hanjalic et al. [19] to derive their “seamless model” for LES/RANS cal-
culations, but making use of the k-ε model of Abe et al. [1] instead of the k-ε model of Launder and
Sharma to approximate the wall effects, considerably improves the velocity profile. This shows that the
low Reynolds number terms can explain some of the discrepancies found in Fig. 6 and that a better choice
of low Reynolds number terms requires some more testing that is beyond the scope of the present pa-
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Fig. 5. Decay of homogeneous
isotropic turbulence, LES with
two-equation subgrid scale model,
characteristic scale of subgrid tur-
bulence

Fig. 6. Mean velocity profiles in plane channel flow. (�) present two-equation subgrid scale model (32×64×62); (−−−−)
DNS, Moser et al. [32] Reτ = 590; (− · − · −) Moin and Kim [31], (64×63×128), Re = 13 800; (− ··− ··−) Launder and
Sharma k-ε RANS model (from Patel et al. [34])

per. The Abe model seems an interesting possibility but other versions of the k-epsilon may be candidate
as well.

Another point is related to the relative coarseness of the grid, which can also lead to discrepancies in the
outer layer of the velocity profile (cf. Piomelli et al. [36]). Hybrid methods or DES also hardly produce an
accurate logarithmic slope and some improvements are still desirable (cf. Nikitin et al. [33]). Recently, it has
been shown that the inclusion of backscatter effect at the interface RANS/LES region improves the velocity
profile (Piomelli et al. [35]).

When the turbulent field is considered, the profiles of the mean turbulence intensities (Figs. 7 to 9) and
the total turbulent shear stress (sum of the resolved and the modeled shear stresses) given in Fig. 10 ob-
tained from the two-equation subgrid scale model are in satisfactory agreement with known experimental
data at the same Reynolds number (Hussain and Reynolds [23]; Wei and Willmarth [55]) and with the DNS
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Fig. 7. Mean longitudinal turbulence intensity profiles in plane channel flow. (�) two-equation model (32×64×62); (−−−−)
Moser et al. ([32], Reτ = 590); (− · − ·−) Moin and Kim ([31], Re = 13 800); (×) Hussain and Reynolds experiment [23] (1975,
Re = 13 800)

Fig. 8. Mean normal turbulence intensity profiles in plane channel flow. (�) two-equation model (32×64×62); (−−−−)
Moser et al. ([32], Reτ = 590); (− · − · −) Moin and Kim ([31], Re = 13 800); (∗) Laufer experiment (1951, Re = 12 300 based
on channel half-width and maximum mean velocity)

of Moser et al. [32] at a nearby Reynolds number (Fig. 7). The peak of the turbulence energy in the produc-
tion zone is located around z+ = 14 like in most experiments. One can note on Fig. 10 that the contribution
of the model to the turbulent shear stress is dominant in the near wall region up to the distance z+ = 20,
so that the approximation of low Reynolds number effects mentioned earlier are influential in this region
of the flow.
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Fig. 9. Mean transverse turbulence intensity profiles in plane channel flow. (�) two-equation model (32×64×62); (−−−−)
Moser et al. ([32], Reτ = 590); (− · − · −) Moin and Kim (1982, Re = 13 800)

Fig. 10. Mean turbulent shear stress profiles in plane channel flow, total shear stress. (�) two-equation model (32×64×62);
(−−−−) Moser et al. ([32], Reτ = 590); (∗) Willmarth experiment (1989, Re = 14 914); (×) modeled subgrid scale part of
shear stress

We have shown that the transport subgrid scale model has a general consistent behavior in channel flow
regardless some discrepancies found in the mean velocity profile that could be probably cured by revising the
choice of low Reynolds number form of the model coefficients. However, these first results are very encour-
aging to further pursue the study of non-zonal RANS-LES formulation developed here. The results obtained
by Hanjalic et al. [19], using our concept of variable C2s coefficient, are interesting in this respect and show
appropriate velocity profiles in the channel flow.
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The turbulent channel flow includes wall effects but it is still a quasi-turbulent equilibrium flow. The main
objective of the present approach addresses non-equilibrium turbulence. It is then interesting to test the new
model in such a situation. This is illustrated by the application to turbulent pulsed channel flow, which is now
considered.

