DeNOxing the air in urban spaces by building and construction photocatalytic coverings

J. Fernández-Pampillón^{a,b}, M. Palacios^a, L. Núñez^a, M. Pujadas^a

^aDepartment of Environment, Research Centre for Energy, Environment and Technology (CIEMAT), 28040-Madrid, Spain.

^bDoctoral School, Department of Inorganic Chemistry and Technical Chemistry, Faculty of Sciences, National Distance Education University (UNED), 28040-Madrid, Spain.

Table of contents

Table S1. Substrate, photocatalytic product and its application method	2
Table S2. Impact of physical parameters on NO and NO _x removal efficiency and nitrate selectivity	4
Table S3. Photocatalytic NO and NO ₂ surface deposition velocities published for different photoactive materials	9
References1	D

Table S1. Substrate, photocatalytic product and its application method.

Name	Substrate	Photocatalytic product	Application method
(PS-WD) ₁	Paving slab	Low-transparency water-based sol with TiO_2 additive	Paint roller
(PS-WD) ₂	Paving slab	Water-based polymeric microemulsion with TiO_2 additive	Sprayer
(PS-WD) ₃	Paving slab	Water-based polymeric microemulsion with TiO_2 additive	Sprayer
(PS-WD) ₄	Paving slab	Moderate-transparency water-based sol with TiO_2 additive	Paint roller
(PS-WD)₅	Paving slab	Water-based polymeric microemulsion with TiO_2 additive	Sprayer
(PS-WD) ₆	Paving slab	Water-based polymeric microemulsion with TiO_2 additive	Sprayer
(PS-WD) ₇	Paving slab	Water-based polymeric microemulsion with TiO_2 additive	Sprayer
(PS-WD) ₈	Paving slab	Water-based polymeric microemulsion with TiO_2 additive	Sprayer
(PS-WD) ₉	Paving slab	Water-based polymeric microemulsion with TiO_2 additive	Sprayer
(PS-WD) ₁₀	Paving slab	TiO ₂ sol-gel	Sprayer
(PPS) ₁	Paving slab	Anatase-TiO ₂ solution embedded in the surface	
(PPS) ₂	Paving slab	N/D	
(PPB)1	Paving block	Anatase-TiO ₂ solution embedded in the surface	
(PPB) ₂	Paving block	Nano-TiO ₂ embedded in the surface	
(PPB) ₃	Paving block	N/D	
(PPB) ₄	Paving block	Nano-TiO ₂ embedded in the surface	
(BM-WD)1	Close-graded bituminous mixture AC16S	TiO_2 dispersion based on water and resins	Sprayer
(BM-WD) ₂	Close-graded bituminous mixture AC16S	Water-based polymeric microemulsion with ${\rm TiO}_2$ additive	Sprayer
(BM-WD) ₃	Open-graded bituminous mixture BBTM 11B	Water-based polymeric microemulsion with TiO_2 additive	Sprayer
(BM-CG)1	Open-graded bituminous mixture BBTM 11B	Cement grout with nano-anatase TiO ₂ additive	Paint roller
(BM-CG) ₂	Open-graded bituminous mixture BBTM 11B	Cement grout with nano-anatase TiO ₂ additive	Paint roller
(BM-CG)₃	Open-graded bituminous mixture BBTM 11B	Cement grout with nano-TiO ₂ additive	Paint roller
(CS-FC) ₁	Concrete surface	Water-based covering with anatase-TiO ₂ additive	Immersion

(CS-FC) ₂	Concrete surface	Silicate microemulsion and silica nanoparticles in aqueous dispersion with nano-TiO ₂ additive	Paint roller
(FB-FC) ₁	Facing brick	Water-based covering with anatase-TiO ₂ additive	Immersion
(FB-FC) ₂	Facing brick	Water-based emulsion with TiO ₂ additive	Paint roller
(FB-FC)₃	Facing brick	Moderate-transparency water-based sol with TiO_2 additive	Paint roller
(FB-FC) ₄	Facing brick	Water-based emulsion with TiO ₂ additive	Paint roller
(FB-FC)₅	Facing brick	Water-based emulsion with TiO ₂ additive	Paint roller
(FB-FC) ₆	Facing brick	Water-based dispersion with TiO ₂ additive	Paint roller
(FB-FC) ₇	Facing brick	Water-based covering with TiO ₂ additive	Paint roller

Table S2. Impact of physical parameters on NO and NO_x removal efficiency and nitrate selectivity.

