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AbstrAct
So far, the best results for real-time disruption prediction on JET (Joint European Torus) have been 
achieved with APODIS (Advanced Predictor Of DISruptions). APODIS is a data-driven system 
whose last version has been implemented in JET’s real time-data network. It has been designed for 
the real-time analysis of features (mean and frequency values) corresponding to 7 plasma signals 
in order to foresee incoming disruptions. 
 In this article, non-linear regression techniques are applied to create (off-line) signal models. The 
models are able to generate (in real-time) “synthetic” signals. Therefore, these “synthetic” signals 
can be used to replace the original ones in the case they are in error or missing. 
 Under these conditions APODIS has been tested emulating real-time operation. The simulation 
results demonstrate that once a signal in error is replaced by the generated “synthetic” one, APODIS 
performances are considerably improved.  The development of the regression models and the 
implications of the results are detailed and discussed in this paper.

1. IntroductIon
The prediction of disruptions [1] is a priority research subject in nuclear fusion. Their early 
identification would allow performing avoidance or mitigation actions in order to minimize the 
harm they can inflict. So far, the best online results obtained in JET (in terms of detection rates 
and prediction times) have been achieved with APODIS. APODIS is a multilayer architecture of 
machine learning classifiers trained to foresee disruptions before their occurrence.
 The first version of APODIS was developed in 2009 [2] simulating a real-time scenario. Since 
then, it has been subjected to upgrades. Finally, its last version has been installed in the JET-EFDA 
real-time data network to be operated with the new metallic wall [3].
 To perform predictions, every 32ms APODIS computes and analyses 2 different features extracted 
from 7 plasma signals. The features are the mean value and the standard deviation of the Fast 
Fourier Transform (after removing the DC component). The 7 signals are: plasma current, mode 
lock amplitude, plasma internal inductance, time derivative of the stored diamagnetic energy, total 
radiated power and total input power. 
 All the signals are necessary for the proper operation of the predictor. However, a recent study 
[4] has proven that the mode lock amplitude and the plasma internal inductance are essential for 
APODIS. Very low performances are achieved if any of these two specific signals is in error or 
missing. Besides, a recent failure in the stored diamagnetic energy time derivative signal at the 
beginning of the campaign C31 of JET induced APODIS to fail in the detection of several incoming 
disruptions.
 Once a signal is known to be in error, APODIS and any other control or safety system may 
be compromised. An immediate practical solution is required in these circumstances to allow the 
systems proper operation.
 In the present study, the developed solution is to create (off-line) Signal Feature Models (SFMs) 
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using two different non-linear regression techniques. The models are meant to estimate the time 
evolution of the signal features required by APODIS. This paper simulates both the real-time 
generation and the use of the “synthetic” signal estimations in replacement of the original features 
that APODIS requires, just to overcome the lack of one of them. 
 The article is structured as follows: section 2 briefly introduces the signal features APODIS 
requires to operate. Section 3 describes the database gathered from the JET device and used in this 
study. Section 4 is devoted to explaining the idea of the SFMs and to summarize the mathematical 
basis of the applied regression techniques. The overall testing procedure, that includes the application 
of the SFMs to estimate the signal features (under a simulated real-time scenario) and their application 
to the APODIS system, is the topic of section 5. Section 6 reports the results of the simulations. 
The discussion of the obtained results and their implications is the subject of section 7.

2. APodIs InPuts
The development of data-driven systems to predict disruptions started around two decades ago 
as alternative to the physics-based models. Since these systems learn from data, computational 
treatment of the information plays a fundamental role to achieve good results. It has been proved 
that the proper process of the signals in order to extract from them the most relevant information can 
improve the early detection of disruptions [3][5]. The process that leads to identify these adequate 
signatures in signals, called feature extraction, allows discarding the redundant or useless data 
retaining only the problem-related information. 
 The features are computed in real-time and applied as inputs to the APODIS system. Notice that 
the inputs to the disruption predictor are not the signals themselves but the features extracted from 
them.
 In the specific case of APODIS, the feature extraction performed over the signals is aimed to 
condense and simplify the data associated to disruptions. 
 In the last years, it has been determined that 2 specific features are particularly useful for APODIS: 
1) the mean value and 2) the standard deviation of the discrete Fourier Transform (after removing 
the DC component) [2,3]. For the 7 signals APODIS analyses, the features are computed over 32 
ms time windows after normalization:

  (1)

where min and max represent the minimum and maximum value of the signal in the training dataset.
 A very relevant point arises here. APODIS inputs are not the signals themselves, but the 2 
features extracted from them. Therefore, the inputs it requires are the signal features. In the graphical 
representation of Figure 1 for one of the signals, the stored diamagnetic energy time derivative (dW/dt), 
this idea is shown graphically .
 Therefore, from the APODIS point of view, the missing/in error signals problem can be addressed 

Signal value minNormalized signal = 
max min
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from two different angles: 
1) Creating (off-line) signal models. Once signal models are created, they can estimate (in 

real-time) the values of the signal in error. Thus, the 2 features that APODIS requires can 
be calculated from the estimated “synthetic” signal. Finally, the 2 extracted features can 
be input to APODIS.

2) Creating (off-line) SFMs. The SFMs can estimate (in real-time) the features that APODIS 
requires. Those “synthetic” features can be directly used as inputs for APODIS.

Signal features are derived from the signals and, as it can be seen in Figure 1, they present a lower 
complexity. Approximating a simpler function is more feasible. For that reason, in this study we 
embraced the second option (creating SFMs instead of developing signal models). 