6 Study of unsteady oscillatory turbulent flows in the mean

To illustrate some of the potentials of the new model, the application to unsteady turbulent flow with periodic
forcing is considered (Dejoan [10]; Dejoan and Schiestel [11]; Dejoan and Schiestel [12]). A considerable
experimental work on the pulsed channel flow done by Binder and Kuény [5], Tardu and Binder [15] and
Tardu, Binder et al. [51] is available. The experimental results exhibit important lag effects appearing be-
tween the modulation of the turbulent stresses and the forcing, these lag effects depending on the frequency
of the imposed oscillation. The periodic forcing is produced by a longitudinal sinusoidal mean pressure gra-
dient (Fig. 11). These experiments highlight that the response of the turbulent flow to the forcing can be
characterized by

three frequency regimes: a quasi-steady regime, a relaxation regime and a high frequency regime (see
below). Such a flow has also been studied by Scotti et al. [46] who used large eddy simulations with the dy-
namic model of Germano. These authors report numerical results for several frequency regimes of periodic
forcing that are in good agreement with experiments. They have considered, however, different amplitude
values of the forcing.

The rationale of the present study is to show that the split spectrum model is able to deal with non-
equilibrium turbulence. Therefore, we have chosen a frequency regime for which strong lag effects are
observed between the turbulent field and the forcing. This regime corresponds to the relaxation regime de-
scribed in more details hereafter. In order to highlight the ability of the proposed model to tackle the unsteady
character of the turbulence in pulsed channel flow, we present in addition to the comparisons with the ex-
periments, comparisons with the well-known Smagorinsky subgrid scale model, which relies implicitly on
an equilibrium hypothesis (cf. Appendix C).

Term decomposition

The analysis of unsteady periodic flows is based on a formalism using a four-terms decomposition:

q = 	q
+ q̃ +q�
exp +q�

imp . (36)

The statistical mean value is identified as the phase average and can be in its turn, split into a time mean
value and a periodic oscillation. The fluctuating turbulent part is composed of a resolved part, which is
simulated, and a non-resolved part, which is modeled.

Pulsed channel flow characteristics

The periodic forcing (Fig. 11) is produced by a longitudinal sinusoidal mean pressure gradient in the channel
Fx = −(1+ AF sin(ωt)).

Turbulent pulsed flows have been largely studied in boundary layers and channel flows, and their behav-
ior is indeed very complex. In particular, the research work of Binder and Kuény [5], Tardu and Binder [15],
Tardu et al. [51], Tardu [49] and Feng et al. [15], has put in light the governing parameter for periodic wall
flows that is the dimensionless Stokes parameter defined by l+s = lsu∗/ν with ls = √

2ν/ω. In terms of the

Fig. 11. Sketch of pulsed channel flow
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Strouhal number, the characteristic parameter is ω+ = ων/u2
τ , which is directly linked to the dimensionless

Stokes length parameter by using the relation ω+ = 2/l+2
s . The Stokes length ls can be interpreted as the

distance from the wall at which the oscillation diffuses. Then, when the frequency is higher, the wall layer
influenced by the oscillation becomes more and more confined near the wall, and much of the flow in the
channel core is a piston flow.

We have chosen for the present numerical application the value l+s = 12.9 belonging to an intermediate
frequency range, in which a strong interaction is expected between the imposed oscillation frequency and
the turbulence scales themselves (cf. Tardu et al. [51] and Binder et al. [4]). Keeping in mind that the contri-
bution of the model is dominant up to the distance z+ = 20 from the wall and that in this near-wall region
the velocity profile behaves properly (cf. Fig. 6), the frequency value l+s = 12.9 turns out to be a reason-
able choice for testing the model in the pulsed channel flow. The amplitude is chosen to be weak, the ratio
AUc/Uc being of order of 5%.

The numerical simulation has been carried on for the two-equation model and the Smagorinsky model on
a grid mesh identical to the one used in the fully developed turbulent channel flow (cf. Appendix C for the
Smagorinsky model formulation).

Analysis of the response of the flow to the imposed oscillation

In the experiment it is generally reported that the time mean flow is not affected by forcing. Indeed, the time
mean value for the velocity or longitudinal turbulence intensity are comparable to those prevailing in the cor-
responding steady flow. Identical observations have been found in our computation when comparing the time
mean quantities of the pulsed channel flow with the time mean quantities of the fully developed channel flow.

However, if we consider the phase averages, the effect of the oscillation is obvious. To gain more insight
in the analysis of the results, the phase averages are transposed in the Fourier space and the amplitude and
phase of the first Fourier mode is considered.