			(c)			(d)				
				System para	meters range		Depende	nce on system para	ameters	
(a) Photocatalytic material	Flow-type photoreactor	(b) X _{j (j=NO, NO_x)' S (%)}	UV-A Irradiance, I (W m ⁻²)	Inlet [NO], [NO]i (ppm _v)	Relative Humidity, RH (%)	Flow rate, FR (L min ⁻¹)	X _{NO} (%)	X _{NOx} (%)	S (%)	Ref
P25 slurry	TiO₂ thin film coated tube		([NO] _i =5-40, RH=50) 2-8	(<i>I=2.6, RH=50</i>) 5-60	(I=2.6, [NO] _i =40) 0-75	0.4	l: 15-74; [NO]i: 70- 15; RH: 0-35		l: 82-100; [NO]i: 90-100; RH: 100	Devahasdin et al., 2003
TiO2-slurry on asphalt/TiO2- paving block	Based on ISO 22197-1:2007	(*) (slurry on asphalt/paving block) NO: 3-38/4-45	([NO]i=1, RH=50, FR=3) 0.3-13	(I=10, RH=50, FR=3) 0.1-1	(I=10, [NO] _i =1, FR=3) 10-80	(I=10, [NO];=1, RH=50) 1-5	(paving block) I: 5-24; [NO];: 68- 37; RH: 30-15; FR: 67-22			Hüsken et al., 2009
TiO ₂ -concrete paving stone	ISO 22197-1:2007		([NO]i=1, RH=50, FR=3) 0.3-13	(I=10, RH=50, FR=3, 5) 0.1-1	(I=10, [NO] _i =1, FR=3) 10-80	(I=10, [NO];=0.1-1, RH=50) 3, 5	I: 0-29; [NO] _i : 69- 22; RH: 36-20; FR=69-22	l: 0-24; [NO]i: 64- 16; RH: 36-20; FR=64-16		Ballari et al., 2010
TiO ₂ -concrete paving stone	Based on ISO 22197-1:2007		10	(FR=1-5) 0.1-1	50	([NO];=0.1-1) 1-5		[NO]i: 89-22; FR: 89-22		Hunger et al., 2010
P25 powder- pressed/P25 paint film	Based on ISO 22197-1:2007	(**) (I=7, [NO];=1, RH=50, FR=0.7) (powder- pressed/paint) NO: >60/15-50; S: 42-75/15-40								Águia et al., 2011
TiO ₂ -concrete paving stone	ISO 22197-1:2007	(*) NO: 43; NO _x : 35	([NO] _i =0.52, RH=50) 2–11	(<i>I=10, RH=50</i>) 0.1-1	(I=10, [NO] _i =0.52) 10-70	3	l: 20-58; [NO]i: 83- 43; RH: 89-49	l: 15-50; [NO]i: 72-35; RH: 85-38		Ballari et al., 2011