3. dAtAbAse
The database has been extracted from JET, the largest operational magnetic confinement nuclear 
fusion device in the world and the one where APODIS is currently in operation. The collected 
database (see Table 1) contains all the discharges produced in the device from July 2011 to July 
2013. The period includes the shots from the beginning of the metallic ITER-like wall campaigns 
(campaigns C28) to the beginning of campaign C31. The replacement of the device wall represented 
a challenge for APODIS, a system trained with carbon-wall discharges and unmodified (i.e. no 
retraining) since its installation in the real-time data network.
 The first (in chronological order) 586 discharges were used as training dataset. With these shots 
the SFMs are created off-line.
 The remaining 660 discharges (belonging to the period between C28-C30) were saved for testing. 
This dataset has two purposes. First, to quantify the goodness of fit of the SFMs. Second (and more 
relevant), to test APODIS with the modelled signal features. The testing is accomplished under a 
realistic emulation of real-time conditions.
 In the first 132 discharges of the C31 campaign the BetaLi [6] (a real-time code running at JET 
and devoted to reconstruct, among others, the value of the stored diamagnetic energy time derivative 
signal dW/dt), was in error.  Therefore, the dW/dt was unavailable in real-time and APODIS was not 
able to predict any of the 15 unintentional disruptions that occurred in that period. This is exactly 
the operational situation this study tries to tackle and provides a good opportunity to test, in a true 
operational scenario, what would happen in case of having SFMs to replace the features of the 
signal in error. Therefore, the first 132 discharges of campaign C31 (July 2013) were added to the 
database to test the SFMs for the dW/dt (a summary of the database is provided  in Table 1).
 Having in mind a realistic operational scenario, it is convenient to create the models using a 
reduced number of signals, and of course all of them ought to be available in real-time. Thus, in 
this work only the 7 real-time signals required by APODIS, plus 3 extra ones, have been considered 
. The 3 extra signals satisfy the condition of real-time availability. Also, they have been used in 
previous studies related to the prediction of disruptions [2,7]. The 3 signals are: the toroidal magnetic 
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field, the poloidal Beta and the plasma vertical position. Adding these 3 quantities to the 7 signals 
APODIS requires, it makes a total of 10 signals gathered for this study (listed in Table 2). 
 The first 7 parameters are the ones that APODIS requires. The extra 3 parameters at the bottom 
of the table have been also included to create the SFMs.

4. sFMs And the APPlIed regressIon technIques
So far, it has been explained that the idea of this paper, to overcome the sporadic lack of real-time 
signals that APODIS requires to operate, is to replace the predictor missing inputs with “synthetic” 
ones. More accurately speaking, the goal is not to generate “synthetic” signals but “synthetic” signal 
features (specifically, the mean values and the standard deviation of the fast Fourier transform, 
computed every 30ms). 
 To generate “synthetic” signal features under realistic operational conditions, they have to be 
inferred only from signals available in real-time. Regression analysis is the technique devoted 
to create models as relationships among variables and therefore the most suitable for the aimed 
purposes. 
 Two non-parametric and non-linear regression techniques that have earned popularity in the last 
years are Support Vector Regression (SVR) [8] and Symbolic Regression [9] (based on Genetic 
Programming). These methods are suitable for the regression problem here under study which 
involves complex and non-linear relationships among the plasma parameters. 
 SVR is based on kernel methods and it has been conceived as an extension of a classification 
method called “Support Vector Machines”. It normally provides good results in short computational 
times. However, it requires the tuning of some internal parameters to get better regression models. 
Its mathematical principles and the creation of SFMs through it are explained in the next Subsection 
4.1.
 Symbolic regression is an even more recent method and tackles the regression problem with 
Genetic Programming. It involves an iterative optimization method based on the evolution of living 
organisms. Even if this approach does not guarantee reaching an optimal solution, in practice it 
normally reaches excellent results. The basis of Genetic Programming and Symbolic regression 
are the subject of Subsection 4.2.

4.1. Support Vector regreSSion
Recapitulating, the main goal of in this study is to create a regression function able to estimate the 
value of a signal feature. For instance, in the specific case of the mean value feature for the plasma 
internal inductance (LI) signal (let us call it m _LI) the expected function should have the form:
 

(2)

Here xi
m

 is a vector with the remaining 9 signal mean features (in this case, mean features of signals 
2 to 10 in Table 2) for the sample i. 

̂

ˆ _ ( ) constantm
im LI f= +x
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Similarly, for the standard deviation of the Fast Fourier Transform (removing the DC component) 
feature, the expected model should have the form:

(3)

For other SFMs, for instance the ones corresponding to the mode lock amplitude (ML) and the dW/
dt, analogous functions are expected. Of course, in those cases the LI features will be part of the 
remaining 9 features at the right hand side of equations (2) and (3). 
 In nuclear fusion devices, the relationships among the different plasma parameters usually 
are complex and non-linear. To estimate a signal feature value using classic linear or polynomial 
regressions leads to poor approximations. To tackle the problem the SVR technique has been applied 
[8]. SVR is a non-linear method based on statistical learning theory [10]. It is conceived to “learn” 
from data in a so called “training procedure” attempting to reach results with high generalization 
capabilities. 
 To introduce the mathematical basis of SVR, let us consider a set of training data {(xi, yi),...., 
(xl, yl)} xi ∈ Rʹʹ and yi ∈ R for i = 1,..., l with l = number of training samples. 
Then, y1 is the mean LI value for sample 1, and x1 is a vector containing the mean values of the 
remaining signals.
 The main form of the regression function using SVR is:

(4)

where w ∈ Rʹʹ, b ∈ R and F denotes a non-linear transformation from Rʹʹ to a higher dimensional 
space. SVR is based on the structural minimization principle, so two objectives have to be satisfied 
to find the values of w and b: first, the function ƒ (x) should fit properly the “true” values of the set 
of output values y; second, in order to guarantee generalization, it is necessary to avoid overfitting 
and, therefore, ƒ (x) should be as smooth as possible.
To measure the quality of the fit, the e-insensitive loss function is introduced. The idea is to quantify 
the absolute error between the true values and the fitting with a tolerance e By convention, the loss 
is linear with an insensitive zone e. Then, if ƒ (xi) is inside of the bounds of tolerance yi ± e, no 
loss is considered:

