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Abstract
This paper describes a pattern recognition method for off-line estimation of both L/H and H/L transition times in
JET. The technique is based on a combined classifier to identify the confinement regime (L or H) at any time instant
during a discharge. The classifier is a combination of two different classification systems: a Bayesian classifier
whose likelihood is computed by means of a non-parametric statistical classifier (Parzen window) and a support
vector machine classifier. They are combined through a fuzzy aggregation operator, in particular the Einstein sum.
The success rate achieved exceeds 99% for the L to H transition and 96% for the H to L transition. The estimation
of transition times is accomplished by following the temporal evolution of the confinement regimes.

PACS numbers: 52.25.−b, 29.85.Fj, 07.05.Mh

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Plasma evolution is not uniform during a tokamak discharge.
Several and varied physical events appear as a consequence
of the complex physics involved and the highly non-linear
interactions among several physical processes. Various
phenomena such as L/H transitions, edge localized modes
(ELMs), internal transport barriers, disruptions or diverse types
of instabilities can take place in different time instants in
different discharges. Certain events can be induced in the
pursuit of an experimental goal (for example L/H transitions
and internal transport barriers) or, on the contrary, they can be
present in an intermittent way as a result of the plasma natural
evolution (for instance ELMs and magnetohydrodynamic
instabilities). In any case, the creation of ad hoc databases
to analyse the physics involved and determine the exact times
when events occur is in general a difficult problem. These
times are often estimated by relating multiple signals of a
discharge in a manual way (typically by means of visual data

a See the Appendix of F. Romanelli et al 2008 Proc. 22nd IAEA Fusion Energy
Conf. (Geneva, Switzerland, 2008).

analysis). Obviously, this procedure is not optimal at all, taking
into account the large amount of data stored in present day
fusion databases. Hence, the development of techniques for
the automatic estimation of time instants associated with the
occurrence of particular physical events is an urgent need to
expedite the data analysis process and to guarantee unbiased
results.

Particularly important is the requirement to create
databases with enough statistical significance. For instance,
studies related to disruptions, L/H transitions or ELMs
require a big effort for the manual identification of the time
instants where the events happen. Therefore, very often
conclusions are drawn on the basis of a very limited number of
discharges, whose analysis can be very accurate but the general
relevance questionable. This paper proposes the use of pattern
recognition techniques for the automated processing of big
databases from a reduced number of examples. In particular,
attention is focused on L to H and H to L transitions.

Pattern recognition techniques have recently been
proposed for efficient data retrieval methods [1, 2]. Pattern-
based data retrieval systems have been developed for the
databases of the JET tokamak and the TJ-II stellarator [3]. In
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this paper, pattern recognition is used to classify the operational
regime of JET at any time and to determine the time instants
where transitions (both L/H and H/L) take place.

There exist some previous works devoted to developing
classification systems to know the confinement mode [4–
6]. The first one compares a couple of classification
techniques (support vector machine (SVM) and fuzzy logic)
for the JET database. The best rate of classification
is 95.77%. The second develops a classification system
to analyse possible operational modes in ITER. To this
end, experimental signals from different tokamaks have
been collected worldwide and are made available in
the International Global H-Mode Confinement Database
(http://efdasql.ipp.mpg.de/HmodePublic). The success rate of
the classification process is 92.66%. In both cases, the analysis
covers only the transition from L to H mode (and not the inverse
H to L one) and exclusive regime identification aspects are
treated. The third of the previous references describes a neural
network classification technique to identify the nature of the
dependence of the JET L–H and H–L boundary on local edge
plasma parameters. The success rate achieved here is 98.86%.

In the above cases, the corresponding classification
systems are trained using sets of scattered points at both sides of
the transitions. This means that a sparse point population could
be present just around the transitions and, therefore, big errors
could arise if the preceding methods were used to determine
the transition times. In contrast, this paper chooses feature
vectors with a constant sampling period. This paper describes
a method to determine the changes in confinement regime (not
only from L to H but also from H to L) and, therefore, it can be
applied to the entire temporal evolution of the discharges. To
this end, several classification systems have been developed for
both types of transitions. The ones obtaining the best success
rates have then been used to determine the time instants in
which the plasma transits from one confinement regime to
another.

The L/H classification is a two class problem (CLand CH).
The classifier has to implement a decision algorithm whose
result for an input feature vector must be y = +1 (which
means L mode) or y = −1 (H mode). It is worth mentioning
that traditional statistical classifiers based on parametric
techniques are valid under the assumption that the forms of the
underlying density functions are known (for instance, normal
multivariate distributions with unknown mean and covariance
matrix). However, the common parametric forms rarely fit
the densities actually encountered in practice. In particular,
all the classical parametric densities are unimodal (have a
single local maximum), whereas many practical problems
involve multimodal densities. Hence, in order to avoid
unjustified assumptions about the form of the probability
density functions, the approaches used in this paper for the
L/H classification problem will be based on non-parametric
statistical classifiers. Indeed, classification methods exist
which do not require knowledge of the forms of underlying
probability distributions, and in this sense they can be said
to be non-parametric. SVM belongs to these types of
classifiers. SVM is a universal constructive learning procedure
based on statistical learning theory [7]. SVM relies on pre-
processing the data to represent the feature vectors in a high
dimensional space—typically of much higher dimensions than

the original feature space. With an appropriate non-linear
mapping to a sufficiently high dimensional space, data from
two categories can always be separated by a hyper-plane (or
decision function) [8].