TiO2- nanosized coating over mortar/glass	Based on ISO 22197-1:2007	(**) (I=5.8, [NO];=0.4, RH=31, FR=1.5) (mortar/glass) NO: 45/37.5	5.8	(RH=31, FR=1.5) 0.1-2	([NO]i=0.4-2, FR=1.5) 0-74	([NO]i=0.4, RH=31) 1-5	(mortar/glass) [NO]: 45-38/48-35; RH: 45-22/45-25 (mortar) FR: 52-20	(mortar/glass) [NO]:: 45-35/45- 15; RH: 45-22/44- 12 (mortar) FR: 52-19		Martinez et al., 2011
TiO2-mortar on concrete paving	Based on ISO 22197-1:2007		(RH=30-70, FR=1-5) 10-40	20	(I=10-40, FR=1-5) 30-70	(I=10-40, RH=30-70) 1-5		I: 10-90; RH: 90- 10; FR: 90-10		de Melo and Trichês, 2012
Nanotubular TiO ₂ film	Continuous- flow Reactor (1 L)		1.4	(FR=1-2.5) 0.2-1	40	([NO] _i =0.2-1) 1-2.5	[NO] _i : 22.6-4.4; FR: 22.6-4.4			Kontos et al., 2012
TiO ₂ -water suspension onto concrete paving block	ISO 22197-1:2007	(*) NO: 47; NO _x : 39								Ballari and Brouwers, 2013
TiO₂-water suspension onto asphalt pavement	JIS R 1701- 1:2004 (n.d.)	(**) (I=20, [NO];= 0.43, RH=50, FR=1.5) NO: 51-77; NO _x : 39-66	(RH=50, FR=1.5) 5-24	0.43	(<i>I=20, FR=1.5)</i> 20-80	(<i>I=20, RH=50</i>) 1.5-3	l: 31-65; RH: 65-9; FR: 65-38	l: 25-55; RH: 55-8; FR: 55-29		Hassan et al., 2013
P25 or PC500 paint/PC500 powder- pressed	Based on ISO 22197-1:2007	(**) (I=10; [NO]i=1, RH=50, FR=0.7) (paint/powder- pressed) NO: 25-70/95; S: 25-45/45								Ângelo et al., 2014
TiO2-mortar slab	ISO 22197-1:2007		([NO]:=1, RH=50, FR=3) 2-15	(I=10, RH=50, FR=3) 0.11-1	(I=10, [NO]i=1, FR=3) 10-70	(I=10, [NO]≔1, RH=50) 1.5-5	l: 11-31; [NO];: 61- 36; RH: 50-27; FR: 49-21	l: 7-24; [NO]i: 43- 29; RH: 45-20; FR: 42-16		Sikkema et al., 2015
TiO2 onto glass	Based on ISO 22197-1:2007		10	0.5	25-65	1.2	RH: 94-82		RH : 91-51	Hernández Rodríguez et al., 2016

TiO2-coating onto asphalt/ concrete	CSTR stirred flow tank (148 L)		(RH=8) (asphalt) 8-80	0.12	(<i>I=41)</i> 8-80	10	(asphalt/concrete) (1) I: 0.3-1.1/ND; RH: 0.5-0.07/6-0.08		Toro et al., 2016
nano-TiO ₂ concrete	Based on JIS R1701-1:2004 (n.d.)		([NO]i=1, RH=30, FR=3) 0.3-3	(I=2, RH=30, FR=3) 0.15-2	(I=2, [NO]i=1, FR=3) 10-80	(I=2, [NO]i=1, RH=30) 0.5-9		l: 11-60; [NO];: 68-20; RH: 60-21; FR: 88-13	Guo et al., 2017
TiO2-coating onto mortar/wood	Based on ISO 22197-1:2007		1, 3.3	0.4	34	1.5	(mortar/wood) I: 46-50/31-48		Hot et al., 2017
P25 paint/P25 water suspension onto concrete/ plaster	Based on ISO 22197-1:2007 and CEN	(*) (ISO/CEN) NO _x : 8-24/28-42 (paint/water suspension) NO _x : 12-42/8-30 (concrete/plaster) NO _x : 8-42/16-35	10	0.1	50	3		(paint) (ISO/CEN) 17-50/32-45 (concrete/plaster) 45-50/17-32	Zouzelka and Rathousky, 2017
TiO₂-cement based coating on sandblasted glass	Based on ISO 22197-1:2007	(**) (I=21, [NO]i=0.1, RH=50, FR=3) (1) NO: 0.51-0.57	([NO];=0.1, RH=50, FR=3) 3-21	(I=21, RH=50, FR=3) 0.05-0.5	(I=21, [NO]=0.1, FR=3) 0-83	(I=21, [NO]=0.1, RH=50) 2-7	(1) I: 0.13-0.23; [NO]i: 0.37-0.15; RH: 0.6- 0.17; FR: 0.3		Mothes et al., 2018
NP400 on cement paste/mortar	ISO 22197-1:2007	(*) (cement paste/mortar) NO: 3-55/11-70							Rhee et al., 2018
TiO2-solgel onto ceramic	ISO 22197-1:2007		([NO]i=1, FR=3) 2.5-10	(<i>I=10, FR=3</i>) 0.5-2	50	(<i>I=10,</i> [NO] _i =1) 1.5-4	l: 32-62; [NO]i: 65- 57; FR: 82-40		Muñoz et al., 2019