(5)

It is necessary to minimise the empirical error on the training set and the parameter norm at the 
same time. For that, slack variables ζi and ζi

*
 that measure the distance between samples and e are 

introduced. Also, Schölkopf [11,12] added a term n to solve the primal problem in the “Nu” version 
of SVR:

( )(̂ ) _ ( ) constantstd FFT
istd FFT LI f= +x

( ) ( ( ))f b= +x w x

0,                         ( )

( ) ,

for y f
L

y f otherwise
=

x

x
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(6)

(7)

The regularization parameter C determines the trade-off between the empirical error and the 
parameter norm, 0 ≤ n ≤ 1. A large C results in higher penalties for errors and a small C assigns 
smaller ones (i.e. a higher generalization capability). Summarizing, if C goes to infinitely large, SVR 
would not allow the occurrence of any error and would result in a complex and probably overfitted 
model; whereas a model with C = 0 tolerates a large amount of errors and would be “smoother”. 
 The equations  and  are solved applying multipliers a, a* in order to build a Lagrange function. 
Here, the partial derivatives of the function with respect to the primal variables (w, b, e, ζ*) have 
to vanish for optimality (saddle point condition). Replacing the partial derivatives in  and  yields 
to the dual problem of Nu-SVR:

(8)

Subject to:

(9)

where Hij =
 K (xi, xj) = 〈F(xi), F(xj)〉in  denotes the matrix of kernel functions. Kernel functions 

enable the dot product to be performed in high-dimensional feature space using low dimensional 
space data input without knowing the transformation F. All kernel functions must satisfy Mercer’s 
condition that corresponds to the inner product of some feature space. There are several types of 
Kernels. In this study the better accuracies were achieved using the Radial Basis Function (RBF):

(10)

Solving the dual problem in  yields the regression function:

(11)
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In the regression function only a reduced number of the Lagrange multipliers are non-zero. Data 
samples associated with the non-zero coefficients are called support vectors and the final function 
only depends on those data samples. 
The final function  is extremely easy to implement in real-time. xsup vectors is a fixed matrix with 
input samples whose Lagrange coefficients are different from zero. ak

(*) and b are calculated in the 
training process. 
 To estimate the value for a new sample it is only necessary to introduce the input vector 
corresponding that sample (xk) into equation .
 To reach the solution expressed in  using an RBF Kernel, some parameters have to be predefined: 
g,C, e and n. The free licenced software implemented to train the regression models is LIBSVM [13] 
for MATLAB [14]. It automatically sets values for e and n. as a trade-off based on the training data. 
The tuning of the remaining parameters g and C plays a fundamental role to obtain good models. 
Their selection is explained at the beginning of next Subsection 4.1.2.

4.1.2. Parameters adjustment, goodness of fit and results.
The most straightforward method to get the appropriate values for g and C is to fit the data with 
different combinations of these parameters and then to choose the best result. For that, it is necessary 
to quantify the goodness of fit of a model given a certain combination of g and C.
 The coefficient of determination r2 is an effective indicator of the fitting quality. It is based on the 
quadratic distance between the original signal features and the ones estimated with the regression 
model. To calculate it, it is necessary to compute the summed square of residuals (SSE), a well-
known formula to measure the total deviation of the target values from estimated values:

(12)

for i = 1,...,,l with l = number of testing samples. 
 Also it is necessary to calculate the so called sum of squares about the mean (SST):

(13)

Finally, the r2 is:

(14)

The scan was performed for each signal feature and for all the possible combinations of g (values 
{0,001; 0,01; 0,05; 0,1; 0,5; 1}) and C (values {0,1; 1; 10; 100; 1000}). 
 Henceforth, the goodness of fit has been defined as r2 times 100 (in order to represent its percentage 
values). 

2

1
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l
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i

SSE y y
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 SFMs with the highest Goodness of fit values are selected and listed in Table 3 for each signal 
feature with each corresponding g and C values.

4.2. genetic programming
In nature, better adapted individuals have higher chances to survive, attract possible partners and 
breed descendants. Those ones will transmit to the next generation their genes (and therefore their 
intrinsic characteristics) that allow them to survive until reproduction. Subsequently, their progeny 
will inherit a combination of these “well-adapted” genes. On the contrary, individuals unable to 
reproduce will not pass to other generations their intrinsic characteristics.
 Genetic Programming (GP) comprises a serial of computational algorithms inspired by natural 
selection [15,16,17]. Given a problem, a population of possible solutions (i.e. individuals, each 
one with its own intrinsic characteristics) is created. In order to quantify which individuals are 
better adapted, a metric called Fitness Function (FF), that measures how accurately each individual 
solves the problem, is applied. GP assigns a higher possibility to have descendants to individuals 
with better FF values. Since descendants are created as a combination of “well-fitted” genes, it is 
expected that newer generations will outperform the former ones. 
 The iterative process of GP can be summarised in the following steps:

1. Creation of a population of individuals.
2. Fitness evaluation of each individual of the population (using a predefined FF).
3. Selection of parents (a higher selection probability is assigned to those individuals with 

better FF values).
4. Creation of children as a combination of parents’ genes (using genetic operators as crossover 

and mutation).  
5. Unless an ending condition is satisfied, iterate from step 2, where the new population 

