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Abstract 

The effect of a linear harmonic vibration on heat propagation is investigated in near-critical SF6 

under weightlessness conditions in space. Heat was issued from a point-like source (thermistor), a 

situation representative of an industrial use of pressurized supercritical fluid storage. Two kinds of 

vibrations were used, large amplitude (64 mm) at 0.2 Hz and low amplitude (0.8 mm) at 1.6 Hz, 

with temperatures from 5K to 20 mK from the critical temperature. The vibrations are seen to 

strongly affect the evolution and shape of the hot boundary layer (HBL), the heat exchange 

between the heat source and the fluid, and the bulk thermalization process by the adiabatic Piston-

Effect process. The HBL is initially convected as symmetrical plumes over a distance that only 

depends on the vibration velocity and which corresponds to a Rayleigh-Bénard - like instability 

where the vibration acceleration acts as the earth gravity. Then the extremities of the plumes are 

convected perpendicularly to the direction of oscillation as two “pancakes”, a process encountered 

in the vibrational Rayleigh-Bénard instability. When the vibration velocity is small, only one 

pancake centered at the hot source is observed. Temperature evolutions of the hot source and the 

fluid are studied in different locations. Convection flows and adiabatic Piston-Effect compete to 

determine the thermal dynamics, with the latter being the most efficient near the critical point. The 

experimental results are compared with a 2D numerical simulation that highlights the similarities 

and differences between the very compressible van der Waals gas and an ideal gas. 
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I. INTRODUCTION 

 

Vibrations are very often used in industry as an empirical way for controlling solid-solid, liquid - 

solid or liquid - liquid dispersions. The role of gravity is always important. In contrast, the thermal 

processes activated by vibrations in fluids when gravity effects are absent have been only poorly 

studied, and almost essentially from a theoretical point of view [1]. Such vibrations, however, can 

generate average flows that show some similarities with earth gravity driven convections. In this 

sense, vibrations might appear as a new way to control and operate fluids in space by creating 

effects similar to those triggered by earth gravity. 

It is the subject of this paper to investigate basic thermal processes in a fluid under weightlessness 

submitted to the harmonic linear vibration  

  X = B sin(ωt) .       (1) 

 Here X is the spatial coordinate, B is the amplitude, ω = 2πf is the angular frequency with f the 

frequency and t the time. 

We consider a fluid in the vicinity of its critical point. Such vicinity is indeed particularly 

interesting.  There is currently a strong interest from the space industry to use fluids in orbit in their 

supercritical conditions where they can be operated in one liquid density-like single phase. In 

addition, such fluids exhibit a number of unusual thermodynamics and transport phenomena when 

they are set in near-critical conditions. They then behave quite differently from ideal gases. For 

example, on the critical isochore, the thermal conductivity λ and the specific heats at constant 

pressure Cp and constant volume CV diverge, whereas the thermal diffusivity DT tends to zero. The 

fact that the fluid becomes also very compressible and expandable emphasizes the process of 

adiabatic heating or “Piston-Effect” [2].  This process takes place during heating (or cooling) when 

the diffusive thermal boundary layer expands (or contracts) and pressurizes (or depressurizes) the 

outer bulk fluid, resulting in a very fast adiabatic thermalization. The associated “critical speeding 

up” of the fluid thermalization that occurs at constant volume, contrasts with the classical thermal 

“critical slowing-down”, a phenomenon at constant pressure.  

Preliminary experiments [3] under weightlessness with near critical fluids have shown that 

vibrations were able to induce a rich set of phenomena. In the present study, we focus on the 

development of a hot boundary layer (HBL) in heated SF6, under harmonic vibration of (i) large 

amplitude, low frequency and (ii) small amplitude, high frequency.  
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II. EXPERIMENT 

 

A. Experimental setup 

 

The experiments were carried out with the automatic ALICE-2 facility onboard the Mir station 

(Fig.1). The ALICE-2 instrument provides optical (e.g. interferometer) and thermal diagnostics, 

including thermal control within a few µK in the temperature range T = [293 – 343 K]. For more 

details, see [4]. The experimental cell used for this study was made of a CuCo2Be alloy. The 

internal fluid volume is a cylinder (2R = 12 mm internal diameter, e = 6.79 mm thickness) 

sandwiched between two parallel sapphire windows (12 mm external diameter), the inner surface of 

one of which being covered with a dielectric coating to create a mirror. The cell is filled at critical 

density within 1% and its critical temperature is measured before flight within 1 mK. Several 

previous experiments have shown that the Tc drift with time was negligibly small in such samples. 