P25 mortar	ISO 22197-1:2007		(RH=35, FR=1) 10-40	10	(I=40, FR=1) 35-65	(<i>I=40, RH=35)</i> 1-5		I: 22-81; RH: 81- 12; FR: 81-21		Casagrande et al., 2020
P25/TiO ₂ - powdered cement onto glass/asphalt	ISO 22197-1:2007	(*) (TiO2-powdered cement–asphalt) NO: 29; NO _x : 22	10	5	50	0.1	(P25–glass) 93 (TiO ₂ -powdered cement–glass/ asphalt) 20/32			Suárez et al., 2020
TiO₂- dispersion paint	Based on ISO 22197-1:2007		2.1	0.09	6-84	2.2	RH: 93-15			Pill et al., 2021
TiO ₂ -powder in cement mortar TiO ₂ - supported aggregates in/on cement mortar	ISO 22197-1:2007	(*) (powder in cement mortar) NO: 34; NOx: 33; S: 98 (aggregates in/on cement mortar) NO: 51/52; NOx: 51/50; S: 100-98	solar light simulator	(RH=50, FR=3) 0.05-2	([NO]i=1, FR=3) 17-83	([NO]i= 1, RH=50) 1-5	(aggregates on cement mortar) [NO]:: 60-46; RH: 55-50; FR: 85-29	(aggregates on cement mortar) [NO]:: 54-33; RH: 52-40; FR: 78-18	(aggregates on cement mortar) [NO]i: 94-71; RH: 95-81; FR: 91-64	Si et al., 2021
P25 water suspension onto glass	Based on ISO 22197-1:2007		10	(FR=1.5-11) 0.1-1	50	([NO];=0.1-1) 1.5-11		[NO]i: 79-5; FR: 79-5		Mikyskova et al., 2022
P25 water suspension onto glass	ISO 22197-1:2007		(<i>RH=50)</i> 0.5-50	0.1	(<i>I=10)</i> 0.1-95	3		I: 42-62; RH:68-36		Nosek et al., 2023

^(a) Regarding the photocatalytic material, in those cases in which the TiO₂ based product is not a constituent part of the sampled material, the substrate on which it is applied is specified.

- ^(b) In relation to the $\chi_{j \ (j=NO, NO_x)}$ and S (%) determined in fixed conditions, if applicable, the comparison between different types of photoactive product, substrate or type of reactor used is shown; data range is associated to results obtained for different samples; operation conditions are also given, in parentheses and italics.
- ^(*) Test carried out under following specified conditions: I=10 Wm⁻², [NO]_i=1 ppm_v, RH=50% and FR=3 Lmin⁻¹.
- ^(**) Test carried out under fixed conditions chosen by the author, defined in parentheses and italics.
- ⁽¹⁾ NO and NO_x removal expressed as uptake, γ (10⁻⁴).
- ^(c) Concerning the system parameters, range of operating values for the target variable under test (I, [NO]_i, RH and FR) are given; setting for the rest of variables is also specified (in parentheses and italics

^(d) The dependence on system parameters (I, [NO]_i, RH and FR) of χ_{NO} (%), χ_{NO_x} (%) and S (%) is displayed. For every parameter, values range is given.

