
author’s email: firstname.lastname@some.mail.server

Global optimization driven by genetic algorithms for disruption
predictors based on APODIS architecture

G.A. Rattáa, J. Vegaa, A. Murarib, S. Dormido-Cantoc, R.Morenoa and JET Contributors*

EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK.

aLaboratorio Nacional de Fusión. CIEMAT, Madrid, Spain.
bConsorzio RFX, Associazione EURATOM/ENEA per la Fusione, Padua, Italy.

cDpto. de Informática y Automática. Universidad Nacional de Educación a Distancia. Madrid, Spain.
* See the Appendix of F. Romanelli et al., Proc. of the 25th IAEA FEC 2014, Saint Petersburg.

EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK

Since year 2010, the APODIS architecture has proven its accuracy predicting disruptions in JET tokamak.
However, it has shown margins for improvements, fact indisputable after the enhanced performances achieved in
posterior upgrades. In this article, a complete optimization driven by Genetic Algorithms (GA) is applied to
APODIS architecture. The methodology considers all possible combination of signals, signal features, quantity of
models, their characteristics and internal parameters. This global optimization aims at creating the best possible
system with a reduced amount of required training data.
The results harbor no doubts about the reliability of the global optimization method, allowing to outperform the
ones of previous versions: 91,77 % of predictions (89,24% with an anticipation higher than 10 ms) with a 3,55 % of
false alarms. Beyond its effectiveness, it also provides the potential opportunity to develop a spectrum of future
predictors using different training datasets. The analysis of how their structures reassemble and evolve in each test
may help to shed some light over the inner physics of the phenomenon and to aid in the development of theoretical
models to prevent disruptions in the perspective of ITER.

Keywords: Disruption prediction, Genetic Algorithms, JET, APODIS, ITER.

1. Introduction

Disruptions [1] can cause serious damages to the first
wall and plasma facing components of tokamaks. A
promising safety procedure to minimize the harm they
may inflict is through their early prediction and
subsequent activation of Mitigation Actions (MA) [2][3].
The prediction of disruptions is not a trivial task. The
non-linear relationship of a large set of plasma
parameters that may evidence a phenomenon’s precursor
is complex to model and the theoretical simulations are
not sufficiently accurate to reliably explain or predict
them [4]. These reasons have leaded the majority of
disruption prediction research of the last years to data-
driven systems. Up to now, the data-driven architecture
that provided the best detection rates in JET has been the
one named APODIS [5]. APODIS was designed to
analyze the whole evolution of each shot seeking for
possible disruption precursors. Based on a previous
study [6], instead of using the raw measurements, a
feature extraction procedure is automatically executed
over them to extract disruptive-relevant signatures.

Features are vectors that contain the processed
information from several signals. These feature vectors
are input to three SVM classifiers [7], using a RBF
Kernel (Model 3, 2 and 1 in Figure 1) built to work in
parallel and simultaneously over three consecutive time
windows.

In case of just one model, the decision would be
straightforward. APODIS architecture, instead, makes
three simultaneous predictions and they may disagree.
To determine whether these 3 predictions are
recognizing a disruption precursor or not, a second layer
with a SVM classifier (Decision Function) is used.

The Kernel values [7] (and C for RBF and C for the
Linear) were set via series of systematic scans of a
reasonable range of parameters. The study determined
that, for that specific database, the optimal number of
models in the first layer should be 3. Since its first
introduction in 2010, this system has been subjected to
upgrades in 2012 [8] and 2013 [9] (the latter installed
online in the JET real time data network). Both upgrades
primarily consisted on revising the most adequate set of
signal values (and signal features) to analyze in order to
predict disruptions. These upgrades have proven that
notably better results can be reached with a careful
selection of these variables. Nevertheless, revisions
should have also included the reassembling of the
architecture: a new combination of signals could fit
better if, for example, the predictor has four models in
the first layer instead of three.

The goal of this study is to perform this general
optimization in affordable computational times.

Figure 2.Modular scheme of the APODIS architecture.