(created in step 4) is evaluated.
Two genetic operators are normally used to create new individuals (children) in step 4. The crossover 
mixes the genes of the selected parents to create children. Regarding mutations, they are unlikely 
events that occur in nature. In GP these mutations are useful to skip local minima and consist of 
modifying a gene value in children (with a very low probability of occurrence).
 Notice that the whole procedure requires encoding the solutions (individuals) as a set of 
interchangeable characteristics (genes). GP may adopt an extremely wide number of configurations. 
For instance, some algorithms take “real-world” approaches, considering several different 
populations (that interact with their neighbours) instead a single population (as it has been explained 
above, in the summary of the GP steps). In addition to crossover and mutation, some GP include 
extra genetic operators as the reproductor that allow direct copies of an individual with promising 
characteristics into the subsequent generation. The genetic operation crossover can be performed 
by splitting parents’ genes in one point (selected randomly or not) or in several points. Also, many 
formulas and studies have been published regarding the appropriate sizes of the populations and 
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the number of generations required to reach suitable solutions [18,19,20,21]. 
 Details regarding the state of the art and the extremely wide range of possibilities and variations 
GP includes are beyond the purposes of this work. Consequently, the selected method, operators 
and conditions set in this study will be stated in the next Subsection 4.2.1, whereas the explanation 
of Symbolic Regression must be understood merely as an introduction to a much wider topic of 
research.

4.2.1. Symbolic regression
When the problem to be solved using GP relies on finding a function that fits a set of data points 
without making any assumptions about the structure of that function, the genetic programming is 
often known as Symbolic Regression (SR)  [22,23]. 
In SR, individuals take a tree structure. The leaves of the trees are called nodes. Two classes of nodes 
exist: operator nodes (that imply an arithmetic operation or mathematical function) and variable 
nodes (that include the parameters to be considered). 
 An example tree structure can be observed in Figure 2. The relationship of trees’ operators leads 
to the construction of a function. The trees are read bottom-up and from the left to the right. In the 
example, at the bottom of the tree, two variables (meandw/dt and std(FFT)ne) are joined together 
by the operator node division (/). The relationship among these variables is therefore defined as a 
division ( meandw/dt

std(FFT)ne
). Following the same procedure, the tree can be read to complete the function: 

meandw/dt

std(FFT)ne
– meanlp + emeanLi  .

 Individuals of a population (each tree) are created initially randomly. After that, each one of them 
is evaluated with the FF. For this study the FF has been the r2 test (in agreement with the goodness 
of fit determined for SVM-based SFMs). The algorithm might converge into a complex function that 
accurately fits the training samples. However, it will not necessarily perform adequately with newer 
data.  To control this possible overfitting, it is necessary to evaluate the fitness of each individual also 
considering its generalization capabilities. For that, a 5-fold cross validation method was applied.  
The method splits the dataset (training dataset, in this case) randomly into 5 equal size subsamples. 
Of the 5 subsamples, one is retained for testing the individual, and the remaining 4 subsamples are 
used as training data. The process is repeated 5 times, with each of the 5 subsamples used once 
for testing. The 5 results are averaged to get the final fitness. Higher probabilities to be selected as 
parents are assigned to individuals with better fitness values. Once the selection of the parents has 
been performed, the genetic operators crossover and mutation (the latter with a 0,05 % of occurrence 
probability) are applied. The crossover genetic operation is exemplified in Figure 3. There, sections 
of Parents’ structures are removed. Childs are the result of the combination of randomly selected 
Parents’ structures. Following this methodology, a new population (in which each individual is a 
combination of Parents with promising FF values) is created after each iteration. 
 To attain satisfactory tree representations, the closure property must be established. It is a 
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restriction which implements the protection of the function against inadmissible argument values, 
e.g. negative square roots or divisions by zero. This and other restrictions are included in the open 
source SR MATLAB toolbox (GPTIPS [23]) that has been used in this study. 
Some basic settings must be predefined before launching the SR. They are the number of individuals 
per population (NIP) and the amounts of generations/iterations (AGI) to evolve. The automatic 
determination of these parameters is the subject of a wide number of publications [18,19,20,21]. 
However, in practice, the NIP and iterations usually are problem-dependent. For this study, good 
results have been obtained setting the NIP = 300 and the AGI = 500.

4.2.2. Results.
In the case of SVR (Subsection 4.1.), to create a SFM for e.g. a mean signal feature, the 9 mean 
features from the remaining 9 signals (let us call them “regression inputs”) are used. Alternatively, 
SR does not lead only to the consecution of a regression model but it also selects the relevant 
“regression inputs” to include in such model. For instance, if after several iterations of the algorithm 
most of individuals of a generation perform better (i.e. they have a higher fitness function value) 
without using any feature coming from the mode lock signal, these signal features will be unlikely 
to be inherit by the following generations and consequently they will be probably unused at the 
end. This is the mechanism SR has to eliminate uninformative sources of data and to reduce the 
complexity of the models. Also, it means that for SR, the SFM (for instance for the meanLI) will not 
be a combination of all the remaining 9 mean features (“regression inputs”) as in the SVR. Instead, 
it will be the best combination of all the “regression inputs” it has been fed with, discarding those 
ones that are unnecessary. Then, it is pointless to restrict so tightly the quantity of “regression inputs” 
as in SVR since the method automatically discard the uninformative ones. 
Therefore, for each one of the SFM based on SR (for instance the meanLI) all the remaining signal 
features (mean and std(FFT), instead of only mean features in this case for SVR) are initially given 
as “regression inputs”. From them, the ones that are not useful to create a good SFM (according 
the SR algorithm) are automatically discarded. 
 To create each SFM for each signal feature one independent run of the SR algorithm is executed. 
It iterates using the training dataset from the creation of the first population (each population set 
with NIP = 300 individuals) till it reaches the established ending condition (number of generations 