We thus imposed with confidence the value in all our programmed experiments. In-flight visual 

observations were indeed in agreement with the above value. 

Three thermistors (Thermometrics B10, 10 ms rise time, 500 µK accuracy, 2r0 = d0= 0.2 mm 

diameter) are set in the cell to measure local fluid temperatures (Figs. 2 - 5). Two of them (labeled 

Th1 and Th2, local temperature T1 and T2, respectively) are mounted at the end of a hair-pin thread 

and located at a close distance from the cell wall (Th1 : 1 mm, Th2 : 1.5 mm). The third thermistor 

(Th3, local temperature T3) is mounted in the middle of a rectilinear thread which is placed on a 

diameter at half-thickness of the cell. It is also used as a central heat source, in an arrangement 

commonly encountered in gas tanks. Temperature in Th3 cannot be measured during heating. The 

frequency of the temperature measurements is 25Hz during the first 5 minutes following heating, 

then 0.1Hz during the next 55 minutes. The image of the sample is obtained through a Twyman-

Green interferometer and is recorded by a CCD camera at a frequency of 25Hz.  

In order to impose a sinusoidal oscillation to the fluid, the ALICE-2 instrument (mass around 60 kg) 

was suspended with rubber belts inside the “Priroda” module in the Mir orbital station (Fig. 1). A 

periodic resonant movement is excited close to the center of mass of the instrument, either manually 

or by an electronically controlled shaker (mass around 4 kg). Varying the tension and the number of 

the belts change the resonance frequency. One end of each belt is tightened to a corner of the 

ALICE-2 instrument, the other end is secured to a wall of the compartment. Three axes micro-

accelerometers measure the acceleration levels at 25 Hz in the range 0.1 - 10-6 g (g = 9.81 m s-2 is 

the earth acceleration value). Manual excitation (labeled V1) yields a frequency f = 0.2 s-1 and an 

amplitude B = 64 mm (acceleration amplitude 10-2 g = 0.10  ms-2, velocity amplitude Bω  = 80  

mms-1). The shaker excitation (labeled V2) provides f = 1.6 s-1 and B = 0.8 mm (acceleration 
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amplitude 8.24 10-3 g = 0.0808 ms-2, velocity amplitude Bω  =  8.04 mms-1), see Table 1.  

 

 
 

Fig. 1. The facility ALICE-2 is attached to the walls of the “Priroda” module of the Mir station by  

elastic belts (schematized by EB) and excited at the resonance frequency.  

 

 

 

 

 

 

Table 1.  Summary of the experiments reported here. V1, V’1 and V2 label the vibration conditions 

(see text). Label NV means the absence of vibrations. 

 

B. Experimental Procedure 

 

The experiments have been carried out at 4 reduced temperatures T-Tc = 5K, 500mK, 100mK, 

20mK (see Table 2), according to the vibration conditions reported in Table 1. During each run of 

about 30 hours, heat pulses of P0 = 0.828 mW electric power and δt = 120 s duration were 

performed. After each pulse, the sample was left for a time sufficient for equilibration, one hour at 

Tc + 5K, 5 hours at Tc + 20 mK. Density equilibration can be checked in the interferometer image. 

The heat pulses with no vibration were performed under calm conditions (acceleration ≤ 10-4 g0), 

when the cosmonauts were asleep. We will not discuss here other sequences of pulses with lower 

injected power and/or shorter duration. These data all support the following analysis although they 

exhibit larger uncertainties in the temperature measurements. We will, however, consider one case 

Excitation B (mm) f (s-1) δt (s) P0 (mW) 
V1 64 0.2 120 0.828 
V’1 64 0.2 3.6 0.828 
V2 0.8 1.6 120 0.828 
NV 0 0 120 0.828 

EB 

EB 

EB 

EB 
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identical to V1, but with a heat pulse of much shorter time duration δt = 3.6 s, hereafter labeled V’1 

(see Table 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Summary of the experimental conditions and critical power law behavior for useful 

thermophysical properties (from [5]). τ = (T-Tc)/Tc is the reduced temperature difference. V1, V’1, 

V2 and NV label the vibration conditions (see Table 1).  

 

III. RESULTS AND DISCUSSION 

 

In the following we analyze the spatial extension of the hot boundary layer (HBL) for the excitation 

modes V1, V’1, V2 and NV, and the evolution of the T1, T2, and T3 temperatures.  