First order kinetic approximation	Material	Flow-type reactor	^(a) Test conditions	V _{ph,NO} (10 ⁻³ m s ⁻¹)	^(a) Test conditions	V _{ph,NO2} (10 ⁻³ m s ⁻¹)	Reference
Classical	TiO_2 -mortar onto fiber cement	Based on ISO 22197-1:2007	I=8 [NO];=0.1 RH=40 FR=ND	3.8	I=8 [NO ₂]i=0.1 RH=40 FR=ND	2.9	Gallus et al., 2015
Classical	TiO ₂ -polymeric paint/ TiO ₂ - cementitious coat/TiO ₂ - transparent dispersion onto concrete blocks	Based on ISO 22197-1:2007	I=4 [NO]i=1 RH=50 FR=3	4.2/2.2/3.2			Boonen and Beeldens, 2014
LHM	P25 briquettes	Based on ISO 22197-1:2007	I=10 [NO] _i =0.04-1.4 RH=50 FR=3	11.8	I=7 [NO ₂] _i =0.04-1.4 RH=50 FR=3	1.6	Engel et al., 2015
Classical	P25 water suspension onto glass	Based on ISO 22197-1:2007	I=10 [NO] _i =0.1-1 RH=50 FR=3	31-0.7	I=10 [NO ₂] _i =0.1-1 RH=50 FR=1.5-11	30-0.7	Mikyskova et al., 2022
Classical	TiO ₂ -water suspension onto PVC	Based on ISO 22197-1:2007	I=10 [NO]i=0.05-0.1 RH=50 FR=2.2	23	I=10 [NO ₂]i=0.05-0.1 RH=50 FR=2.2	17	Villena et al., 2024

Table S3. Photocatalytic NO and NO2 surface deposition velocities published for different photoactive materials.

(a) UV-A irradiance, I (W m⁻²); inlet [NO], [NO]_i (ppm_v); relative humidity, RH (%); flow rate, FR (L min⁻¹).