= 500). The best individual (in terms of fitness function values) from the 500 generations is selected 
as SFM. 
 Once this best performing individual has been selected (i.e. the final SFM for a given signal 
feature), the r2 test is performed over it (using the testing dataset) to get the Goodness of fit values 
in an analogous way it is calculated for the SVR-based SFMs. 
The summary of the results for each signal feature is listed in Table 4. Notice the Goodness of fit 
values for the LI and dW/dt SFMs are slightly higher than the ones obtained using SVR (see Table 3).
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5. IMPleMentAtIon wIth APodIs
Once the SFMs are trained (using either SVR or SR) they can estimate the signal features. In 
accordance to the real-time scenario simulation, models get as inputs the real-time available signals. 
Then, their “synthetic” signal features estimations are used as APODIS inputs in replacement of 
the original ones.
 A scheme of the real-time simulated scenario is shown in Figure 4, exemplifying that the LI 
signal is missing for the SVR-based SFMs. In this case, the SVR-based SFMs models m_LI and 
the std (FFT)_LI computes the “synthetic” signal features emulating each discharge as it is being 
generated in real-time.  Notice in Figure 4 that APODIS inputs are the features coming from 6 of 
the 7 usual signals. Instead of applying signal features from LI, they are estimated (using also the 
3 extra parameters signal features) and the “synthetic” features are input to APODIS. An analogous 
procedure has been followed for the SR-based SFMs. 
 All the discharges of the testing dataset have been simulated under these realistic operational 
conditions. The procedure is completely compatible with a real-time operation and allows verifying 
how would be the performance of APODIS using the “synthetic” signal features in replacement of 
the original ones in case they are known to be in error or missing. 

6. results
The results attained with “synthetic” signal features for the LI, Mode Lock and dW/dt in the simulated 
real-time scenario explained above have been compared with two reference cases: with APODIS 
operating under standard conditions (i.e. using all the signals) and with APODIS simulating the case 
in which one of the signals is unavailable (i.e. without any reliable value during the discharge). The 
statistics have been computed using the testing dataset that includes a total of 660 JET discharges 
(see Table 1).
 The performances of disruption predictors are usually summarized in plots similar to the ones 
depicted in Figures 5a, 5b, 5c and 6. These representations are especially informative since they 
show the disruption prediction rates in relation with the warning time. The warning time is the 
difference between the disruption time and the alarm time. Therefore, it defines the temporal margin 
actuators have available to perform avoidance or mitigation actions during the execution of a pulse 
once an incoming disruption has been foreseen. Points on the curves plotted in Figures 5a, 5b, 5c 
and 6 describe the accumulated percentage of recognized unintentional disruptions with a warning 
time equal or higher than the specified in the corresponding logarithmic x-axis. 
 In addition, Table 5 summarises the false alarms and success rates for APODIS using all the 
required signals, without one of the signals under study and replacing one of the signals by the 
“synthetic” estimations carried out by the SVR-based and SR-based SFMs.
 SFMs for the LI are accurate in terms of goodness of fit (see Table 3 and Table 4) for both SVR-
based and SR-based SFMs. Therefore, it is expected that the prediction results with the original 
signals and the “synthetic” signal features would be similar. Figures 5a (on the left, they represent 

̂
̂
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the SVR-based SFMs and the SR-based SFMs on the right) confirm such assumption. Even more, 
with the “synthetic” signal features used as inputs, APODIS predictions are slightly better (red line) 
than the ones it attains with the original signals (blue line). This fact is due to statistical fluctuations 
but confirms that very reliable approximations of LI signal features can be reached. In this case, 
APODIS results using the SVR-based models trigger less false alarms compared with the SR-based 
“synthetic” signal features (5,43% versus 6,40%, see Table 5). This difference, even being narrow, 
is expected since the goodness of fit for the LI signal features were higher for the SVR-based 
SFMs (as it can be seen at Table 3 and Table 4). The relevance of the LI signal can be also noticed 
in Figures 5a. The black dotted line shows that without it, APODIS rates drop to less than 6% of 
successful detections.
 In agreement with a previous study [4], the evidence that suggested that the Mode Lock amplitude 
signal is very important for the APODIS predictor has been reinforced. Under the lack of this 
signal (and therefore its features), the system is not able to operate correctly and it does not trigger 
any alarm (see the flat black dotted line over zero at the bottom of Figures 5b). For this signal the 
goodness of fit of the SFMs are significantly lower (see Table 3 and Table 4). APODIS rates with 
the synthetic features are not as good as the ones with the original signals. They decay from more 
than 90% (blue lines) to ~59% for the SVR-based SFMs and to ~68% for the SR-based SFMs 
(red lines). Therefore, detections rates are higher in this case for the SR-based models but with the 
detrimental factor of triggering a larger amount of false alarms (7,37% vs 3,88% for SVR-based 
SFMs, see Table 5).
 An analogous procedure has been performed for the dW/dt signal. There, the results are excellent 
even with poor SFMs models (in the sense of goodness of fit, see Tables 3 and 4). From the results 
shown in Figures 5c, it can be deduced that this signal is important for APODIS but not indispensable 
for its operation, and even with unreliable synthetic features as inputs (in terms of goodness of fit), 
APODIS is able to operate as well as under normal conditions.
 Finally, the extra testing dataset has been performed in order to know what would have happened 
in the case of having a SFM for the dW/dt signal during the first 132 discharges of campaign C31. 
Figures 6 do not show results for APODIS working in normal conditions since in that period the dW/
dt was in error and therefore the “true” value of the dW/dt is unknown. With the “synthetic” signal 
features, the system attains rates over the 92 % of successful detections with a reduced number of 
false alarms. In general, its performances are similar to the historical ones of the predictor working 
in standard conditions. 