 

A. General about thermalization 

 

In fluids under weightlessness maintained at constant volume, heat transfer may be performed by 

both thermal diffusion and adiabatic compression. This mechanism was called the “Piston-Effect” 

(PE) because the diffusing HBL acts as a piston to heat the interior of the fluid [6-7]. The HBL is a 

region of density gradient that manifests itself in the interferometer pictures as a black area around 

the heat source Th3, with a sharp interface (Figs. 3a and 3a’). In the absence of vibration, the HBL 

is nearly spherical in shape if we exclude the heated regions along the lead wires. It spreads 

diffusively [8]. 

As the critical point is neared, the heat diffusion slows down whereas the PE speeds up the 

thermalization. The latter process is then dominant in near-critical fluids, leading to a very fast 

 
Excitation type

V1 
 
 

NV 

 
V’1 
V2 
NV 

V1 
V'1 

 
NV 

V1 
V'1 

 
NV 

 
 

V2 
NV 

T-Tc (mK) 5000 500 100 50 20 
tD (s) 900 4200 12400 19800 36500
tPE (s) 20.5 0.41 0.031 0.010 0.0024
tν (s) 35 32 30 29 28 

Tc (K) 318.735 
ρc (kg m-3) 740.2 
βP  (Κ−1) 1.01 10−3 τ−1.24  
γ0 = Cp/CV 0.070 τ−1.13 

DT  (m2 s-1) 4.02 10-8 τ0.67   
ν  (m2 s-1) 5.39 10 -8 τ−0.04     
L (mm) 1.5 (see Eq. 4) 
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thermalization. The adiabatic nature of the fast thermal equilibration in supercritical homogeneous 

fluid samples has been confirmed by numerous experiments [8–15], many of them performed in 

weightlessness where convection is absent, and is now well established.  

Let us define tD, the typical diffusion time on lengthscale L (defined below in Eq. 4) as 

     tD = 
TD

L2
 ~ τ 0.67       ,      (2) 

where DT  is the thermal diffusivity that tends to zero as the reduced temperature τ  =  (T-Tc)/Tc  

goes to zero (Table 2). 

Thermalization by the PE occurs after the characteristic time tPE such as 

     tPE =  
( )2

0 1−γ
Dt   ~ τ 1.8 .          (3) 

Here γ0  =  Cp/CV ~ τ-1.13 diverges as τ  tends to zero (Table 2). A striking result is thus the critical 

speeding up of the PE when going closer to the critical point. As a matter of fact, near Tc, γ0 

diverges and tPE goes to zero although tD goes to infinity. This result represents an enormous gain in 

the time required by the bulk fluid to come close to the temperature equilibrium. The fluid 

inhomogeneities (HBL), however, still relax diffusively [8, 13-15], which makes the ultimate 

density equilibration determined by the diffusion time scale tD.  

The typical length L in the PE is the typical lengthscale of the HBL near thermalization and can be 

approximated, according to [15], by the ratio of the sample volume V to the sample external surface 

S, such as, in the present experimental situation, 

     L ≈ ( ) 111
2
1 −−− + Re  .      (4) 

Another time of interest is the typical viscous time tν corresponding to the viscous relaxation of the 

flow: 

tν = 
ν

2L  ~ τ −0.04       (5) 

 

The parameter ν  is the kinematic viscosity that diverges with a very small exponent near Tc ; tν can 

thus be considered as nearly constant ≈ 30 s (see Table 2).  
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B. Pattern for V1 and V’1 

 

1. Early times 

 

For vibration regimes V1 and V’1, the HBL is convected at each oscillation along the vibration 

direction and spreads as two symmetric plumes (Figs. 2 - 3). During the first complete half-period 

(1.25 – 3.75  s), a hot plume develops by buoyancy from the hot thermistor with a direction parallel 

to the vibration direction (vibration V’, Fig. 2b). During the second complete half-period (3.75 – 

6.25 s), the head of the plume does not return to its initial position. Indeed, the head cannot move 

back by buoyancy in a plume region that exhibit nearly the same density. At the same time, a 

symmetric plume rises from the hot thermistor (Fig. 2c) and develops as the former plume. The 

plume stops between the thermistor and the wall, at about 2.4 mm from the thermistor In Fig. 3 is 

shown the same phenomenon under V1. The HBL evolution is similar, however, it is noticeable that 

in this case the plume reaches the cell wall. This phenomenon is then the symmetrical case of what 

is currently observed on earth (such a convection plume under 1-g is studied in [16]). 