REFERENCES

- Águia, C., Ângelo, J., Madeira, L.M., Mendes, A., 2011. Photo-oxidation of NO using an exterior paint Screening of various commercial titania in powder pressed and paint films. J. Environ. Manage. 92, 1724–1732. https://doi.org/https://doi.org/10.1016/j.jenvman.2011.02.010
- Ângelo, J., Andrade, L., Mendes, A., 2014. Highly active photocatalytic paint for NOx abatement under real-outdoor conditions. Appl. Catal. A Gen. 484, 17–25. https://doi.org/https://doi.org/10.1016/j.apcata.2014.07.005
- Ballari, M.M., Brouwers, H.J.H., 2013. Full scale demonstration of air-purifying pavement. J. Hazard. Mater. 254–255, 406–414. https://doi.org/https://doi.org/10.1016/j.jhazmat.2013.02.012
- Ballari, M.M., Hunger, M., Hüsken, G., Brouwers, H.J.H., 2010. Modelling and experimental study of the NOx photocatalytic degradation employing concrete pavement with titanium dioxide. Catal. Today 151, 71–76. https://doi.org/https://doi.org/10.1016/j.cattod.2010.03.042
- Ballari, M.M., Yu, Q.L., Brouwers, H.J.H., 2011. Experimental study of the NO and NO2 degradation by photocatalytically active concrete. Catal. Today 161, 175–180. https://doi.org/https://doi.org/10.1016/j.cattod.2010.09.028
- Boonen, E., Beeldens, A., 2014. Recent photocatalytic applications for air purification in Belgium. Coatings 4, 553–573. https://doi.org/10.3390/coatings4030553
- Casagrande, C.A., Repette, W.L., Hotza, D., 2020. Effect of environmental conditions on degradation of NOx gases by photocatalytic nanotitania-based cement mortars after long-term hydration. J. Clean. Prod. 274, 123067. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.123067
- de Melo, J.V.S., Trichês, G., 2012. Evaluation of the influence of environmental conditions on the efficiency of photocatalytic coatings in the degradation of nitrogen oxides (NOx). Build. Environ. 49, 117–123. https://doi.org/https://doi.org/10.1016/j.buildenv.2011.09.016
- Devahasdin, S., Fan, C., Li, K., Chen, D.H., 2003. TiO2 photocatalytic oxidation of nitric oxide: transient behavior and reaction kinetics. J. Photochem. Photobiol. A Chem. 156, 161–170. https://doi.org/10.1016/S1010-6030(03)00005-4
- Engel, A., Glyk, A., Hülsewig, A., Große, J., Dillert, R., Bahnemann, D.W., 2015. Determination of the photocatalytic deposition velocity. Chem. Eng. J. 261, 88–94. https://doi.org/https://doi.org/10.1016/j.cej.2014.03.040
- Gallus, M., Ciuraru, R., Mothes, F., Akylas, V., Barmpas, F., Beeldens, A., Bernard, F., Boonen, E., Boréave, A., Cazaunau, M., Charbonnel, N., Chen, H., Daële, V., Dupart, Y., Gaimoz, C., Grosselin, B., Herrmann, H., Ifang, S., Kurtenbach, R., Maille, M., Marjanovic, I., Michoud, V., Mellouki, A., Miet, K., Moussiopoulos, N., Poulain, L., Zapf, P., George, C., Doussin, J.F., Kleffmann, J., 2015. Photocatalytic abatement results from a model street canyon. Environ. Sci. Pollut. Res. 22, 18185–18196. https://doi.org/10.1007/s11356-015-4926-4
- Guo, M.-Z., Ling, T.-C., Poon, C.S., 2017. Photocatalytic NOx degradation of concrete surface layers intermixed and spray-coated with nano-TiO2: Influence of experimental factors. Cem. Concr. Compos. 83, 279–289. https://doi.org/https://doi.org/10.1016/j.cemconcomp.2017.07.022
- Hassan, M., Mohammad, L., Asadi, S., Dylla, H., Cooper, S., 2013. Sustainable Photocatalytic Asphalt Pavements for Mitigation of Nitrogen Oxide and Sulfur Dioxide Vehicle Emissions. J. Mater. Civ. Eng. 25, 365–371. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000613