7. dIscussIon
Due to several reasons, diagnostic systems may fail or be unavailable during experimental campaigns 
in nuclear fusion devices. When that happens, control and safety systems that depend on the 
acquired signals may be compromised. In the specific case of APODIS, some signals have proven 
to be essential for its operation. Without them, APODIS is not able to predict disruptions correctly. 
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In this article, a potential real-time solution has been developed and tested. It would allow APODIS 
to operate even in the case that a signal is missing or in error. SFMs have been created off-line and 
these models are ready to estimate in real-time the value of a signal in error. In this study the SFMs 
are tested under the assumption of a signal that has been already detected to be faulty, as it was the 
case of the dW/dt at the beginning of campaign C31. 
 The results have proven that regression models are viable and immediately available patches to 
overcome problems related to the unavailability of signals. APODIS performs almost perfectly in 
the case that the signal in failure is either the LI or the dW/dt. For the Mode Lock amplitude, the 
synthetic signal features improve drastically APODIS responses (prediction rates around between 
~59% and ~68%) compared with the ones it obtains under the lack of that parameter (0 % of detected 
disruptions). However, it could be insufficient having in mind the high standards required for the 
next step devices. The inclusion of a wider set of real-time plasma parameters could provide a more 
accurate estimation of the mode lock amplitude. Also, a wider set of optimization techniques that 
may improve the estimate of the SFMs for that signal could be explored.
 For this specific application, the regression models have been developed targeting APODIS 
requirements. However, the methodology here presented can be similarly followed to estimate the 
evolution of other plasma parameters (or signal features) if they are considered relevant for control 
or safety systems in nuclear fusion devices.
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Table 3: Goodness of fit for each SFM given the best combination of g and C parameters.

Table 1: Description of the database.

Table 2: Set of plasma signals and their units. 

Period	   Number	  of	  discharges	   Description	  
~First	  half	  of	  C28-‐C30	   586	   Training	  database	  

~Second	  half	  of	  C28-‐C30	   660	   Testing	  database	  
Beginning	  of	  C31	   132	   Extra	  testing	  database	  

Table	  1.	  Description	  of	  the	  database.	  

Signal	  number	   Signal	   Units	  
1	   Plasma	  internal	  inductance	   A	  
2	   Mode	  lock	  amplitude	   T	  
3	   Stored	  diamagnetic	  energy	  time	  derivative	   W	  
4	   Plasma	  current	   A	  
5	   Plasma	  density	   3m− 	  
6	   Total	  input	  power	   W	  
7	   Radiated	  power	   W	  
8	   Plasma	  vertical	  centroid	  position	   M	  
9	   Poloidal	  beta	   	  
10	   Toroidal	  magnetic	  field	   T	  

Table	  2.	  Set	  of	  plasma	  signals	  and	  their	  units.	  	  

The	  first	  7	  parameters	  are	  the	  ones	  that	  APODIS	  requires.	  The	  extra	  3	  parameters	  at	  the	  bottom	  of	  the	  table	  have	  
been	  also	  included	  to	  create	  the	  SFMs.	  

4.	  SFMs	  and	  the	  applied	  regression	  techniques	  

So	  far,	  it	  has	  been	  explained	  that	  the	  idea	  of	  this	  paper,	  to	  overcome	  the	  sporadic	  lack	  of	  real-‐
time	  signals	   that	  APODIS	   requires	   to	  operate,	   is	   to	   replace	   the	  predictor	  missing	   inputs	  with	  
“synthetic”	  ones.	  More	  accurately	  speaking,	  the	  goal	  is	  not	  to	  generate	  “synthetic”	  signals	  but	  
“synthetic”	  signal	  features	  (specifically,	  the	  mean	  values	  and	  the	  standard	  deviation	  of	  the	  fast	  
Fourier	  transform,	  computed	  every	  30	  ms).	  	  

To	  generate	  “synthetic”	  signal	  features	  under	  realistic	  operational	  conditions,	  they	  have	  to	  be	  
inferred	  only	  from	  signals	  available	  in	  real-‐time.	  Regression	  analysis	   is	  the	  technique	  devoted	  
to	   create	   models	   as	   relationships	   among	   variables	   and	   therefore	   the	   most	   suitable	   for	   the	  
aimed	  purposes.	  	  

Two	  non-‐parametric	  and	  non-‐linear	  regression	  techniques	  that	  have	  earned	  popularity	   in	  the	  
last	   years	   are	   Support	   Vector	   Regression	   (SVR)	   [8]	   and	   Symbolic	   Regression	   [9]	   (based	   on	  
Genetic	   Programming).	   These	   methods	   are	   suitable	   for	   the	   regression	   problem	   here	   under	  
study	  which	  involves	  complex	  and	  non-‐linear	  relationships	  among	  the	  plasma	  parameters.	  	  

SVR	  is	  based	  on	  kernel	  methods	  and	  it	  has	  been	  conceived	  as	  an	  extension	  of	  a	  classification	  
method	   called	   “Support	   Vector	   Machines”.	   It	   normally	   provides	   good	   results	   in	   short	  
computational	   times.	   However,	   it	   requires	   the	   tuning	   of	   some	   internal	   parameters	   to	   get	  
better	  regression	  models.	  Its	  mathematical	  principles	  and	  the	  creation	  of	  SFMs	  through	  it	  are	  
explained	  in	  the	  next	  Subsection	  4.1.	  

Symbolic	  regression	   is	  an	  even	  more	  recent	  method	  and	  tackles	  the	  regression	  problem	  with	  
Genetic	  Programming.	  It	   involves	  an	  iterative	  optimization	  method	  based	  on	  the	  evolution	  of	  
living	   organisms.	   Even	   if	   this	   approach	   does	   not	   guarantee	   reaching	   an	   optimal	   solution,	   in	  
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The	  coefficient	  of	  determination	   2r 	  is	  an	  effective	  indicator	  of	  the	  fitting	  quality.	  It	  is	  based	  on	  
the	  quadratic	  distance	  between	   the	  original	   signal	   features	  and	   the	  ones	  estimated	  with	   the	  
regression	  model.	  To	  calculate	   it,	   it	   is	  necessary	  to	  compute	  the	  summed	  square	  of	  residuals	  
(SSE),	  a	  well-‐known	  formula	  to	  measure	  the	  total	  deviation	  of	  the	  target	  values	  from	  estimated	  
values:	  
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for	   1, ,i l= … 	  with	   l =number	  of	  testing	  samples.	  	  