This difference in HBL propagation can be understood as follows. Depending on the buoyancy 

velocity, which itself depends on the density difference ∆ρ, the plumes are convected on a distance 

lp whose value determines whether the plume reaches the cell walls  (Fig. 3, V1) or not (Fig.2, V’1-

type). Assuming the Stokes velocity VS for the buoyancy of a hot fluid volume of radius r0 (the 

thermistor radius) submitted to the acceleration Bω2: 

  VS = 
ρν

ωρ
9

2 22
0 Br ∆   ,                (6)  

one gets  

   lp = 
ρν

ρωπ
9

2
2

2
0rB

f
VS ∆

= .     (7) 

This distance depends only on the vibration velocity Bω. The temperature change at Th3 can be 

estimated of order on 0.1 K, corresponding to a density inhomogeneity about ∆ρ/ρ  ~ 25 % (see 

below Fig. 7, early times, V1, T-Tc = 0.5 K). Inverting Eq. 7 with lp = 2.4 mm (V’1 case) gives 

indeed ∆ρ/ρ = 23 %. The density difference for V1 at 0.1 K from Tc, corresponding to lp ~ 6 mm, 

would be larger than 60%, which is unphysical. The latter estimation of ∆ρ/ρ  simply means that a 

linear analysis cannot hold for such high temperature rise so close to Tc. 

 

2. Late times 

 

Since the hot fluid cannot be convected in the vibration direction on a distance larger than lp, it can 
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only spread (i) by diffusion, but it is an extremely slow process, see Table 2, and (ii), by convection 

thanks to the vortices resulting from the viscous coupling with the bulk fluid. The latter process 

makes the hot fluid spread perpendicularly to the vibration direction at the extremity of the plumes 

(Figs. 2d-f and 3c) where hot “pancakes” clearly develop. This case is also reminiscent of what is 

observed on earth when the interface between hot and cold fluid regions order in plane layers 

perpendicular to gravity.  

The convective flow that extends the HBL perpendicular to the vibration can also be understood as 

a vibrational thermal instability of Rayleigh-Bénard – like type [1] in a cell of size L0 submitted to 

the temperature difference ∆T. A vibrational Rayleigh number can be defined for high frequency 

vibrations, i.e. vibration period 1/f smaller than the typical inverse hydrodynamics times tD and tν 

(tPE is not involved here), which is precisely the case here, see Table 2: 1/f = 5 s, tν ≈ 30 s, tD > 900 

s,]: 

    Rav = 
( )

T

P
D

TLB
ν

ωβ
2

2
0∆

 .      (8) 

From the T-Tc dependence of  βP, ν, and DT (with L0 = R = 6 mm), one gets: 

1VRav  ≈ 1.3 106 (T-Tc)-1.77 (∆T)2     (9) 

where subscript V1 is for vibration V1. 

Convection starts for Rav above a critical number Ravc. This critical number depends on the angle α 

between the vibration and the temperature gradient direction. When α = 0, Ravc = ∞, the fluid is 

stable. When α increases to π/2, Ravc decreases to a value of order on 2000. Convection is the most 

unstable in the direction perpendicular to the vibration direction and, as a consequence, convection 

rolls form at the HBL border (such rolls have been observed in the simulations on 2D 

incompressible and inviscid fluids, see [1] and below). In the present experiment, the ∆T value 

corresponding to the threshold should be of order of 160 mK  at T-Tc = 5 K and 20 mK at T-Tc = 0.5 

K.  

Note that the influence of the PE induces a modification related to the Schwarzschild criterion (PE –

induced adiabatic temperature gradient) [17]. This adjustment is all the more pronounced as T-Tc is 

small. How it couples with vibration is out of the scope of the present study.  