Practically, good statistical convergence has been obtained by considering about 24 periods in time for
phase averaging.

Modulation of mean velocities

The amplitude and phase shift of the fundamental Fourier mode of the oscillating mean velocity versus dis-
tance from the wall are drawn on Figs. 12 and 13. They are found to be weakly dependent on the model and
both are close to the experimental data. The variation in amplitude values is not far from the Stokes solu-
tion with a steep gradient near the wall, and a plateau in the bulk flow. The phase shift variation exhibits the
decrease in response time scale of the velocity when it becomes further from the wall.

Modulation of the turbulent field

The evolution of the amplitude of the fundamental Fourier mode of the normal longitudinal turbulent stress
with the normal direction is shown in Fig. 14. In the experiment of Tardu et al., the amplitude is similar in
shape to the turbulence intensity itself, with a peak region in the region z+ = 12 and a progressive decay
afterwards. Figure 14 shows that the two-equation model is successful in predicting the experimental peak
in amplitude near the wall, but predicts a too high amplitude modulation. On the contrary, the Smagorinsky
model seems to provide a better quantitative amplitude but does not predict the near-wall peak and the ampli-
tude decay is also not well-reproduced far from the wall. In the range of forcing amplitude 0.05 < aŨ < 0.6
(see Binder et al. [5] and Tardu et al. [51]), the maximum amplitude A1/2

uu /uτ is observed to vary from 0.2
to 3.5. However, in all the cases, the profiles are very similar in shape and exhibit a near wall peak similar
to the steady turbulent wall flow (see Fig. 7). The amplitude of the forcing used in the work of Scotti and
Piomelli [46] is considerably larger than the one used in the present calculation, this is the main reason why
the comparisons between various experiments and calculations are difficult in absolute value. The work of
Tardu et al. shows that the amplitude of the modulation of turbulence intensity is very dependant on the l+s
parameter and also of the amplitude of the forcing, however the shape of the curve of the amplitude of mod-
ulation remain almost the same in all cases. The type of normalization used in Fig. 14 is suggested in Tardu
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Fig. 12. Amplitude of the fundamental mode of the oscillating velocity deviation from axial velocity. (�) Smagorinsky model
(32×64×62); (�) split-spectrum model (32×64×62); (∗) Binder and Kuény experiment [5], l+s = 12.2, aŨ = 0.05, Re = 8500;
(· · · · · · ) Stokes solution

Fig. 13. Phase shift of the fundamental mode of the oscillating velocity deviation from axial velocity (symbol definitions as
in Fig. 12)

et al. [51], it allows one to keep all the plots within a limited scale of representation. It is worth mentioning
that the amplitude of forcing in the Binder et al. [5] experiment is very low, and the authors in their publi-
cation indicate that for this reason the accuracy of measurement of the amplitude of the modulation is not
really sufficient and that these measurements must be considered in a qualitative sense. So Fig. 14 shows
that, in spite of important scatter in the absolute values of amplitudes (due to different values of the forcing
amplitude), the shape of the curve found using the present model is satisfactory.
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Fig. 14. Relative amplitude of the fundamental mode of the longitudinal turbulence intensity. (�) Smagorinsky model
(32×64×62); (�) two-equation model (32×64×62); (− ·− ·−) numerical simulation, Scotti and Piomelli [46], l+s = 14,
aŨ = 0.64; (∗ · · · · · · ) from Binder and Kuény experiment [5] with experimental fitted curve, l+s = 12.2, aŨ = 0.05, Re = 8500;
(�) Tardu et al. [51], l+s = 16, aŨ = 0.64

These discrepancies may be also related to the tendency of the statistical k-ε model of overestimating the
effect of forcing observed by Scotti and Piomelli [47], who have tested several URANS models, and among
them, the k-ε model, in a pulsating flow.