An estimation of the probability of each classification can
be derived from the decision function D(u) provided by SVM.
This can be done remembering that to classify a feature vector
u, only the sign of D(u) is required. However, the absolute
value of D(u) provides the distance of the feature vector to
the separating hyper-plane. This magnitude can be interpreted
as a measure of certainty about its membership degree to the
classes, in this paper CL and CH. The greater |D(u)| the deeper
is u in its corresponding confinement regime. Therefore, the
probability of a classification can be identified through the
decision function by applying the sigmoid function to D(u).
Due to the fact that the L mode is represented by y = +1, the
probability of CL can be expressed as

Pk(CL) = 1

1 + exp[−kD(u)]

and, therefore, Pk(CH) = 1 − Pk(CL). Different values can
be assigned to the parameter k (kmin � k � kmax) and, hence,
different probabilities are obtained.

A different classifier can be based on the Bayes decision
theory. Given a classification task of M classes, ω1, ω2, . . .,
ωM , and an unknown pattern, which is represented by a feature
vector x, the Bayes rule states

P(ωk|x) = p(x|ωk)P (ωk)

p(x)
.

In words, the Bayes formula gives the posterior probability
that the unknown pattern belongs to the respective class ωk ,
given that the corresponding feature vector takes the value
x. The probability distribution function (pdf) p(x|ωk) is the
likelihood function of ωk with respect to x. P(ωk) is the
a priori probability of class ωk and p(x) is the pdf of x
given by

p(x) =
M∑
i=

p(x|ωi)P (ωi).

It should be noted that p(x) can be viewed merely as a scale
factor that guarantees that the posterior probabilities sum to
one. Therefore, the Bayes classification rule for the binary
problem of assigning a feature vector u as L mode (CL) or H
mode (CH) is reduced to

u ∈ CL if P (CL|u) � P (CH|u) ,

u ∈ CH otherwise.

In order to apply the Bayes rule, the likelihood and
the prior probability of each class must be known. The
likelihood can be estimated via the non-parametric Parzen
window estimator (see section 6). With regard to the prior
probability and taking into account that the plasma is either in
L mode or H mode, it is possible to assume a value of 0.5 for
both cases.

The main goal of the paper is to combine the results
of different classification methods to obtain better success
rates [9, 10]. In particular, a combination of the SVM method
with the Bayes formula is used. The former provides the
probability that the plasma is in H mode (PSH). It is computed

2

http://efdasql.ipp.mpg.de/HmodePublic


Nucl. Fusion 49 (2009) 085023 J. Vega et al

by means of the distance to the separating hyper-plane through
the sigmoid function. The latter gives the posterior probability
(Bayes rule) that the plasma is in H mode (PPH) when the
likelihood is computed with the Parzen window method and the
prior probabilities are assumed to be 0.5 for each confinement
regime. The fusion of both outputs is carried out by means of a
fuzzy aggregation operator [11]. In particular, we have chosen
the Einstein sum

SH = PSH + PPH

1 + PSHPPH
.

The final decision of this hybrid classifier is based on the value
of SH:

the plasma is in H mode if SH � 0.5,

the plasma is in L mode otherwise.

With regard to the structure of the paper, section 2
describes pattern recognition as a particular case of machine
learning. Section 3 is devoted to providing the basic concepts
and nomenclature that will be used in the remaining part of
the paper. Section 4 explains, firstly, the JET datasets used
for the transition time estimations. Secondly, it justifies the
selection of the discriminating signals that best represent the
L/H and H/L transitions. Thirdly, the normalization of the
signals is explained. Sections 5 and 6 summarize different
learning methods and their application to the recognition of
L and H confinement regimes in JET. Section 7 is the most
important section of this paper. It shows how to combine the
Bayes decision rule (the likelihood is computed according to
the Parzen window estimator) and SVM classifiers through
a fuzzy aggregation operator (specifically the Einstein sum)
to obtain better success rates in the classification of L/H
modes. Section 8 reports the transition time determination
from classification systems. Finally, section 9 gives a short
discussion of the method and suggests future work.

All computations have been performed with Matlab4

and, in particular, the SVM implementation has been ‘The
Spider’ software included in public licensed environments for
Matlab [12].

2. Mathematical description of learning systems

Machine learning can be considered as the process whereby the
dependence between quantities is determined using a limited
(sometimes very limited) number of observations. From a
mathematical point of view, the general model of learning
from data can be described through three components [7]:
first, a generator (G) of vectors x ∈ R

n, drawn independently
from a stationary but unknown pdf F(x); second, a supervisor
(S) who returns an output value y to every input vector x,
according to a conditional distribution function F(y|x), also
given but unknown; third, a learning machine (LM) capable of
implementing a set of functions f (x, α), α ∈ �, where � is
a set of parameters.