 9
 

 

 

(a)

(f)

(e)

(d)

(c)

(b)

 

 

 

 

 



 10
 

 

 

(b’) 
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(d’) 

(e’) 

(f’) 

(a’) 

Th1 

Th2 

Th3 

 
Fig. 2.Spreading of the HBL at T-Tc = 50 mK during a vibration V'1 (3.6 s heat pulse, 0.828 mW 

power). (a) t = 0. (b) t = 3.08 s after starting the heat pulse. The double arrow indicates the direction 

of vibration. (c) t = 4.6 s. (d) t = 5.68. (e) t = 12.2 s. (f) t = 31.2 s. (a’)-(f’): id, schematic. The 

arrows in (a') indicate the three thermistors location. 
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(b’) 

(c) (c’) 

 

 

(a’) 

(b) 

 
Fig. 3. Spreading of the HBL during the heating of the thermistor (120 s time duration, 0.828 mW 

power). (a) Without vibration, T-Tc = 0.1 K, t = 10 s after the start of the pulse, (b) under vibration 

V1, T-Tc = 0.1 K, t = 9.52 s after the start of the heat pulse. The double arrow indicates the direction 

of vibration. The HBL is convected as a double plume. (c): t = 48.72 s after the start of the heat 

pulse. (a’)-(c’): id, schematic.  
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C. Pattern for V2 

 

A similar behavior as for vibrations V1 and V’1 is observed for the vibration V2 with much smaller 

value of the B amplitude. The extension lp of the plume that is convected parallel to the vibration 

direction, proportional to Bω, is now reduced by a factor as large as 10. Only the spreading 

perpendicular to the vibration can thus be observed (Fig. 4). One can estimate the vibrational 

Rayleigh number to be 

2VRav  ≈ 1.3 104(T-Tc)-1.77 (∆T)2 ,    (10) 

where subscript V2 corresponds to the vibration V2. 

At 0.5 K from Tc, the temperature gradient at the threshold corresponds to ∆T = 210 mK. At 20 mK 

from Tc, it becomes as weak as ∆T = 12 mK (see Fig. 7). 

 

 

 
 

(d)

(a)

(b)

(c)
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Fig. 4. Spreading of the HBL at T-Tc = 0.5 K during a vibration V2 (120 s heat pulse, 0.828 mW 

power). (a) Before starting  the heat pulse. (b) t = 20 s . (c) t = 70 s. The double arrow indicates the 

direction of vibration. The circles that are drawn correspond to the presence of 4 counter-rotative 

convection rolls (see text and Fig. 11). (d) t = 120 s. 

 

 
 

Fig. 5. Schematic representation of the hot boundary layer inside the cell.  (a) without vibration NV 

(see also Fig. 3a) and (b) in the presence of vibration V2 (see Fig. 4). Th1,2,3 are thermistors. Th3 

is also used as a heat source. 

 

The dynamics of propagation of the HBL can be characterized by its shape evolution.  Two typical 

lengths are δ⊥ and δ||
,, perpendicular and parallel to the vibration direction, respectively: 

 δ|| = (d -d0)/2  (10) 

 δ⊥ = (D -d0)/2.  (11) 

Here d and D are defined in Fig. 5. The evolutions of δ||  and δ⊥ are presented in Fig. 6a (T-Tc = 500 

mK) and in Fig. 6b (T-Tc = 20 mK). We note the following: 

(i) In the absence of vibration (NV), the HBL propagates symmetrically, δ|| = δ⊥.  These lengths 

obey a diffusion power law whose exponent is not 1/2 but depends on the temperature range and 

reflects the non linear behavior of the thermophysical properties of the fluid near its critical point 

[8, 18]. The exponents here are 0.42 ± 0.01 (T-Tc = 500 mK) and 0.48 ± 0.08 (T-Tc = 20 mK). 

During this period, the uniform thermalization of the bulk fluid is ensured by the PE.  

(ii) Under vibration V2 , after a small initial delay, δ||  increases as can be seen from Figs. 6. The 

length δ⊥  increases faster than without vibrations. The slope in the log-log plot of Figs. 6 is of order 

unity during most of the time where vibration is on. This corresponds to a constant spreading 
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velocity and is indeed the hall-mark of a convective flow in the viscous (Stokes law) limit.  

 
Fig. 6. Evolution (log – log scales) of the HBL lengthscales δ⊥  (open triangles) and  δ||   (black 

triangles) for excitation V2 and NV (black dots).(a):  T-Tc = 500 mK; (b): T-Tc = 20 mK. 

 

 

D. Heat source temperature relaxation 

 

Temperature measurements at Th3 location are available only when the heat pulse has stopped. We 

will thus limit the discussion to the relaxation after the heat pulse, when the HBL behavior crosses 

over from a convective to a diffusive spreading. 
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Fig.7. Central thermistor (Th3) temperature relaxation  ∆T3 (log-log scales) after the heat pulse. 