Considering the phase shift reported in Fig. 15, the time delay of the longitudinal turbulent intensity to the
forcing is far better predicted by the two-equation model than by the Smagorinsky model. The time response
of the turbulent field can also be represented in terms of time delay, which characterizes the diffusion speed
of the modulation (cf. Fig. 16) if we use the following relation of Tardu et al. [51]:

∆t+ = 1

2

�
φ�u�u� −φŨc

�
l2
s , (37)

where the phase shift is given in radians.
The experiments of Tardu et al. have shown that in the range 8.1 < l+s < 34., and for all values of the

forcing amplitude considered, the variations of the time delay versus distance from the wall, satisfy a lin-
ear law of decay such that dz+/d(∆t+) ≈ 0.4 for z+ > 30. The equivalent relation, recast in terms of phase
lag, becomes d(φ�u�u� −φŨc)/dz+ = 2.5ω+ and is also found to be in good agreement with the two-equation
model predictions. The split-spectrum approach shows to be successful in predicting of phase shifts by an
account of time lag effects whereas the Smagorinsky model fails. The phase shift is not very sensitive to the
amplitude of forcing and the comparison with the results of Scotti et al. [46] is satisfactory.
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Fig. 15. Phase shift of the fundamental mode of the longitudinal turbulence intensity. (�) Smagorinsky model (32×64×62);
(�) split-spectrum model (32×64×62); (∗) Binder and Kuény experiment [5], l+s = 12.2, aŨ = 0.05, Re = 8500

Fig. 16. Dimensionless diffusion time lag of the fundamental mode of the longitudinal turbulence intensity. (�) Smagorin-
sky model (32×64×62); (�) split-spectrum model (32×64×62); (− ·− · −) numerical simulation, Scotti and Piomelli [46],
l+s = 14, aŨ = 0.64; (∗) Tardu, Binder and Blackwelder experiment [51], l+s = 12.2, aŨ = 0.2, Re = 8500; (− −−−) d(φ�u�u� −
φŨc)/dz+ = 2.5ω+ law
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7 Concluding remarks

A new subgrid scale model based on partial integrated transport equations has been presented. The general
formalism is based on the spectral portioning concept and is here applied in order to derive a two- transport-
equations model that includes one equation for the subgrid partial kinetic energy and another equation for
the dissipation energy decay rate. The main novel feature of the proposed model is the new form of the
ε-equation applicable to LES. This latter equation looks like the ε-equation in the well-known k-ε RANS
model but the coefficients are now functions of the cutoff location. The form of the equations is consistent
with the extreme limits that are on one hand direct numerical simulation and on the other hand full statis-
tical modeling. This type of model is devised for LES with coarse grids, in which the modeled part of the
spectrum goes below the inertial range, and for more general models than models based on equilibrium hy-
pothesis are necessary. This is particularly useful when dealing with non-equilibrium flows such as perturbed
or unsteady flows. Indeed, the present method allows one to develop turbulence models that describe only
a slice or a part of the turbulence spectrum, which can account for departure from equilibrium. The method
has been presented for a two-equation model for partial energy and dissipation but it can be readily extended
to more complex models including Reynolds stress transport models. The transport model brings new con-
cepts in the development of non-zonal hybrid models that bridge the LES approach and the RANS approach
in a continuous way.

The application carried out on the decay of homogeneous turbulence showed that the split-spectrum
model behaves in a consistent way regarding the variation of the filter width and conservation of the
total turbulence energy. The application for fully turbulent channel flow and unsteady turbulent flows
in pulsed channel flow has put in light the interesting potentials of the method. However, the results
obtained for the turbulent steady channel flow indicate that further developments related to the descrip-
tion of wall effects are desirable. This includes the use of different low Reynolds number coefficients
(referring to a different low Reynolds number RANS model). In this sense, the results recently ob-
tained by Hanjalic et al. using a seamless model, derived from our approach but using different wall
effects approximations, for a RANS/LES calculation of a fully developed channel flow are quite en-
couraging. They show improvements on the velocity profile and also illustrate the flexibility of our for-
malism to include new improved low Reynolds number RANS models. Also, a thorough study of low
Reynolds number effects should be undertaken. Interesting results have been obtained in unsteady chan-
nel flow with periodic forcing, in particular for phase shift effects. In this pulsed channel flow case
however, the model is observed to overpredict the amplitude of the oscillating turbulent field, however,
the near wall peak of the amplitude is well predicted and the temporal response closely follows the
measurements.

The set of results presented here is promising and encouraging to pursue further developments. Extended
applications of the method to various types of flows and various filter widths have to be undertaken to il-
lustrate the capabilities of the method in more general situations. For strongly anisotropic turbulent flows,
subgrid scale stress transport equations based on second moment statistical closures should be also con-
sidered. This is however beyond the scope of the present work, whose main purpose was to establish the
foundation of a general formalism for PITM for LES calculations.
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acknowledged.