The problem of learning is that of choosing from the
given set of functions f (x, α), α ∈ �, the one that best
approximates the supervisor’s response. The selection of the
desired function is based on a training set of � independent

4 http://www.mathworks.com/.
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Figure 1. A sample generator (G) sends samples (x) to a supervisor
system (S) that sets a value (y) for each sample. The pairs (x, y) are
introduced to a learning machine (LM) with the aim of learning.
The goal is that LM can return values (y) for each input x that are
close to the supervisor’s response.

and identically distributed observations (x1, y1) , . . . , (x�, y�)

drawn according to F (x, y) = F(x)F (y|x).
Figure 1 represents a model of learning from examples.

During the learning process, the learning machine observes the
pairs (x, y) (the training set). After training, the machine must
return a value y for any given x. The goal is to return a value
y that is as close as possible to the supervisor’s response y.

This formulation of the learning problem is rather broad.
It encompasses many specific tasks such as pattern recognition
(or classification, i.e. estimation of class decision boundaries),
regression (or estimation of an unknown continuous function
from noisy samples) and probability density estimation. In
contrast to the classical statistics developed for large samples,
the theory of learning systems was developed for small data
samples. This characteristic implies that learning theory is
optimal for physical systems that have to be described with an
insufficient number of data. This is a very important reason
to use the learning theory in plasma physics because a typical
constraint in fusion experimental environments is the restricted
amount of information.

The creation of databases to provide L/H transition times
is treated here as a pattern recognition problem. The objective
is to minimize the probability of classification error (L mode or
H mode) when the probability measure F(x, y) is unknown,
but the data (x1, y1), . . . , (x�, y�) are given.

3. Introduction to classification methods

Generally speaking, a classification system can be seen as
a set of coordinated methods for object description and
classification. Object description is a way of representing
objects to be managed by computers. This description must
include as much a priori knowledge as possible about the
problem to solve. Only a limited number of features or
attributes (say n) of the objects are of distinctive nature for
the problem under consideration. The numerical values of
the n features pertaining to each object are represented as a
vector x ∈ R

n called the feature vector. To achieve a suitable
representation, objects are usually pre-processed in an iterative
way to find an adequate description for the problem to solve.

With regard to JET transitions, feature vectors are the
inputs to a supervisor system (figure 1) that establishes a
label for the feature vector. In this case, the supervisors
are specialists who have determined the transition times of
a reduced number of discharges. The labels used in this work

3
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x
x

Decision boundary 

(a)

x
x

Decision boundary 

(b)

Figure 2. Figure 2(a) shows overfitting. The generalization
capability is not optimal. Where are classified the points marked as
x? The classifier in figure 2(b) presents a better generalization
property.

to distinguish the confinement regimes are y = +1 for the L
mode and y = −1 for the H mode.

The feature vectors that have been labelled by the
supervisor form the training set. They are then used as inputs
to the learning machine with the aim of generating a classifier
(model) that is able to classify new objects without the help
of the supervisor. The process of model generation is called
‘training’. At this point, it is important to emphasize that in
our context learning does not mean ‘learning by heart’ (in fact,
any computer can memorize). The challenge is to classify new
objects (represented by their corresponding feature vectors)
that can be different from the ones used for the training. The
system capability of classifying new objects that were not used
in the training phase is called generalization (figure 2).

After building the model in the training process, it is
necessary to quantify the generalization power of the classifier.
An obvious criterion could be the training error, i.e. the average
loss incurred in classifying the set of training samples. It
should be emphasized right away, however, that despite the
attractiveness of this criterion, it is fraught with problems.
Since the goal is to classify novel test patterns, a small training
error does not guarantee a small test error. For this reason, a
test set is used to determine an independent error rate. The test
set is made of feature vectors that have been labelled by the
supervisor but are completely new to the model. The success
rate of the learning machine in classifying this set of new
objects determines the goodness of the model. Typically, poor
results make it necessary to modify some or all of the previous
steps: feature selection, number of training data and classifier
model.

4. Datasets for the L/H transitions

The goal of this work is the off-line identification of the
transition times. To this end, the coordinates of each feature
vector will be synchronous samples of different time series
data. The temporal segment considered for the training process
has been 2 s long, i.e. the time instants of the first and last
feature vectors in each discharge correspond to a time of 1 s
before and after the transition, respectively. The time interval
between feature vectors is 10 ms.

The starting point of this research to determine the
transition from the low (L) to the high (H) regime has been
a set of 50 discharges between shots 52211 and 62723 (with
the septum in the JET divertor configuration) whose transition
times have been established by experts with a high degree of
confidence [6]. Only for 42 shots all signals are available
during the 2 s segments around the transition to create the
feature vectors of the learning system. 80% of them are used in
a random way for training purposes (33) and the rest constitute
the corresponding test set. The test set allows estimation of the
success rate of the classification system in deciding the regime
associated with each feature vector.

