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Since year 2010, the APODIS architecture has proven its accuracy predicting disruptions in JET tokamak. 
However, it has shown margins for improvements, fact indisputable after the enhanced performances achieved in 
posterior upgrades. In this article, a complete optimization driven by Genetic Algorithms (GA) is applied to 
APODIS architecture. The methodology considers all possible combination of signals, signal features, quantity of 
models, their characteristics and internal parameters. This global optimization aims at creating the best possible 
system with a reduced amount of required training data. 
The results harbor no doubts about the reliability of the global optimization method, allowing to outperform the 
ones of previous versions: 91,77 % of predictions (89,24% with an anticipation higher than 10 ms) with a 3,55 % of 
false alarms. Beyond its effectiveness, it also provides the potential opportunity to develop a spectrum of future 
predictors using different training datasets. The analysis of how their structures reassemble and evolve in each test 
may help to shed some light over the inner physics of the phenomenon and to aid in the development of theoretical 
models to prevent disruptions in the perspective of ITER. 
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1. Introduction 

Disruptions [1] can cause serious damages to the first 
wall and plasma facing components of tokamaks. A 
promising safety procedure to minimize the harm they 
may inflict is through their early prediction and 
subsequent activation of Mitigation Actions (MA) [2][3]. 
The prediction of disruptions is not a trivial task. The 
non-linear relationship of a large set of plasma 
parameters that may evidence a phenomenon’s precursor 
is complex to model and the theoretical simulations are 
not sufficiently accurate to reliably explain or predict 
them [4]. These reasons have leaded the majority of 
disruption prediction research of the last years to data-
driven systems.  Up to now, the data-driven architecture 
that provided the best detection rates in JET has been the 
one named APODIS [5]. APODIS was designed to 
analyze the whole evolution of each shot seeking for 
possible disruption precursors. Based on a previous 
study [6], instead of using the raw measurements, a 
feature extraction procedure is automatically executed 
over them to extract disruptive-relevant signatures. 

Features are vectors that contain the processed 
information from several signals. These feature vectors 
are input to three SVM classifiers [7], using a RBF 
Kernel (Model 3, 2 and 1 in Figure 1) built to work in 
parallel and simultaneously over three consecutive time 
windows.  

In case of just one model, the decision would be 
straightforward. APODIS architecture, instead, makes 
three simultaneous predictions and they may disagree. 
To determine whether these 3 predictions are 
recognizing a disruption precursor or not, a second layer 
with a SVM classifier (Decision Function) is used.  

The Kernel values [7] ( and C for RBF and C for the 
Linear) were set via series of systematic scans of a 
reasonable range of parameters. The study determined 
that, for that specific database, the optimal number of 
models in the first layer should be 3. Since its first 
introduction in 2010, this system has been subjected to 
upgrades in 2012 [8] and 2013 [9] (the latter installed 
online in the JET real time data network). Both upgrades 
primarily consisted on revising the most adequate set of 
signal values (and signal features) to analyze in order to 
predict disruptions. These upgrades have proven that 
notably better results can be reached with a careful 
selection of these variables. Nevertheless, revisions 
should have also included the reassembling of the 
architecture: a new combination of signals could fit 
better if, for example, the predictor has four models in 
the first layer instead of three.  

The goal of this study is to perform this general 
optimization in affordable computational times. 

 



 

 

Figure 2.Modular scheme of the APODIS architecture. 

 

2. Database and signals 

The database was collected from JET with the ITER-like 
wall  and includes 9 signals: 1) plasma current (IPLA) 
[A]; 2) mode lock amplitude (ML) [T]; 3) plasma 
internal inductance [Wb/A]; 4) line averaged density 
(ne) [m−3]; 5) stored diamagnetic energy time derivative 

[W]; 6) total radiated power (Prad) [W]; 7) total input 
power [W]; 8) poloidal beta; toroidal magnetic field [T]. 
These signals are processed to extract from them 
disruptive-relevant features vectors in a similar 
procedure as the one applied in the Online version of 
APODIS [9][10].  

Feature vectors contain 2 values per signal. One feature 
is the standard deviation of the Discrete Fourier 
Transform (discarding the CC component) computed 
over the past 32 ms of each signal [6]. The other feature 
is its amplitude value. This second feature differs of the 
ones used previous APODIS versions (i.e. the mean 
value of the amplitude calculated for that previous 30 
ms). This change aims at looking for fast variations that 
could be smoothed if they are averaged. All signals have 
been processed following a strict real-time simulation, 
which means that it can be exactly reproduced under 
online conditions [10][11]. 