2. Database and signals

The database was collected from JET with the ITER-like
wall and includes 9 signals: 1) plasma current (IPLA)
[A]; 2) mode lock amplitude (ML) [T]; 3) plasma
internal inductance [Wb/A]; 4) line averaged density
(ne) [m−3]; 5) stored diamagnetic energy time derivative

[W]; 6) total radiated power (Prad) [W]; 7) total input
power [W]; 8) poloidal beta; toroidal magnetic field [T].
These signals are processed to extract from them
disruptive-relevant features vectors in a similar
procedure as the one applied in the Online version of
APODIS [9][10].

Feature vectors contain 2 values per signal. One feature
is the standard deviation of the Discrete Fourier
Transform (discarding the CC component) computed
over the past 32 ms of each signal [6]. The other feature
is its amplitude value. This second feature differs of the
ones used previous APODIS versions (i.e. the mean
value of the amplitude calculated for that previous 30
ms). This change aims at looking for fast variations that
could be smoothed if they are averaged. All signals have
been processed following a strict real-time simulation,
which means that it can be exactly reproduced under
online conditions [10][11].

Two sets of discharges have been gathered. D1 contains
1178 shots (144 disruptives) produced during the period
between January 2012 and July 2012. This dataset has
been used to train the prediction system. An independent
group of 467 discharges (158 disruptives) from July
2013 to September 2013 has been saved for testing,
simulating real-time operation, the developed predictor
performance.

Intentionally produced disruptions have been discarded
from the database. Since they are designed and forced to
occur at a predefined instant of a discharge, they do not
evolve as the unintentional ones and their analysis may
mislead a machine learning system. The prediction of
intentionally provoked disruptions is not a pursued goal
in this study.

3. The computational problem

The proposed global optimization must include all the
parameters involved in the predictor. These parameters
are: 1) 4 possible quantities of models in the first layer;
2) 4 possible widths (in ms) of the models; 3) 8 possible
values for γ ; 4) 8 possible values for C; 5) signal (and

signal features) to be considered: 18 values. They
complete a total of 42 values. An exhaustive analysis
(creating and testing each possible abovementioned
combination without considering permutations) is
defined by:

1

!

()! !

n n
ii

n
i

C

n
C

n i i

=

=
−

∑

 (1)

where:

 n=number of possible values= 42 and i=possible
groupings=1,2,3,…,42

Exploring all this possibilities, considering that each one
requires an estimated computational time of ~3 seconds,
would take 418380 years.

Genetic Algorithms (GA) can be applied to solve the
problem with elegant efficiency.

4. Genetic Algorithms

4.1. Introduction

GA is a set of computer methods inspired by biological
evolution and aimed to perform user-defined tasks,
normally for the optimization of complex numerical
problems.

In nature, better adapted individuals have higher chances
to survive and breed descendants. In this context,
adaptation means to reach, among others, the objectives
of survival and reproduction. The adapted individuals are
able to transfer to the next generation their genetic
material and their offspring will inherit a combination of
“well-adapted” parents’ genes. Oppositely, individuals
unable to survive and reproduce will not pass their
characteristics and therefore their configuration is
destined to extinction.

GA uses this basic principle. Given a problem, a
population of possible solutions/individuals is created.
To measure which individuals are better adapted, a
metric called Fitness Function (FF), that scores
individuals performances, is applied. According the FF
score, higher possibility to mate and have descendants is
assigned to individuals/solutions with better values.
Descendants are created as a combination of parents
characteristics/genes. Finally, and since descendants are
a combination of promising genes, it is expected that
newer generations will outperform the former ones. The
procedure can be summarized in few steps:

1- Creation of a population of individuals (each
individual represents a possible solution to a given
problem).

2- Evaluation of each individual of the population
according the objectives of the problem. This requires to
have defined a metric to test how well each individual is
solving the problem (i.e. the FF).

3- Selection of parents (a higher probability to be chosen
as parent is assigned to those individuals with higher FF
values).