Regarding the H/L transition, 48 shots have been
considered in the previous range of discharges (also with the
septum) and again, the transition times have been determined
by specialists [6]. In contrast to the L/H case, the time instant
determination is more difficult. Only 38 discharges have all
the samples during 2 s around the estimated transition instant
and 80% of them (30 shots chosen at random) are used for
training and the remaining ones for test.

The training and test datasets cover a wide range of
discharges. For example, the toroidal magnetic field is between
1.8 and 3.4 T, the plasma current between 1.2 and 4.3 MA
and the edge line integrated density between 2.2 × 1019 and
1.1 × 1020 m−2.

For the JET L/H transitions, 35 signals have been
selected as candidates to provide discriminant characteristics
for the pattern recognition problem. They also include
geometrical parameters to take into account the position/shape
of the plasma inside the vacuum vessel. The signals have been
previously provided as inputs to a tree structured methodology
in classification: CART (Classification and Regression Trees)
[13]. The CART outputs provide as result the variable ranking

4
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Table 1. List of most important signals to describe the confinement
regimes with the Septum in the JET divertor configuration.

Transition Signal Signal description

L/H Bndiam Beta normalized with respect to the
diamagnetic energy

Ptot Total heating power
Wmhd Magnetohydrodynamic energy
RXPL R coordinate lower XP
ZXPL Z coordinate lower XP
Bt80 Axial toroidal magnetic field at a

psi = 0.8 surface

H/L Bndiam Beta normalized with respect to the
diamagnetic energy

Bt Toroidal magnetic field
FDWDT Time derivative of diamagnetic energy
Q95 Safety factor
RXPL R coordinate lower XP
ZXPL Z coordinate lower XP

of the most relevant signals for the classification problem. For
JET discharges with the septum in the divertor configuration,
six signals are determined as the most important ones for the
L/H transition (table 1) and a different set of six variables for
the H/L transition.

Therefore, feature vectors to represent the confinement
regime belong to a six-dimensional space, where each
coordinate is the value of one of the physical quantities
that appear in table 1. It should be highlighted that these
quantities correspond to the same time instant. Hence, the
process of generating the feature vectors implies a data pre-
processing step consisting of interpolating the time series data
to a common set of time instants. This step is required to
overcome the difficulty that the signals in JET are sampled at
different frequencies.

Finally, an important issue has to be taken into account.
All the coordinates of the feature vectors must weight
in the same way for the model generation. Hence, to
avoid coordinates represented by big numbers having an
excessive influence due to their absolute values and not to
their information content, a suitable normalization process is
mandatory. The normalization process is carried out for each
physical quantity in the training process. Given a quantity M ,
its corresponding coordinate in the feature vector is

M − min (M)

max (M) − min (M)
,

where min(M) and max(M) are, respectively, the minimum
and maximum values of M for all the discharges considered
in the training set. This transformation generates coordinates
between 0 and 1 thereby ensuring the same relative importance
for all quantities.

5. Support vector machines

Given a training set of � samples (x1, y1), . . . , (x�, y�), xi ∈
R

n, for a binary classification problem (i.e. yi ∈ {+1, −1}),
SVM estimates the following decision function:

D(x) =
�∑

i=1

αiyiH(xi , x)

where H(xi , x) is a kernel function [14] and the parameters
αi, i = 1, . . . , � are the solutions of the following quadratic
optimization with linear restrictions:

maximization of the functional

Q(α) =
�∑

i=1

αi − 1

2

�∑
i,j=1

αiαjyiyjH(xi , xj )

subject to the constraints

�∑
i=1

yiαi = 0, 0 � αi � C

�
, i = 1, . . . , �,

where C is a regularization parameter [14].

The data points xi associated with the nonzero αi are
called support vectors. Once the support vectors have been
determined, the SVM decision function has the form

D(x) =
∑

support vectors

αiyiH(xi , x),

where D(x) is the distance from x to the hyper-plane that
separates the two classes and, hence, the hyper-plane points
satisfy D(x) = 0. It should be noted that D(x) actually is
only proportional to the real distance. However this is not
a problem, because all data points are rescaled by the same
normalization factor.

The rule to clarify a feature vector u as L mode (class CL)

or H mode (class CH) is given by

u ∈ CL if sgn (D (u)) � 0,

u ∈ CH otherwise,

where sgn(t) is the sign function, i.e.

sgn(t) =
{

1 if t � 0
−1 if t < 0

.

5.1. L/H transitions

As mentioned previously, 33 discharges out of 42 have been
chosen in a random way to form the training set in order to
generate the model of the L/H transition. Each discharge
contributes with 200 feature vectors (50% of each confinement
regime and 10 ms of the sampling period between vectors) in
the time segment (in s) (−1, 1), where times are related to the
transition times estimated by specialists. This set-up implies
6600 feature vectors for the training phase.

The test set is made up of 1800 feature vectors and 246
different classification systems have been developed. The
performance of each model is evaluated according to the
success rate achieved with the test set.