Two sets of discharges have been gathered. D1 contains 
1178 shots (144 disruptives) produced during the period 
between January 2012 and July 2012. This dataset has 
been used to train the prediction system. An independent 
group of 467 discharges (158 disruptives) from July 
2013 to September 2013 has been saved for testing, 
simulating real-time operation, the developed predictor 
performance. 

Intentionally produced disruptions have been discarded 
from the database. Since they are designed and forced to 
occur at a predefined instant of a discharge, they do not 
evolve as the unintentional ones and their analysis may 
mislead a machine learning system. The prediction of 
intentionally provoked disruptions is not a pursued goal 
in this study. 

3. The computational problem  

The proposed global optimization must include all the 
parameters involved in the predictor. These parameters 
are: 1) 4 possible quantities of models in the first layer; 
2) 4 possible widths (in ms) of the models; 3) 8 possible 
values for γ ; 4) 8 possible values for C; 5) signal (and 

signal features) to be considered: 18 values. They 
complete a total of 42 values. An exhaustive analysis 
(creating and testing each possible abovementioned 
combination without considering permutations) is 
defined by: 
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where: 

 n=number of possible values= 42 and  i=possible 
groupings=1,2,3,…,42 

Exploring all this possibilities, considering that each one 
requires an estimated computational time of ~3 seconds, 
would take 418380 years.  

Genetic Algorithms (GA) can be applied to solve the 
problem with elegant efficiency. 

4. Genetic Algorithms 

4.1. Introduction 

GA is a set of computer methods inspired by biological 
evolution and aimed to perform user-defined tasks, 
normally for the optimization of complex numerical 
problems.  

In nature, better adapted individuals have higher chances 
to survive and breed descendants. In this context, 
adaptation means to reach, among others, the objectives 
of survival and reproduction. The adapted individuals are 
able to transfer to the next generation their genetic 
material and their offspring will inherit a combination of 
“well-adapted” parents’ genes. Oppositely, individuals 
unable to survive and reproduce will not pass their 
characteristics and therefore their configuration is 
destined to extinction. 

GA uses this basic principle. Given a problem, a 
population of possible solutions/individuals is created. 
To measure which individuals are better adapted, a 
metric called Fitness Function (FF), that scores 
individuals performances, is applied. According the FF 
score, higher possibility to mate and have descendants is 
assigned to individuals/solutions with better values. 
Descendants are created as a combination of parents 
characteristics/genes. Finally, and since descendants are 
a combination of promising genes, it is expected that 
newer generations will outperform the former ones. The 
procedure can be summarized in few steps: 

1- Creation of a population of individuals (each 
individual represents a possible solution to a given 
problem). 

2- Evaluation of each individual of the population 
according the objectives of the problem. This requires to 
have defined a metric to test how well each individual is 
solving the problem (i.e. the FF). 

3- Selection of parents (a higher probability to be chosen 
as parent is assigned to those individuals with higher FF 
values). 



 

4- Creation of children as a combination of parents’ 
genes (using genetic operators as crossover, mutation, 
reproductor).   

5- Unless an ending condition is satisfied, iterate from 
step 2, where the new population (created in step 4) is 
evaluated. 

The power of GA to reduce computational resides in 
these basic principles. Instead of exploring all the 
possible combinations, the most promising ones are 
chosen and crossed to create new solutions prone to 
outperform the former ones.  

Notice that the whole procedure requires encoding each 
solution/individual as a set of interchangeable 
characteristics/genes (to execute step 4). This is an 
essential part to achieve good results with GA. 

4.2.  Codification in nature and GA equivalence 

Every living organism carries a digital code (DNA or 
RNA) that encloses all the information to create (even 
clone) such individual. In case an individual mates, its 
DNA is crossed with the partners’ DNA melting into a 
new set of instructions to create offspring. One way to 
encode an optimization problem using GA is to define a 
string as a computational imitation of the DNA coiled in 
chromosomes. There, genes are emulated by bits (see 
Figure 2). 

In the case of this study, the structure is encoded, as 
schematized in Figure 3. In the strings NoM defines the 
Number of Models in the first layer (see Figure 1). WoM 
is the gap (in ms) between the Models in the first layer. 

The inclusion (or not) of any signal (light blue) or 
signal feature (std(DFT), in green) into the predictor’s 
design is determined by the nonzero value (or zero) of its 
corresponding bit.  