4- Creation of children as a combination of parents’
genes (using genetic operators as crossover, mutation,
reproductor).

5- Unless an ending condition is satisfied, iterate from
step 2, where the new population (created in step 4) is
evaluated.

The power of GA to reduce computational resides in
these basic principles. Instead of exploring all the
possible combinations, the most promising ones are
chosen and crossed to create new solutions prone to
outperform the former ones.

Notice that the whole procedure requires encoding each
solution/individual as a set of interchangeable
characteristics/genes (to execute step 4). This is an
essential part to achieve good results with GA.

4.2. Codification in nature and GA equivalence

Every living organism carries a digital code (DNA or
RNA) that encloses all the information to create (even
clone) such individual. In case an individual mates, its
DNA is crossed with the partners’ DNA melting into a
new set of instructions to create offspring. One way to
encode an optimization problem using GA is to define a
string as a computational imitation of the DNA coiled in
chromosomes. There, genes are emulated by bits (see
Figure 2).

In the case of this study, the structure is encoded, as
schematized in Figure 3. In the strings NoM defines the
Number of Models in the first layer (see Figure 1). WoM
is the gap (in ms) between the Models in the first layer.

The inclusion (or not) of any signal (light blue) or
signal feature (std(DFT), in green) into the predictor’s
design is determined by the nonzero value (or zero) of its
corresponding bit.

The codification of NoM has been set as:{‘00’→1};

{‘01’ →2}; {‘10’ →3}; {‘11’ →4}; for WoM: {‘00’ →8};
{‘01’ →16}; {‘10’ →32}; {‘11’ →64}; for γ

{‘000’ →0.001}; {‘001’→0.005}; {‘010’→0.01};
{‘011’ →0.05}; {‘100’→0.1};{‘101’ →0.5}; {‘110’ →1};
{‘111’ →10}; and for C: {‘000’ → 0.01}; {‘001’→ 0.1};
{‘010’ →1}; {‘011’ →5}; {‘100’ →10}; {‘101’ →50};
{‘110’ →100}; {‘111’ →1000}.

The example string depicted in Figure 3 defines the
instructions of a predictor that as plasma feature would
use: 1) the std(DFT(32 ms)) of the Plasma Current (PC)
and 2) the amplitude of the Mode Lock signal (ML). It
would have 4 models in the first layer
(NoM={‘11’ →4}), each one of them separated 16 ms
(WoM={‘01’ →16}), with a γ of 10 ({‘111’→10}) and a

C value of 1 ({‘010’→1}).

4.3 Creation of the first population

Each individual of the population is initially created
as a string of randomly selected ones and zeros. One
parameter to be set is the number of individuals per
generation (size of the population). Even if some
publications are meant to estimate an appropriate
quantity [12], this value is usually problem-dependent.

Figure 2. Simplified illustration of parallelisms between

DNA and its GA codifications.

Figure 3. An individual/predictor is defined by its codification.

In this case the chosen quantity was 28 individuals
(equal to the length of each string). In this step, 28
strings with 28 randomly distributed ones and zeros are
created.

4.4. Training predictor candidates

Each individual of the population is just a set of 28
strings randomly filled with ones and zeros. Each string
is not a disruption predictor as a DNA is not an animal.
They are the instructions to create one.

A Building Unit (BU) is a necessary program aimed
at transforming the instructions encoded in the
strings/individuals into a predictor. The BU, then, trains
a predictor candidate by following the codified
instructions. The training procedure is analogous to the
one detailed in previous APODIS versions [5][9][8].
After this procedure each individual/string became a
trained predictor candidate able to be validated in real-
time simulations.

4.5. Validation of candidates using the Fitness
Function

The same set of discharges (D1) was used for
training and validation. A fundamental problem arises in
these cases. A ML-based system may learn “by heart”
what have happened before (over-fitting) instead of
creating models with generalization capabilities. In order
to avoid over-fitting, each individual is twice trained
(BU of previous section) and tested in independent runs.