Vibration: V1, V2; no vibrations: NV. (a) V1 at T-Tc = 5K. (b) V2 at T-Tc = 0.5K. The vertical 

arrows indicate the typical PE and viscous times. The horizontal arrow corresponds to the onset of 

the vibrational Rayleigh-Bénard instability (see text). 

 

Fig. 7 shows the typical (∆T3(t) = T3(t) - T3(∞)) temperature evolutions of thermistor Th3, without 

vibration (NV) and for vibrations V1 and V2. One can see in Fig.7 that T3 exhibits different 

behavior depending on the excitation. This fact simply expresses that the heat exchange is affected 

by different processes, diffusion and PE alone for NV, and diffusion, PE and convection for V1 and 

V2.  
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To understand the different behaviors, one considers first the different time scales. The longest and 

ultimate timescale is the diffusion time, tD (5K)  = 900 s and  tD (0.5K) ≈ 4200 s (Table 2). The 

shorter time is the PE time. From Table 2, tPE (5K) ≈ 20 s and  tPE (0.5K) ≈ 0.4 s.  

Without vibration, equilibration indeed occurs by the PE and is shorter when closer to Tc. In Fig. 7, 

the early times (t ≤ tPE) correspond to relaxation slopes of ½, as expected [15, 19]. 

When dealing with vibrations V1 and V2, another time is the viscous time corresponding to the 

viscous relaxation of the flow. From Table 2, tν ≈ 30 s at all temperatures. Looking at Fig. 7, one 

indeed sees that the temperature relaxation is nearly completed for this time scale. Convection 

appears to relax temperature more efficiently than PE does. Indeed, the fluid is still in convective 

motion till the temperature gradients vanish. The temperature gradients at which convection stops 

can be estimated by calculating the temperature gradient for which Rav reaches its critical value 

(Ravc ≈ 2000). The estimation, from Eqs. 9 - 10, gives ∆T = 160 mK for V1 at 5 K from Tc (Fig. 

7a), and ∆T = 210 mK for V2 at 0.5 K from Tc (Fig. 7b). This is precisely the time where the 

temperature relaxation slows down. 

 

E. Bulk temperature evolution 

 

1. Vibration V1 

 

The local temperature evolutions at the Th1 and Th2 locations are described in Fig. 8. The 

maximum amplitudes of the temperature rises are shown in Fig. 9. In the bulk, convection and PE 

compete. The former process heats up the fluid by convective flows. The second process heats up 

by the expansion of the HBL but cools by the contraction of a cold boundary layer (CBL) at the 

thermostat walls.  

Far from the CP (Tc + 5 K,  Fig. 8a), convective effect predominate. Between the start of the heat 

pulse at t0 and the time t1 where the convected HBL reaches Th1 or Th2, NV and V1 - types behave 

the same. Bulk heating is only due to the PE. For times t > t1, heating with vibration is more 

effective than without vibration, due to the HBL convection. When the heat pulse stops (t > tf), the 

return to equilibrium with vibration is faster than without vibrations, in agreement with the TH3 

temperature relaxation as discussed in the previous section. The acceleration of cooling is due to the 

thinning of the CBL by the former convection, as is observed under 1-g acceleration [16]. A thinner 

layer, which pumps heat to the thermostat, indeed speeds up the bulk equilibration process. One 

also notes that convection makes the temperature T1 and T2 different. When convection is 

negligible with respect to PE (early times t<t1 and t>>tf,) both T1 and T2 temperatures are the 

same. 
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Closer to the CP (Tc + 0.1 K,  Fig. 8b and Tc + 50 mK, Fig. 8c), the PE becomes much more 

efficient and the effect of convection is smaller. The temperatures T1 and T2 keep the same value a 

longer time at the beginning of the heat pulse (nearly during all the heating duration at  50 mK from 

Tc). Then, if one plots the maximum temperature rises ∆T1M and ∆T2M reached by T1 and T2 at the 

end of the heat pulse (Fig. 9), one sees that near Tc, the values observed for V1 and V2 are lower 

than those of NV. This is the hall-mark of the increasing cooling efficiency by the CBL. The 

thermal layer is indeed thinned by the convection,  making the thermal gradients - and the heat flux 

- higher. In addition, the temperature rise in the bulk is markedly lower than the one at 5K (and 

similarly at 50 mK, when compared to the one at 100 mK). At first order analysis, this is due to the 

well-known divergence of CV. Note that the divergence of Cp can also affect the process in a 

complex manner [15]. 
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Fig.8. Temperature evolution of the temperature in the bulk fluid (vibration V1, full line) and 

without vibration (NV, interrupted line) for temperature rise ∆T1(t) = T1(t) – T1(∞)) at Th1 and 
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∆T2(t) = T2(t) – T2(∞)) at Th2. t0: beginning of the heat pulse; tf: end of the heat pulse; t1: the HBL 

reaches Th1. (a) T-Tc = 5K. (b) T-Tc = 100 mK. (c) T-Tc  =20 mK. (All data have been filtered with 

a 8 % numerical weighing procedure.) 