Also	  it	  is	  necessary	  to	  calculate	  the	  so	  called	  sum	  of	  squares	  about	  the	  mean	  (SST):	  
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Finally,	  the	   2r 	  is:	  

	   2 1 SSEr
SST

= − 	   (14)	  

The	   scan	   was	   performed	   for	   each	   signal	   feature	   and	   for	   all	   the	   possible	   combinations	   of	  
γ (values	  {0,001;	  0,01;	  0,05;	  0,1;	  0,5;	  1})	  and	  C (values	  {0,1;	  1;	  10;	  100;	  1000}).	  	  

Henceforth,	   the	  goodness	  of	   fit	  has	  been	  defined	  as	   2r 	   times	  100	   (in	  order	   to	   represent	   its	  
percentage	  values).	  	  

SFMs	  with	  the	  highest	  Goodness	  of	  fit	  values	  are	  selected	  and	  listed	  in	  Table	  3	  for	  each	  signal	  
feature	  with	  each	  corresponding	  γ 	  and	  C values.	  

Signal	   Feature	   Goodness	  of	  fit	  	   γ 	   C 	  
LI	   mean	   94,06	  %	   0,5	   1	  
LI	   std(FFT)	   73,24	  %	   0,1	   1	  

Mode	  Lock	  
amplitude	  

mean	   40,60	  %	   0,001	   1	  

Mode	  Lock	  
amplitude	  

std(FFT)	   24,28	  %	   0,5	   10	  

dW/dt	   mean	   17,31	  %	   0,5	   10	  
dW/dt	   std(FFT)	   35,92	  %	   0,001	   1000	  
Table	  3.	  Goodness	  of	  fit	  for	  each	  SFM	  given	  the	  best	  combination	  of	  γ and	  C 	  parameters.	  

4.2.	  Genetic	  Programming	  

In	  nature,	  better	  adapted	  individuals	  have	  higher	  chances	  to	  survive,	  attract	  possible	  partners	  
and	   breed	   descendants.	   Those	   ones	   will	   transmit	   to	   the	   next	   generation	   their	   genes	   (and	  
therefore	   their	   intrinsic	   characteristics)	   that	   allow	   them	   to	   survive	   until	   reproduction.	  
Subsequently,	  their	  progeny	  will	  inherit	  a	  combination	  of	  these	  “well-‐adapted”	  genes.	  On	  the	  
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Table 5. False alarms and success rates for each simulation. These values are not available for the extra testing dataset 
since the dW/dt was in failure in that period.

are	  not	  as	  good	  as	  the	  ones	  with	  the	  original	  signals.	  They	  decay	  from	  more	  than	  90%	  
(blue	  lines)	  to	  ~59%	  for	  the	  SVR-‐based	  SFMs	  and	  to	  ~68%	  for	  the	  SR-‐based	  SFMs	  (red	  
lines).	  Therefore,	  detections	  rates	  are	  higher	  in	  this	  case	  for	  the	  SR-‐based	  models	  but	  
with	   the	   detrimental	   factor	   of	   triggering	   a	   larger	   amount	   of	   false	   alarms	   (7,37%	   vs	  
3,88%	  for	  SVR-‐based	  SFMs,	  see	  Table	  5).	  

An	  analogous	  procedure	  has	  been	  performed	  for	  the	  dW/dt	  signal.	  There,	  the	  results	  
are	  excellent	  even	  with	  poor	  SFMs	  models	  (in	  the	  sense	  of	  goodness	  of	  fit,	  see	  Tables	  3	  
and	   4).	   From	   the	   results	   shown	   in	   Figures	   5c,	   it	   can	   be	   deduced	   that	   this	   signal	   is	  
important	  for	  APODIS	  but	  not	  indispensable	  for	  its	  operation,	  and	  even	  with	  unreliable	  
synthetic	  features	  as	  inputs	  (in	  terms	  of	  goodness	  of	  fit),	  APODIS	  is	  able	  to	  operate	  as	  
well	  as	  under	  normal	  conditions.	  

Finally,	   the	   extra	   testing	   dataset	   has	   been	   performed	   in	   order	   to	   know	  what	  would	  
have	  happened	   in	  the	  case	  of	  having	  a	  SFM	  for	  the	  dW/dt	  signal	  during	  the	  first	  132	  
discharges	   of	   campaign	   C31.	   Figures	   6	   do	   not	   show	   results	   for	   APODIS	   working	   in	  
normal	  conditions	  since	  in	  that	  period	  the	  dW/dt	  was	  in	  error	  and	  therefore	  the	  “true”	  
value	   of	   the	   dW/dt	   is	   unknown.	   With	   the	   “synthetic”	   signal	   features,	   the	   system	  
attains	   rates	  over	   the	  92	  %	  of	   successful	   detections	  with	   a	   reduced	  number	  of	   false	  
alarms.	  In	  general,	   its	  performances	  are	  similar	  to	  the	  historical	  ones	  of	  the	  predictor	  
working	  in	  standard	  conditions.	  	  