The codification of NoM has been set as:{‘00’→1}; 

{‘01’ →2}; {‘10’ →3}; {‘11’ →4}; for WoM: {‘00’ →8}; 
{‘01’ →16}; {‘10’ →32}; {‘11’ →64}; for γ   

{‘000’ →0.001}; {‘001’→0.005}; {‘010’→0.01}; 
{‘011’ →0.05}; {‘100’→0.1};{‘101’ →0.5}; {‘110’ →1}; 
{‘111’ →10}; and for C: {‘000’ → 0.01}; {‘001’→ 0.1}; 
{‘010’ →1}; {‘011’ →5}; {‘100’ →10}; {‘101’ →50}; 
{‘110’ →100}; {‘111’ →1000}.  

The example string depicted in Figure 3 defines the 
instructions of a predictor that as plasma feature would 
use: 1) the std(DFT(32 ms)) of the Plasma Current (PC) 
and 2) the amplitude of the Mode Lock signal (ML). It 
would have 4 models in the first layer 
(NoM={‘11’ →4}), each one of them separated 16 ms 
(WoM={‘01’ →16}), with a γ of 10 ({‘111’→10}) and a 

C value of 1 ({‘010’→1}). 

4.3 Creation of the first population 

Each individual of the population is initially created 
as a string of randomly selected ones and zeros. One 
parameter to be set is the number of individuals per 
generation (size of the population). Even if some 
publications are meant to estimate an appropriate 
quantity [12], this value is usually problem-dependent. 

 
Figure 2. Simplified illustration of parallelisms between 

DNA and its GA codifications. 
 

 

Figure 3. An individual/predictor is defined by its codification. 

In this case the chosen quantity was 28 individuals 
(equal to the length of each string). In this step, 28 
strings with 28 randomly distributed ones and zeros are 
created. 

4.4. Training predictor candidates 

Each individual of the population is just a set of 28 
strings randomly filled with ones and zeros. Each string 
is not a disruption predictor as a DNA is not an animal. 
They are the instructions to create one.  

A Building Unit (BU) is a necessary program aimed 
at transforming the instructions encoded in the 
strings/individuals into a predictor. The BU, then, trains 
a predictor candidate by following the codified 
instructions. The training procedure is analogous to the 
one detailed in previous APODIS versions [5][9][8]. 
After this procedure each individual/string became a 
trained predictor candidate able to be validated in real-
time simulations. 

4.5. Validation of candidates using the Fitness 
Function 

The same set of discharges (D1) was used for 
training and validation. A fundamental problem arises in 
these cases. A ML-based system may learn “by heart” 
what have happened before (over-fitting) instead of 
creating models with generalization capabilities. In order 
to avoid over-fitting, each individual is twice trained 
(BU of previous section) and tested in independent runs. 



 

Different training and testing samples are selected each 
time (2-fold cross-validation method). This method is 
performed twice, obtaining 4 results per predictor 
candidate. The results are averaged to obtain the final FF 
value per candidate. The FF consist of the results of the 
candidates during the validation according a previously 
established score system: for each predictor candidate 5 
points were assigned per disruption predicted between 
10 ms Before the Disruption (BF) and 1 second BF (to 
avoid premature alarms); 2 points in case the system 
detects a disruption but with less than 10 ms of 
anticipation; 3 points in case, correctly, no alarm is 
triggered in a non-disruptive shot. This score system 
steers the course of the evolution towards the type of 
predictor aimed to obtain. Notice that it can be easily 
modified to obtain different types of predictors (e.g. 
increasing the points per non-triggering alarms in safe 
shots would lead to more cautious systems, with lower 
rates of false alarms but higher rates of missed alarms). 

After this evaluation a FF each individual has 
attached their FF score. The parent selection method that 
uses these scores was the one proposed by Baker [13]: 

1. A list with the 28 candidates is sorted according 
their FF values. 

2. FF values are normalized between 0 (lower) 
and 1 (higher). 

3. A random number between 0 and 1 is chosen 
(e.g. 0.65). 

4. Candidates with normalized FF higher than the 
random number are selected as parents. 

In the case that the random value is different from 0, 
just a fraction of the candidates are chosen. It is 
necessary to select 28 parents in this method. In these 
cases, above mentioned steps 3 and 4 are repeated until 
the number of selected candidates is 28.Notice that from 
these 28 parents, some candidates may be copied several 
times. 

4.6  Cross-over and mutation 

The objective of parents’ selection is to cross their 
promising genes/bits (the better their FF, the higher the 
chances to be selected) to create children. 