Appendix A

Numerical method for non-homogeneous flows

The filtered momentum equations are solved on shifted grids using a hybrid numerical method based on Her-
mitian fourth order schemes and pseudo-spectral Fourier developments (Schiestel and Viazzo [43]). In the
non-homogeneous directions, the mesh is strongly refined near the walls. The time advancement is based
on a hybrid Adams–Bashforth and Crank–Nicolson scheme and the pressure-velocity coupling is achieved
efficiently by iteratively solving a simplified pressure correction equation.
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For solving the subgrid scale turbulence equation of the transport model, a first order time scheme was
introduced for the ks and εsgs equations, because of stability requirements. The precision loss concerns only
the modeled equations.

The spatial derivatives are calculated as previously, using centered Hermitian schemes. The source terms
are linearized for iterative solution.

Numerical method for homogeneous flows

A specific version of the simulation code has been developed for homogeneous flows. All three directions in
space are solved using spectral Fourier series. In this case, the pressure can be easily eliminated in the mo-
mentum equations and uniform non-shifted grids can be used. The time scheme is also an Adams–Bashforth
and Crank–Nicolson scheme.

Appendix B

Model calibration on an analytical spectrum of homogeneous decaying turbulence

An analytical spectrum approximation similar to that proposed by Von Karman (cf. Hinze [20]) has been
used:

E(κ) = χε2/3κµ

��
χε2/3

C

� m−1
m+µ +κm−1


m+µ
m−1

(B1)

with m = 5/3, and χ = 1.5 (Kolmogorov constant).
The hypothesis of permanence of big eddies is taken into account through the fact that C is assumed to

be constant. Integration of the spectrum gives:

k =
� ∞

0
E(κ).dκ = 1

µ+1

�
C

2/3
µ+1 χε2/3

	3 µ+1
3µ+5

(B2)

whereas the k-equation reduces to dk
dt = −ε.

It can be easily deduced from the previous equations that:

dε

dt
= −

�
3µ+5

2(µ+1)

	

� � �
Cε2

ε2

k
. (B3)

This result is the same as the Aupoix [26] result using the “ knee ” spectrum. The usual value Cε2 = 1.92
is obtained for µ = 1.4. This decay law corresponds in fact to a self-similar decay in which the spectrum
varies in scale but not in shape. If we introduce a non-dimensional wavenumber η = κ

κref
, with κref = ε/k3/2,

the energy spectrum is then E(κ) = k
κref

E∗(η) with:

E∗(η) = χηµ

�
χ

1+µ
+η2/3

� 3µ+5
2

and H∗(η) =
� η

0
E∗dη =

�
χη−2/3

1+µ
+1

	− 3
2 (µ+1)

. (B4)

The determination of the coefficient Cs2 can be made by evaluating the ratio ks/k:

ks

k
= 1−H∗(ηc) (B5)
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and consequently:

ks

k
= 1−


 η

2/3
c

χ
1+µ

+η
2/3
c




3
2 (µ+1)

(B6)

�
note that in the inertial range the partial kinetic energy reduces to ks = � +∞

κc
χε2/3κ−5/3dκ

�
.

Appendix C

Smagorinsky model, low Reynolds number extension

For comparison purpose, each flow case has been calculated using the classical Smagorinsky model. Its low
Reynolds extension used here is briefly recalled. The viscosity in Eq. (2) is defined by:

νsgs = (Csl)
2
�

2.Sij Sij for z ≥ zC (C1)

νsgs = C2
l4

ν

�
2.Sij Sij

�
for z ≤ zC (C2)

with:

l = �
Π min(∆m, l∗)

�1/3
(C3)

l∗ = 0.1δ/Cs for z ≥ 0.1δ/κ (C4)

l∗ = κz/Cs for z ≤ 0.1δ/κ (C5)

and the numerical constants:

Cs = 0.2, Cs = C2
s ν/27κuτ , κ = 0.41 (Karman constant).

In Eq. (B3), the filter width in the (m) direction is denoted ∆m , δ is the distance between the two walls,
and z is the wall distance. This model cannot take into account any historical effect.
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Dissertation, Université Lyon I (1987)
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40. Schiestel, R.: Sur la modélisation des écoulements turbulents en non-équilibre spectral. C.R. Acad. Sci., Paris, 302, series

II, (11), pp. 727–730 (1986)
41. Schiestel, R.: Multiple time scale modeling of turbulent flows in one point closures. Phys. Fluids 30(3), 722–731 (1987)
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