 
  

 
 
Fig. 9. Maximum temperature rise ∆T1M  (a) and ∆T2M (b) with respect to temperature difference T-

Tc for vibrations V1 and V2 and no vibration (NV).  

 

2. Vibration V2 

 

The evolution of local temperatures, as measured by Th1 and Th2 thermistors, are presented in Fig. 

10, for V2. The corresponding maximum amplitude of the temperature rise is shown in Fig. 9. In 

contrast to V1, the difference between vibration and no vibration remains small at all T - Tc. This is 

because, (i) the HBL does not reach neither Th1 nor Th2, and (ii) the convection flow induced by 

the vibration remains confined around the HBL and does not thin the CBL. As a consequence, the 

cooling heat transfer at the cell wall is not enhanced. As for V1, the amplitude of the temperature 

rise also decreases with T approaching Tc, due to the increase of both Cp and CV.   
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Fig. 10. Temperature evolution in the fluid (vibration V2 , full line) and without vibration (NV, 

interrupted line) for temperature rise ∆T1 at Th1 and ∆T2 at Th2. t0: beginning of the heat pulse; tf: 

end of the heat pulse. (a) T-Tc = 0.5K; (b) T-Tc = 20 mK (all data have been filtered with a 8 % 

numerical weighing procedure). 

 

IV. NUMERICAL SIMULATION 

 

1. Vibration V1  

 

An investigation of the regime V1 has been already reported by Jounet [20], in a two-dimensional 

(2D) numerical simulation, using a van der Waals fluid model whose parameters were chosen as 

close as possible to those of CO2. The evolution of density and fluid velocity was investigated. In 

spite of differences with the experimental geometry (square cell, point source…), the simulation is 

in qualitative agreement with the present experiment. It reveals the same structures for 

approximately the same amplitudes and frequencies of vibration: double-plume along the vibration 

direction for large velocity amplitude and “pancake”-like structure elongated perpendicular to 

vibration. 

 

2. Vibration V2  

 

The case of a hot wire on the axis of an infinitely large and long cylinder filled with an 

incompressible and inviscid fluid, the whole submitted to high frequency vibrations, has been 

studied by Gershuni and Lyubomov [1]. In their 2D simulation of the present experimental 

situation, 4 convection rolls formed in the thermal density gradient of the HBL induce a convection 



 21
pattern that spreads the HBL in pancake geometry similar to what is found in the present 

experiment. Jounet [20] has also described the main features of the density and velocity behavior, 

making reference to our preliminary data of the present experiment. 

In the present work, we aim to determine what are the differences and similarities between highly 

compressible near-critical fluids and ideal gases, including a better account of the cell geometry, the 

finite size of the heating source, and experimental vibration amplitude (in the Jounet’s work [20], 

the vibration amplitude is 10 times larger than the experimental one). We thus also performed 2D 

numerical simulations of the heat propagation process based on the Navier-Stokes equations with 

acoustics filtering procedure. A van der Waals equation of state was used, together with a mean-

field behavior for the thermal conductivity. The model fluid is CO2 at critical density and at 

temperature T - Tc = 1 K, with values as close as possible to the experimental data. The heating 

power is 0.828 mW for 120 s sent from a circle of radius d’0 = 0.125 mm. The cell diameter, kept 

isothermal, is R’ = 6 mm and lengthscales X , Y reduced by L’0 =  R’ - d’0 are used. The 

conductivities of boundaries are assumed infinite. The vibrations parameters are close to the 

experimental ones: frequency f’ = 1.8 Hz and amplitude B’ =  0.38 mm. The simulation is 

performed with the CFDACE computation code that resolves the velocity, pressure, and 

temperature fields described by the compressible Navier-Stokes equations using the finite volume 

method and the SIMPLER algorithm [21]. Grid computation is composed of 80 cells in the angular 

direction and 60 in the radial direction. A refinement of the grid is applied near the walls to 