The first classification system uses a linear kernel
(H

(
x, x′) = x ·x′) and obtains a success rate of 94.91% with

the training set. The test set yields a success rate of 96.61%
(see table 2).

The SVM model with the linear kernel also gives very
important extra information regarding the L/H transitions. The
equation of the separating hyper-plane (normalized data) is

−7.3∗Bndiam + 17.8∗Ptot − 54.8∗Wmhd + 1.5∗RXPL

+ 0.7∗ZXPL − 10.3∗Bt80 + 13.3 = 0.

5
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Table 2. Success rates achieved with the test set and different
classifiers: SL (SVM, linear kernel), SR (245 classifiers based on
SVM and RBF kernels), PW (60 models based on Parzen window
estimators) and BSR (Bayes/SVM (RBF kernel) combination).

L/H transitions H/L transitions

SL 96.61% 89.38%
SR (245) 99.11% 94.44%

σ = 10 σ = 39
PW (60) 98.61% 95.88%

0.5hj,REF � h � 0.71hj,REF h = 0.95hREF

BSR 99.22% 96.31%
σ = 10 σ = 39
h = 1.55hREF h = 0.79hREF

k = 2 k = 100

Figure 3. Success rates (%) in L/H transitions for the training and
test datasets with SVM and a RBF kernel.

This equation relates the physical magnitudes among them in
such a way that it could be possible to establish threshold values
for the L/H transition with individual variables, assuming that
the rest of them are known.

On the other hand, due to the fact that the distance to the
separating hyper-plane is expressed as

D(x) = −7.3∗Bndiam + 17.8∗Ptot − 54.8∗Wmhd

+ 1.5∗RXPL + 0.7∗ZXPL − 10.3∗Bt80 + 13.3

it implies that given the experimental values of these variables,
JET can be operated in deep either L or H mode (it should
be recalled that according to the sign criteria of this paper,
a large positive value of D(x) means a deep L confinement
regime whereas a large negative quantity denotes a deep H
confinement mode).

As mentioned previously, 245 additional classification
systems have been developed. They have been based on a
radial basis function (RBF) kernel:

H(x, x′) = exp

{
−

∣∣x − x′∣∣2

σ 2

}
.

This kernel requires the a priori selection of its scale factor σ .
The scale factor defines the size (or width) of the region around
x for which H is large. The range of σ was 0.1 � σ � 200
and the success rates are shown in figure 3. With the training
set, a 100% success rate is achieved for σ = 0.1 and a value
of 99.11% is obtained with the test set for σ = 10 (table 2).

Figure 4. Success rates (%) in H/L transitions for the training and
test datasets with SVM and a RBF kernel.

5.2. H/L transitions

Here, the training set consists of 6000 feature vectors from
30 discharges chosen randomly from a set of 38 shots and
under the same conditions established for the L/H case (200
feature vectors per discharge, 50% of each confinement mode,
2 s length segments and 10 ms of sampling period). Under
these conditions, results are shown in figure 4 and table 2.
With a linear kernel, success rates are 86.63% and 89.38% for
the training and test sets, respectively.

Now, the hyper-plane equation is

−24.8∗Bndiam + 0.7∗Bt − 7.8∗FDWDT − 1.8∗Q95

− 5.8∗RXPL + 4.5∗ZXPL + 16.6 = 0.

Of course, the same considerations performed with the L/H
case on both variable relations and confinement depths are
applicable now.

With RBF kernels, the maximum success rate is again
100% with σ = 0.1 for the training set and 94.44% (σ = 39)

for the test set.

6. Non-parametric statistical classifier: Parzen
window

Among the non-parametric probability density estimators, the
Parzen window method is the most popular. It is described in
great detail in [8].

For univariate distributions, the kernel estimator is
given by

p(x) = 1

�h

�∑
i=1

K

(
x − Xi

h

)
,

where � is the number of samples, h the window width and the
function K(t) is called a kernel. The above equation expresses
the estimate of p(x) as an average of functions of x and the
samples Xi . In essence, K(t) is used for interpolation and
each sample contributes to the estimate in accordance with
its distance from x. K(t) is itself a density function which
satisfies K(t) � 0 and

∫
K(t)dt = 1. Examples of kernels for

density estimation appear in table 3.
The parameter h determines the amount of smoothing in

the estimate p(x). A small value of h yields a rough curve,
while a large value of h yields a smoother curve. Detailed
analyses about the parameter h are out of the scope of this
paper, but it is necessary to mention its importance because

6
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Table 3. Examples of kernels for density estimation.