- Hernández Rodríguez, M.J., Pulido Melián, E., González Díaz, O., Araña, J., Macías, M., González Orive, A., Doña Rodríguez, J.M., 2016. Comparison of supported TiO2 catalysts in the photocatalytic degradation of NOx. J. Mol. Catal. A Chem. 413, 56–66. https://doi.org/https://doi.org/10.1016/j.molcata.2015.12.007
- Hot, J., Topalov, J., Ringot, E., Bertron, A., 2017. Investigation on Parameters Affecting the Effectiveness of Photocatalytic Functional Coatings to Degrade NO: TiO₂ Amount on Surface, Illumination, and Substrate Roughness. Int. J. Photoenergy 2017, 6241615. https://doi.org/10.1155/2017/6241615
- Hunger, M., Hüsken, G., Brouwers, H.J.H., 2010. Photocatalytic degradation of air pollutants From modeling to large scale application. Cem. Concr. Res. 40, 313–320. https://doi.org/https://doi.org/10.1016/j.cemconres.2009.09.013
- Hüsken, G., Hunger, M., Brouwers, H.J.H., 2009. Experimental study of photocatalytic concrete products for air purification. Build. Environ. 44, 2463–2474. https://doi.org/https://doi.org/10.1016/j.buildenv.2009.04.010
- Kontos, A.G., Katsanaki, A., Likodimos, V., Maggos, T., Kim, D., Vasilakos, C., Dionysiou, D.D., Schmuki, P., Falaras, P., 2012. Continuous flow photocatalytic oxidation of nitrogen oxides over anodized nanotubular titania films. Chem. Eng. J. 179, 151–157. https://doi.org/https://doi.org/10.1016/j.cej.2011.10.072
- Martinez, T., Bertron, A., Ringot, E., Escadeillas, G., 2011. Degradation of NO using photocatalytic coatings applied to different substrates. Build. Environ. 46, 1808– 1816. https://doi.org/https://doi.org/10.1016/j.buildenv.2011.03.001
- Mikyskova, E., Martiniakova, I., Zouzelka, R., Rathousky, J., 2022. Photocatalytic NOx abatement: The effect of high air flow velocity. Environ. Technol. Innov. 28, 102820. https://doi.org/https://doi.org/10.1016/j.eti.2022.102820
- Mothes, F., Ifang, S., Gallus, M., Golly, B., Boréave, A., Kurtenbach, R., Kleffmann, J., George, C., Herrmann, H., 2018. Bed flow photoreactor experiments to assess the photocatalytic nitrogen oxides abatement under simulated atmospheric conditions. Appl. Catal. B Environ. 231, 161–172. https://doi.org/10.1016/j.apcatb.2018.03.010
- Muñoz, V., Casado, C., Suárez, S., Sánchez, B., Marugán, J., 2019. Photocatalytic NOx removal: Rigorous kinetic modelling and ISO standard reactor simulation. Catal. Today 326, 82–93. https://doi.org/https://doi.org/10.1016/j.cattod.2018.09.001
- Nosek, Š., Ducháček, T., Magyar, P., Procházka, J., 2023. The role of flow structures in the effective removal of NOx pollutants by a TiO2-based coating in a street canyon. J. Environ. Chem. Eng. 11, 109758. https://doi.org/https://doi.org/10.1016/j.jece.2023.109758
- Pill, D., Wiesen, P., Kleffmann, J., 2021. Temperature dependencies of the degradation of NO, NO2 and HONO on a photocatalytic dispersion paint. Phys. Chem. Phys. 23, 9418–9427. https://doi.org/10.1039/D1CP01157J
- Rhee, I., Lee, J.-S., Kim, J.B., Kim, J.-H., 2018. Nitrogen Oxides Mitigation Efficiency of Cementitious Materials Incorporated with TiO2. Materials (Basel). https://doi.org/10.3390/ma11060877
- Si, H., Zhou, M., Fang, Y., He, J., Yang, L., Wang, F., 2021. Photocatalytic concrete for NOx degradation: Influence factors and durability. Constr. Build. Mater. 298, 123835. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2021.123835

Sikkema, J.K., Ong, S.K., Alleman, J.E., 2015. Photocatalytic concrete pavements: Laboratory investigation of NO oxidation rate under varied environmental

conditions. Constr. Build. Mater. 100, 305–314. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2015.10.005

- Suárez, S., Hernández-Alonso, M.D., Martínez, C., Sanchez, B., 2020. Evaluation of the photocatalytic performance of construction materials for urban air depollution. Euro-Mediterranean J. Environ. Integr. 5, 25. https://doi.org/10.1007/s41207-020-00162-2
- Toro, C., Jobson, B.T., Haselbach, L., Shen, S., Chung, S.H., 2016. Photoactive roadways: Determination of CO, NO and VOC uptake coefficients and photolabile side product yields on TiO2 treated asphalt and concrete. Atmos. Environ. 139, 37–45. https://doi.org/https://doi.org/10.1016/j.atmosenv.2016.05.007
- Villena, G., Lichtenberg, N., Lutz, V., Jessen, W., Klein, A., Kurtenbach, R., Kleffmann, J., 2024. TunNOx: Development and testing of a photocatalytic reactor for efficient NOx-Abatement of Road-Tunnel exhaust. Chem. Eng. J. 490, 151832. https://doi.org/https://doi.org/10.1016/j.cej.2024.151832
- Zouzelka, R., Rathousky, J., 2017. Photocatalytic abatement of NOx pollutants in the air using commercial functional coating with porous morphology. Appl. Catal. B Environ. 217, 466–476. https://doi.org/https://doi.org/10.1016/j.apcatb.2017.06.009