Testing	  database	  

Signal	  

All	  signals	  
SVR-‐SFM	  “synthetic”	  

signal	  features	  
SR-‐SFM	  “synthetic”	  
signal	  features	  

Without	  the	  signal	  
under	  simulation	  

False	  
alarms	  

Success	  
Rates	  

False	  
alarms	  

Success	  
Rates	  

False	  
alarms	  

Success	  
Rates	  

False	  
alarms	  

Success	  
Rates	  

LI	  
6,019%	  
(31/515)	  

91,72%	  
(133/145)	  

5,44%	  
(28/515)	  

91,03%	  
(132/145)	  

6,40%	  
(33/515)	  

91,03%	  
(132/145)	  

0%	  
(0/515)	  

6,20%	  
(9/145)	  

ML	  
6,019%	  
(31/515)	  

91,72%	  
(133/145)	  

3,88%	  
(20/515)	  

58,62%	  
(85/145)	  

7,38%	  
(38/515)	  

66.20%	  
(96/145)	  

0%	  
(0/515)	  

0%	  
(0/145)	  

dW/dt	  
6,019%	  
(31/515)	  

91,72%	  
(133/145)	  

4,66%	  
(24/515)	  

91,03%	  
(132/145)	  

6,21%	  
(32/515)	  

89,65%	  
(130/145)	  

1,16%	  
(6/515)	  

79,31%	  
(155/145)	  

Extra	  testing	  database	  

dW/dt	  
Not	  

available	  
Not	  

available	  
5,83%	  
(7/120)	  

93,33%	  
(14/15)	  

5,83%	  
(7/120)	  

93,33%	  
(14/15)	  

0%	  
(0/120)	  

0%	  
(0/15)	  

Table	  5.	  False	  alarms	  and	  success	  rates	  for	  each	  simulation.	  These	  values	  are	  not	  available	  for	  the	  extra	  
testing	  dataset	  since	  the	  dW/dt	  was	  in	  failure	  in	  that	  period.	  

Table 4: Goodness of fit for the best individuals using SR.

Signal	   Feature	   Goodness	  of	  fit	  	  
LI	   Mean	   93,02	  %	  
LI	   std(FFT)	   65,57	  %	  

Mode	  Lock	  
amplitude	  

Mean	   50,04	  %	  

Mode	  Lock	  
amplitude	  

std(FFT)	   40,69	  %	  

dW/dt	   Mean	   21,06	  %	  
dW/dt	   std(FFT)	   56,58	  %	  

Table	  4.	  Goodness	  of	  fit	  for	  the	  best	  individuals	  using	  SR.	  

A	   scheme	  of	   the	   real-‐time	   simulated	   scenario	   is	   shown	   in	   Figure	   4,	   exemplifying	   that	   the	   LI	  
signal	  is	  missing	  for	  the	  SVR-‐based	  SFMs.	  In	  this	  case,	  the	  SVR-‐based	  SFMs	  models	   ˆ _m LI 	  and	  

the	   (̂ ) _std FFT LI 	  computes	  the	  “synthetic”	  signal	  features	  emulating	  each	  discharge	  as	  it	  is	  

being	  generated	   in	  real-‐time.	   	  Notice	   in	  Figure	  4	  that	  APODIS	   inputs	  are	  the	  features	  coming	  
from	  6	  of	   the	  7	  usual	   signals.	   Instead	  of	  applying	  signal	   features	   from	  LI,	   they	  are	  estimated	  
(using	  also	   the	  3	  extra	  parameters	   signal	   features)	   and	   the	   “synthetic”	   features	   are	   input	   to	  
APODIS.	  An	  analogous	  procedure	  has	  been	  followed	  for	  the	  SR-‐based	  SFMs.	  	  

All	  the	  discharges	  of	  the	  testing	  dataset	  have	  been	  simulated	  under	  these	  realistic	  operational	  
conditions.	   The	   procedure	   is	   completely	   compatible	   with	   a	   real-‐time	   operation	   and	   allows	  
verifying	   how	  would	   be	   the	   performance	   of	   APODIS	   using	   the	   “synthetic”	   signal	   features	   in	  
replacement	   of	   the	   original	   ones	   in	   case	   they	   are	   known	   to	   be	   in	   error	   or	   missing.	  

	  

Figure	  4.	  Schematical	  representation	  of	  the	  emulated	  real-‐time	  scenario	  under	  the	  assumption	  that	  LI	  
signal	  is	  missing.	  APODIS	  uses	  as	  inputs	  all	  the	  signals	  features	  except	  the	  ones	  coming	  from	  the	  LI.	  The	  

SFMs	  estimate	  LI	  “synthetic”	  signal	  features	  that	  are	  used	  	  in	  replacement	  of	  the	  original	  ones.	  

6.	  Results	  

The	  results	  attained	  with	  “synthetic”	  signal	  features	  for	  the	  LI,	  Mode	  Lock	  and	  dW/dt	  
in	   the	   simulated	   real-‐time	   scenario	   explained	   above	   have	   been	   compared	   with	   two	  
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Figure 1: Schematic representation of APODIS inputs for the dW/dt signal. 

Figure 2:Example of the syntax tree structure. The combination of operator nodes (in blue) and variable nodes 
(green) creates the function: meandw/dt

 / std(FFT)ne – meanIp + emeanLi.
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Figure 4: Schematical representation of the emulated real-time scenario under the assumption that LI signal is missing. 
APODIS uses as inputs all the signals features except the ones coming from the LI. The SFMs estimate LI “synthetic” 
signal features that are used  in replacement of the original ones.
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Figure 3: Example of the crossover genetic operation. Sections of trees’ structure of the selected parents are swapped 
to create children.
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Figure 5: Comparison of APODIS performances using the original signals (blue), using the synthetic features (red) and 
without the LI (dotted black line). Plots 5a, 5b and 5c address the case of LI, Mode Lock amplitude and dW/dt signals 
respectively. Figures at left portrait the results of the “synthetic” signals features obtained with SVR-based SFMs and 
Figures at right the ones attained with SR-based SFMs.

Figure 6: Comparison of performances of APODIS tested with the first 132 discharges of campaign C31 using the 
synthetic features (at left using SVR-based SFMs and at right SR-based SFMs). At bottom the black circled line represents 
that in this period in absence of the dW/dt APODIS did not triggered any alarm.
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