Kernel name Equation

Triangle K(t) = (1 − |t |) − 1 � t � 1

Epanechnikov K(t) = 3

4
(1 − t2) − 1 � t � 1

Biweight K(t) = 15

16
(1 − t2)2 − 1 � t � 1

Triweight K(t) = 35

32
(1 − t2)3 − 1 � t � 1

Normal K(t) = 1√
2π

exp

(−t2

2

)
− ∞ � t � ∞

Figure 5. The top figure computes the estimator with a small
window width (h = 10−4). This value is increased in the central
case (h = 10−3) and finally, in the bottom figure, it reaches an
optimal width given by the normal reference rule (h = 0.121, where
σ was estimated as the standard deviation of the samples).

different values of h yield different classifiers. In fact, it is
known that the choice of the smoothing parameter h is more
important than the choice of the kernel. For a normal density
kernel, the width h can be selected using the following criterion
(called the ‘normal reference rule’) [15]:

hREF ≈ 1.06σ�−1/5,

where a suitable estimate for σ is the standard deviation.
Figure 5 gives an example of the influence of h

on the estimation of a normal distribution N(0, 1) =
1√
2π

exp
[
− x2

2

]
, −∞ < x < ∞. The dashed line is the N (0,

1) distribution to be estimated from a set of random samples
(derived from the same distribution) and the continuous line is
the Parzen window estimator with a Gaussian kernel.

In the cases where each observation is a n-dimensional
vector, x ∈ R

n, the simplest case for the multivariate kernel

estimator is the product kernel. The product kernel is

p(x) = 1

�h1 . . . hn

�∑
i=1




n∏
j=1

K

(
xj − Xij

hj

)
,

where Xij is the j th component of the ith sample [15]. Note
that this is the product of the same univariate kernel, with a
(possibly) different window width in each dimension. Since
the product kernel estimate comprises univariate kernels, it is
possible to use any of the kernels that have been mentioned
previously. If the normal kernel is used, a normal reference
rule for the multivariate case is [15]

hj =
(

4

� (n + 2)

) 1
n+4

σj , j = 1, . . . , n (1)

and again, a suitable estimate for σj can be used. If there is
any skewness or kurtosis evident in the data, then the window
widths should be narrower.

By choosing Gaussian kernels (that typically provide very
good results) for the L/H transitions, the probability density
function can therefore be expressed as

p(x) = 1

�(2π)n/2
n∏

k=1
hk

�∑
i=1

exp


−1

2

n∑
j=1

(
xj − Xij

hj

)2

.

Once the probability density function has been estimated for
both the L regime (pL(x)) and the H regime (pH(x)), the
classification of a feature vector u as L mode (class CL) or
H mode (class CH) is carried out by means of the following
decision rule:

u ∈ CL if pL (u) � pH (u) ,

u ∈ CH otherwise.

A total number of 60 classifiers (models) have been
generated for each training set. They differ in the window
width parameter. In order to cover a wide collection of values,
the range of h explored for each component is

0.5hj,REF � h � 2.05hj,REF,

where hj,REF is given by the normal reference rule and it is
computed according to equation (1). The estimate for σ is the
standard deviation of the training data in each one of the 6
feature vector components.

It should be noted that the classification results do not
change at all by considering the Bayes decision rule. The
only difference is that the posterior probabilities are obtained
to be used later with the hybrid classifier. These posterior
probabilities are computed from

P
(
Cj |x

) = p
(
x|Cj

)
0.5

p (x)
, j = {L, H} ,

where

p(x) = 0.5 [p (x|CL) + p (x|CH)] .

7
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Figure 6. Parzen window classifier: success rate with 60 models for
the L/H transition.

Figure 7. Parzen window classifier: success rate with 60 models for
the H/L transition.

6.1. L/H transitions

By choosing the same training/test sets under identical
conditions than in the case of the SVM, classifiers based on
the Parzen window method have been developed. Figure 6
shows the success rates obtained with the 60 classifiers. The
maximum success rate with the training set is 98.21% and
it appears with the first h value (h = 0.5hj,REF). The
test set achieves a success rate of 98.61% for the interval
0.5hj,REF � h � 0.71hj,REF (see table 2).

6.2. H/L transitions

With the same training/test datasets described in the SVM
section for the H/L transition, the success rates are again
reported in table 2. Figure 7 shows the performances of the 60
classification systems with both the training set and the test set.
The former gives a success rate of 98.92% with h = 0.5hj,REF

and the latter 95.88% with h = 0.95hj,REF.

7. Combination of Bayesian and SVM

The combined classifier (SVM + Bayes/Parzen) by means
of a fuzzy aggregation operator has been explained in the
introduction section. For the SVM classifier, a set of 199 k

values have been considered (in the range between kmin = 0.01
and kmax = 100) to assign a probability to the classifier through
the sigmoid function. The selection of the parameter k is

performed on the basis of the best success rate achieved with
a test set as explained below.

The process of building the hybrid classifier is summarized
in the following pseudo code:

Select a training set.
Select a test set.
Develop different SVM classifiers: several kernels and

diverse kernel parameters.
Select the SVM model which provides the best

success rate with the test set.
Develop different Parzen windows classifiers with

several values of the parameter h (hmin � h � hmax).
Determine h and k.