From the 28 parents, 14 pairs are selected randomly. 
Their genes/bits are mixed using the 2 point cross-over 
operation. As it is schematized in Figure 4, two random 
points are chosen from parents’ codes. The sections 
delimited by these points are interchanged. As 
consequence, two children are created.  

Also, mutation possibility has been implemented. It 
consists of flipping a bit’s value in children. This 
operation is useful to increase the diversity of the gene 
pool and to avoid local minimal. Following the De 
Jong's criteria [14]the mutation probability was set as a 
0.036%. 

In this stage, a new population of 28 individuals 
(children) is created. The first iteration began with a 
random assignation of string values. However, in every 

posterior generation, the replacing populations are driven 
by GA by mixing the most fitted configurations. 

The whole process is repeated (from Subsection 4.4) 
until an ending condition is fulfilled (50 iterations, 
enough to achieve acceptable results in this case).  

The candidate with the higher FF of all generations 
was selected as final predictor (GA-APODIS). The 
characteristics of GA-APODIS resulting in this 
optimization were: 2 models with a WoM of 32 ms in 
the first layer; value equal to 0,001 and a C value of 
1;using as signals the ML and Prad and as signal features 
the ML, IPLA and ne. The whole procedure to attain 
GA-APODIS required ~4 hours of computational time. 

 

Figure 4.Schematization of the 2 points cross-over operation. 

5. Application in simulated real-time and results 

APODIS-Online (7 signals and 7 signal features) and 
the GA-APODIS were trained using D1. The testing 
results displayed in this section were obtained following 
a strict real-time simulation, inspecting the evolution of 
each discharge contained in the independent testing 
dataset (see section 2). The summary of the tests is 
shown in Table 1. There, ‘ideal’ refers to the alarms 
triggered at least 10 ms before the disruption but not 
earlier than 1 second; ‘correct’ are all the ones activated 
at least with 10 ms of anticipation; ‘late’ are the ones 
detected with less than 10 ms in advance; ‘total’ are the 
‘correct’ plus ‘late’ alarms; ‘premature’ are alarms 
flagged too early (i.e. > 1 second before the disruption 
occurrence) and ‘false’ are alarms activated in 
discharges that did not end in a disruption. 

Results reveal that GA-APODIS considerably 
outperformed APODIS-Online (trained with the same 
database). However, they are similar to the ones obtained 
with the APODIS-Online version (trained with a wide 
database of 8407 discharges). Regarding the distribution 
of the predictions, it is interesting to notice that the 
equilibrium of the GA-APODIS follows, as expected, 
the guidelines established by the scoring system. A 
considerable reduction of the premature alarms ~3% was 
achieved according to the reward of 5 points (only if the 
prediction is not premature). The consequence was a 



 

~2% higher amount of false alarms in comparison with 
APODIS-Online configurations. 

6. Summary and discussion 

A global optimization methodology for disruption 
predictors based on APODIS architecture has been 
developed. It provides considerable improvements in 

terms of prediction rates in case of using medium size 
databases for the training. The GA-APODIS predictor, in 
this case and for this particular database required 4 hours 
of computational time, which includes the 50 iterations 
of the programmed GA. A scoring system, easily 
modifiable, steered the course of the evolution towards  

 Ideal [%] Correct [%] Late [%] Total [%] 
Premature 

[%] False [%] 

APODIS-Online 
(trained with a wide 

database) 
81 88,6 2,53 91,13 7,5 1,62 

APODIS-Online 
(trained with 
database D1) 

66,45 73,41 12,65 86,076 6,96 1,31 

APODIS-GA 
(trained with 
database D1) 

86,08 89.24 2,53 91,77 3,16 3,55 

Table 1. Summary of results

the desired predictor. Triggering faster alarms (or any 
other particular expected response of the predictor) can 
be fostered just by rewarding with higher scores each 
behavior in the optimization. This flexibility is a 
formidable tool to be considered and should be exploited 
in future works. 

In the perspective of ITER, the unavailability of 
disruption databases at the beginning of its operation can 
be an issue for the creation of data-driven systems to 
avoid disruptions. The introduced procedure should, in 
the near future, be put under thorough testing by training 
several predictors with different sets of discharges. The 
reassembling in the architecture, the chosen set of 
signals and kernel parameters under each set of 
discharges could provide key hints to undercover the 
physics of the phenomenon and to aid a better 
understanding of it from a theoretical perspective. The 
predictor described in this paper could also be 
complemented with other adaptive approaches as the 
published in [15] and extended to the problem of 
disruption avoidance. 
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