Different training and testing samples are selected each
time (2-fold cross-validation method). This method is
performed twice, obtaining 4 results per predictor
candidate. The results are averaged to obtain the final FF
value per candidate. The FF consist of the results of the
candidates during the validation according a previously
established score system: for each predictor candidate 5
points were assigned per disruption predicted between
10 ms Before the Disruption (BF) and 1 second BF (to
avoid premature alarms); 2 points in case the system
detects a disruption but with less than 10 ms of
anticipation; 3 points in case, correctly, no alarm is
triggered in a non-disruptive shot. This score system
steers the course of the evolution towards the type of
predictor aimed to obtain. Notice that it can be easily
modified to obtain different types of predictors (e.g.
increasing the points per non-triggering alarms in safe
shots would lead to more cautious systems, with lower
rates of false alarms but higher rates of missed alarms).

After this evaluation a FF each individual has
attached their FF score. The parent selection method that
uses these scores was the one proposed by Baker [13]:

1. A list with the 28 candidates is sorted according
their FF values.

2. FF values are normalized between 0 (lower)
and 1 (higher).

3. A random number between 0 and 1 is chosen
(e.g. 0.65).

4. Candidates with normalized FF higher than the
random number are selected as parents.

In the case that the random value is different from 0,
just a fraction of the candidates are chosen. It is
necessary to select 28 parents in this method. In these
cases, above mentioned steps 3 and 4 are repeated until
the number of selected candidates is 28.Notice that from
these 28 parents, some candidates may be copied several
times.

4.6 Cross-over and mutation

The objective of parents’ selection is to cross their
promising genes/bits (the better their FF, the higher the
chances to be selected) to create children.

From the 28 parents, 14 pairs are selected randomly.
Their genes/bits are mixed using the 2 point cross-over
operation. As it is schematized in Figure 4, two random
points are chosen from parents’ codes. The sections
delimited by these points are interchanged. As
consequence, two children are created.

Also, mutation possibility has been implemented. It
consists of flipping a bit’s value in children. This
operation is useful to increase the diversity of the gene
pool and to avoid local minimal. Following the De
Jong's criteria [14]the mutation probability was set as a
0.036%.

In this stage, a new population of 28 individuals
(children) is created. The first iteration began with a
random assignation of string values. However, in every

posterior generation, the replacing populations are driven
by GA by mixing the most fitted configurations.

The whole process is repeated (from Subsection 4.4)
until an ending condition is fulfilled (50 iterations,
enough to achieve acceptable results in this case).

The candidate with the higher FF of all generations
was selected as final predictor (GA-APODIS). The
characteristics of GA-APODIS resulting in this
optimization were: 2 models with a WoM of 32 ms in
the first layer; value equal to 0,001 and a C value of
1;using as signals the ML and Prad and as signal features
the ML, IPLA and ne. The whole procedure to attain
GA-APODIS required ~4 hours of computational time.

Figure 4.Schematization of the 2 points cross-over operation.

5. Application in simulated real-time and results

APODIS-Online (7 signals and 7 signal features) and
the GA-APODIS were trained using D1. The testing
results displayed in this section were obtained following
a strict real-time simulation, inspecting the evolution of
each discharge contained in the independent testing
dataset (see section 2). The summary of the tests is
shown in Table 1. There, ‘ideal’ refers to the alarms
triggered at least 10 ms before the disruption but not
earlier than 1 second; ‘correct’ are all the ones activated
at least with 10 ms of anticipation; ‘late’ are the ones
detected with less than 10 ms in advance; ‘total’ are the
‘correct’ plus ‘late’ alarms; ‘premature’ are alarms
flagged too early (i.e. > 1 second before the disruption
occurrence) and ‘false’ are alarms activated in
discharges that did not end in a disruption.