LOOP (Parzen window) hmin � h � hmax

compute for the test set ph (u|CL) and
ph (u|CH).

compute the posterior probabilities Ph (CH|u)

for the test set
LOOP (k parameter) kmin � k � kmax

compute for the test set Pk (CH)

compute for the test set

SH = Pk (CH) + Ph (CH|u)

1 + Pk (CH) Ph (CH|u)
classify according to u ∈ CH (CL) iif

SH � (<)0.5
compute success rate S(h, k) for the test set

END LOOP (k parameter)
END LOOP (Parzen window)

Determine h∗ and k∗ that correspond respectively to
the h and k parameters which maximize S(h, k).

So, the combined classifier is determined by three
elements: the SVM model providing the best success rate with
the test set together with the h∗ and the k∗ parameters found
in the above nested loops.

7.1. L/H transitions

Focusing the attention on the test set, table 2 shows the success
rate (99.22%) achieved with a classification system that results
from the combination of the Parzen window method using the
Bayes Theorem and SVM (RBF kernel).

7.2. H/L transitions

Table 2 also shows the results for H–L transitions with the
hybrid method. It allows achieving 96.31% as success rates
for the combination of the Parzen estimator with Bayes rule
and SVM (RFB kernel).

8. Transition times determination

According to the results shown in the above sections, the best
classifiers for L/H and H/L transitions have been obtained
using the Einstein sum to combine the SVM estimates with
the probability calculated through the Parzen window method
and the Bayes formula. Therefore, this approach will be used
to determine the transition times.

8
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Figure 8. Transition time estimation with the combined classifier.

Figure 9. Example of transition that is not defined within a single
point.

Given a shot number, the feature vectors between two
arbitrary time instants are generated. It should be noted that the
method does not require a constant sampling time to determine
the transition instant. However, in the results shown here, again
a 10 ms period was selected. The feature vectors are sent in
time ascending order to the classifier.

Figure 8 shows an example of a time estimate that
corresponds to a transition from the L to H regime. The
vertical line (at time instant 53.39 s) represents the transition
time determined by experts. The horizontal straight line with
value 0.5 shows the threshold value to discern between L
and H mode. The continuous line is the temporal evolution
of the Einstein sum operator. The intersection of this line
with the horizontal straight line defines the transition time.
Points at values +1 (−1) indicate plasma in L (H) mode,
respectively. The transition is estimated at 53.406 ± 0.005 s.
The difference between the time determined by experts and the
time deduced by the combined classifier is (in absolute value)
0.016 ms.

Figure 9 shows a rare evolution in which the H/L transition
does not happen only once in the selected interval. The
transition time is estimated as the average value between t1
and t2, i.e. the average value between the last H mode time
slice before the first L mode time slice and the first L mode
time slice after the last H mode time slice. In this example
the estimated time is 65.266 ± 0.026 s. This has been the
criterion for the estimations of L/H and H/L transitions times
when uncertainties appear around the estimation. Further
investigation is required to determine whether these rare cases
are multiple transitions between the L and H modes or whether
they are spurious oscillations of the classifier output due to the
uncertainties in the measurements.

Table 4. Estimation of L/H transition times: TTE: transition time
estimated by experts (unknown error bars), TH: Transition time
estimated by the hybrid classifier and the last column is the
difference (in absolute value) between TTE and TH.

Shot TTE (s) TH (s) |TTE–TH| (s)

58259 58.57 58.73 ± 0.01 0.16
58404 53.23 53.29 ± 0.01 0.06
58760 59.43 59.28 ± 0.16 0.15
60592 50.18 50.06 ± 0.06 0.12
60682 53.26 53.09 ± 0.06 0.17
62549 52.70 52.75 ± 0.01 0.05
62557 52.54 52.56 ± 0.01 0.02
62558 52.70 52.69 ± 0.01 0.01

Table 4 sums up the L/H transition time estimations of 8
discharges. These shots correspond to a new dataset of L/H
transitions that excludes the discharges used in the training
and test phases. They are removed to avoid any bias in the
presentation of results. The mean value of uncertainty in the
estimation of the transition time is 40 ms, which implies an
average error of 4 sampling periods. On the other hand, the
mean value of the differences between the expert estimations
and the deduced times (in absolute value) is 90 ms.

Regarding the H/L transition, with a new dataset of
10 discharges, the uncertainty average value around the
transition is 170 ms (8 samples and a half at each side of
the estimated time) whereas the mean value of the differences
is 250 ms.

9. Discussion and future work

This paper shows that the combination of classifiers allows
achieving higher success rates in the L/H pattern recognition
problem. In particular, a specific mixture of SVM and the
Bayes rule (with the likelihood computed with the Parzen
window estimator) has been used. It provides the best
performance in both the classification of the confinement
regime and the estimate of the transition time. Table 2
summarizes the success rates with the test sets that confirm
the increased success rates with the proposed approach.

The L to H case gets better results (99.22% of success
rate) than the H to L (96.31% of success rate). This is a
direct consequence of the uncertainties in the determination
of transition times by specialists.