correctly describe the boundary layers. The 2D cylindrical geometry is built with the structural grid 

mesh generator implemented in the CFDACE computation code. In order to reach times larger than 

the acoustic time scale, the acoustic filtering procedure is applied. This method is commonly used 

in the calculation involving low Mach number compressible flows [22]. The simulation results, 

which can only be qualitatively compared with the experimental data as the van der Waals equation 

is approximate and the present fluid is SF6, are shown in Fig. 11 for the early times of the process. It 

is clearly seen that the HBL propagate perpendicularly to the vibration because of the existence of 

symmetrical counter-rotative convection rolls. These rolls were born in the strong density gradient 

at the boarder HBL – bulk, the latter showing a uniform density thanks to the PE. 

In order to understand what is the role of the compressibility in the present phenomenon, we 

compare this van der Waals fluid and the corresponding ideal gas, obtained with the following 

conditions: ρ = 1.8 kg m-3, T = Tc ≈ 300 K, ideal gas equation of state. Viscosity, thermal 

conductivity, heat capacities are constant and equal to the reference (background) values of the van 

der Waals gas [20]. The corresponding pattern is shown in Fig. 12. It is clear that the main 

difference between near-critical fluids and ideal gas lies in the spatial extension of the rolls. In the 

near-critical fluid, the low value of the thermal diffusivity makes the HBL confined near the heat 
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source. The rolls become thus smaller and smaller as one approaches the critical point.  

The large compressibility of near-critical fluids therefore induces a fundamentally different 

behavior concerning the spatial extension of the initial convection zone. It is very likely that all the 

developments performed for the Rayleigh-Bénard instability in near-critical fluids [17, 23-26] 

concerning especially the Schwarzschild criterion and the heat transfer should also apply to the 

vibrational Rayleigh-Bénard instability.   

 

   

 
 

Fig. 11. Numerical simulation of the vibrational convection in a van der Waals fluid at T - Tc = 1 K 

for a vibration with f’ = 1.8 Hz and B’ = 0.38 mm giving a pattern similar to the one in Fig. 4. The 

vibration direction is indicated by the double arrow. X and Y are the spatial coordinates in units of 

L’0 (see text). (a): temperature profile. (b) Velocity field  (small arrows) in arbitrary units near the 

onset of convection. (c) Enlarged view of the square in (b). Two rolls (indicated by two large open 

arrows) are clearly visible. Two more symmetrical rolls will grow at the next period, forming in 

average 4 counter-rotative rolls 
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Fig. 12. 2D numerical simulation of the vibrational convection in an ideal gas at T = 300 K ≈ Tc and 

the same vibration conditions as in Fig. 11. (a) Temperature profile. (b) Onset of two convection 

rolls (arrows). Two symmetrical rolls will grow at the next period, forming in average 4 counter-

rotative rolls.  

 

IV. CONCLUDING REMARKS 

 

The effect of a linear harmonic vibration on near-critical fluid thermalization by a point- like heat 

source is viewed as an initial displacement parallel to the vibration direction of two symmetrical hot 

plumes, the hot boundary layer, at a distance that is a function of vibration velocity only. Lateral 

spreading of the two extremities of the plumes proceeds further as hot “pancakes”. When the 

amplitude of the vibration is small enough, only one hot boundary layer pancake, centered on the 

source, is present.  Thermalization is ensured by the competition between convective flows, the 

“Piston-Effect” adiabatic heating by the hot boundary layer and the similar cooling effect at the cell 

walls.  

The initial displacement of the hot fluid can be understood as an effect of vibration acceleration, 

similar to the onset of a classical Rayleigh-Bénard instability, while the further displacement 

perpendicular to the vibration direction can be viewed as a vibrational Rayleigh-Bénard instability. 

The latter instability can be observed in an ideal fluid, as shown by a simulation. The large 

compressibility and the critical slowing down of the thermal diffusion in near-critical fluids induce 

a number of fundamental changes that deserves further investigation. In particular, convection starts 

by rolls confined in the hot boundary region, which becomes thinner and whose density profile 

becomes steeper as the critical point is neared. 

These paradoxical behaviors where heat is convected either parallel or perpendicular to the 

vibration direction depending on the control parameters show that the phenomenology of thermal 
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vibrational phenomena under reduced gravity is worth of further investigation. The frequent use of 

supercritical fluids in space motivates such studies to enhance our knowledge of fluid behavior and 

fluid management in space conditions. 
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