At this point, it is important to state whether the slightly
greater success rates are significant improvements. To this end,
let us consider sets of symmetric temporal intervals around the
transitions: [−1, −tedge] ∪ [tedge, +1] (times are in s and are
related to the transition time). A particular interval is the one
having tedge = 0, which obviously is the segment [−1, 1].
Table 5 gives the success rates for L to H transitions with
individual classifiers. Also, it illustrates that except in time
instants very close to the transition (less than 100 ms), the
success rate is 100%. This means that the classifiers identify
with the maximum probability the regime mode, i.e. the plasma
confinement regime is known with probability 1. However,
in times closer to the transition, misclassifications can occur.
Table 6 shows the equivalent information for H to L transitions.

9
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Table 5. Success rates of individual classifiers (SL, SVM with
linear kernel; SR, SVM with RBF kernel; B, Bayes decision rule
with Parzen window) for L to H transitions and different symmetric
temporal intervals around the transition.

SL (%) SR (%) B (%) tedge (ms)

100 100 100 600
100 100 100 500
100 100 100 400
100 100 100 300
100 100 100 250
99.86 100 100 200
99.61 100 100 150
98.95 100 100 100
98.39 99.94 100 75
97.78 99.94 99.82 50
96.61 99.11 98.61 0

Table 6. Success rates of individual classifiers (SL, SVM with
linear kernel; SR, SVM with RBF kernel; B, Bayes decision rule
with Parzen window) for H to L transitions and different symmetric
temporal intervals around the transition.

SL (%) SR (%) B (%) tedge (ms)

97.38 100 100 500
96.56 99.79 100 400
97.95 99.91 100 300
97.25 99.83 100 250
96.17 98.67 100 200
94.34 97.43 100 150
93.96 97.09 99.72 125
92.99 96.46 99.31 100
91.78 95.53 97.63 50
89.38 94.44 95.88 0

In this case, the results are reproduced but with a greater value
of tedge.

Therefore, in both cases, feature vectors can be
misclassified as they approach the transition. Taking this fact
into account and bearing in mind that initial error bars on the
times estimated by the expert are unknown, an interpretation
about the improvement in the time estimations with the hybrid
method can be provided.

The training and test datasets used in this work are made
up of feature vectors in the temporal segment with tedge = 0.
In this interval, 200 feature vectors per discharge are used.
First of all, it should be noted that the success rates are really
very high in both individual classifiers and hybrid classifiers.
Second, and according to tables 5 and 6, the misclassifications
always take place around the transition points. Third, focusing
the attention on the L/H case, a success rate of 99.11% with
SVM means that, on average, 2 points per discharge are
misclassified. With the Bayes/Parzen classifier, the rate is
98.61%, which implies that 3 points are misclassified. The
combined method achieves a success rate of 99.22% and,
therefore, the misclassification is 2 points. So, we can expect
two sampling periods of error in the time estimation (2 if only
SVM is considered and 3 if only the Bayes/Parzen estimator
is taken into account). Fourth, for the H/L and reasoning in
the same way, we can expect statistically 7 sampling periods
of error, to be compared with 12 and 9 for individual SVM and
Bayes/Parzen, respectively. Hence, due to the high success
rates achieved for the L to H transitions, one can expect only a
statistical reduction of 1 sample around the L to H transition. In

Figure 10. Smooth H to L transition. The meaning of the curves is
the same as in figures 8 and 9. Feature vectors are sampled with a
period of 10 ms.

the other case, the statistical reduction can be up to 5 samples
around the H to L transition. In the case of smooth transitions
(figure 10), 5 samples imply an improvement of 50 ms in
the determination of the transition time (assuming a sampling
period of 10 ms as in this paper).

The development of training sets that are representative
enough of the respective transition is a tedious and very
time consuming procedure because it requires a big expert
effort to identify transition points. In addition to this, the
unavoidable uncertainties that can appear in the identification
process should be noted. To this end, future work could be
focused on developing iterative techniques to determine the
transition times with high precision. The objective would be
to start with a reduced training set with only approximated
transition times and to converge to a proper solution. Of
course, this solution would be representative only of the
particular training set. By including new training discharges
and repeating the iterative process, a very general model can be
developed.

The present technique can be applied not only for off-
line analysis (for example, ITER forecasting with a global
database of different fusion devices) but also under real-time
requirements (control purposes). The training process can
demand a significant computational effort but the classification
tasks can be carried out very fast.

Acknowledgments

This work was partially funded by the Spanish Ministry
of Science and Innovation under the Project No ENE2008-
02894/FTN.

This work, supported by the European Communities under
the contract of Association between EURATOM/CIEMAT,
was carried out within the framework of the European Fusion
Development Agreement. The views and opinions expressed
herein do not necessarily reflect those of the European
Commission.

Euratom © 2009.

References

[1] Vega J. 2008 Fusion Eng. Des. 83 382–6
[2] Nakanishi H., Hochin T. and Kojima M. 2004 Fusion Eng.

Des. 71 189–93

10

http://dx.doi.org/10.1016/j.fusengdes.2007.09.001
http://dx.doi.org/10.1016/j.fusengdes.2004.04.032


Nucl. Fusion 49 (2009) 085023 J. Vega et al

[3] Vega J., Murari A., Pereira A., Portas A., Rattá G.A., Castro R.
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