Results reveal that GA-APODIS considerably
outperformed APODIS-Online (trained with the same
database). However, they are similar to the ones obtained
with the APODIS-Online version (trained with a wide
database of 8407 discharges). Regarding the distribution
of the predictions, it is interesting to notice that the
equilibrium of the GA-APODIS follows, as expected,
the guidelines established by the scoring system. A
considerable reduction of the premature alarms ~3% was
achieved according to the reward of 5 points (only if the
prediction is not premature). The consequence was a

~2% higher amount of false alarms in comparison with
APODIS-Online configurations.

6. Summary and discussion

A global optimization methodology for disruption
predictors based on APODIS architecture has been
developed. It provides considerable improvements in

terms of prediction rates in case of using medium size
databases for the training. The GA-APODIS predictor, in
this case and for this particular database required 4 hours
of computational time, which includes the 50 iterations
of the programmed GA. A scoring system, easily
modifiable, steered the course of the evolution towards

 Ideal [%] Correct [%] Late [%] Total [%]
Premature

[%] False [%]

APODIS-Online
(trained with a wide

database)
81 88,6 2,53 91,13 7,5 1,62

APODIS-Online
(trained with
database D1)

66,45 73,41 12,65 86,076 6,96 1,31

APODIS-GA
(trained with
database D1)

86,08 89.24 2,53 91,77 3,16 3,55

Table 1. Summary of results

the desired predictor. Triggering faster alarms (or any
other particular expected response of the predictor) can
be fostered just by rewarding with higher scores each
behavior in the optimization. This flexibility is a
formidable tool to be considered and should be exploited
in future works.

In the perspective of ITER, the unavailability of
disruption databases at the beginning of its operation can
be an issue for the creation of data-driven systems to
avoid disruptions. The introduced procedure should, in
the near future, be put under thorough testing by training
several predictors with different sets of discharges. The
reassembling in the architecture, the chosen set of
signals and kernel parameters under each set of
discharges could provide key hints to undercover the
physics of the phenomenon and to aid a better
understanding of it from a theoretical perspective. The
predictor described in this paper could also be
complemented with other adaptive approaches as the
published in [15] and extended to the problem of
disruption avoidance.

Acknowledgments

This project has received funding from the European
Union’s Horizon 2020 research and innovation
programme under grant agreement number 633053. The
views and opinions expressed herein do not necessarily
reflect those of the European Commission.

This work was partially funded by the Spanish
Ministry of Economy and Competitiveness under the
Projects No ENE2012-38970-C04-01.

References

[1] F.C. Schuller. 1995. “Disruption in tokamaks”. Plasma Phys.
Control. Fusion 37. A135–62.

[2] M. Lehnen et al 2013 Impact and mitigation of disruptions
with the ITER-like wall in JET. Nucl. Fusion 53 093007
doi:10.1088/0029-5515/53/9/093007

[3] L.R. Baylor et al. 2009. Pellet fuelling, ELM pacing and
disruption mitigation technology development for ITER. Nucl.
Fusion 49 085013 doi:10.1088/0029-5515/49/8/085013

[4] A.H. Boozer. 2012. “Theory of tokamak disruptions”.
Physics of Plasmas. 19, 058101.

[5] G. A. Rattá, et al. “An Advanced Disruption Predictor for
JET tested in a simulated Real Time Environment” Nuclear
Fusion. 50 (2010) 025005 (10pp).

[6] G.A. Rattá, et al. 2008. “Feature extraction for improved
disruption prediction analysis at JET”. Rev. Sci. Instrum. 79
10F328

[7] Cortes C. and Vapnik V. 1995. “Support-vector networks”.
Mach. Learn. 20 273–97

[8] G.A. Rattá, J. Vega, A. Murari, JET-EFDA Contributors.
“Improved feature selection based on genetic algorithms for real
time disruption prediction on JET”. Fusion Engineering and
Design (2012) http://dx.doi.org/10.1016/j.fusengdes.2012.07.002

[9] J. Vega et al. “Results of the JET real-time disruption
predictor in the ITER-like wall campaigns”. Fusion Engineering
and Design 88 (2013) 1228-1231.

[10] J.M. Lopez, et al. 2014. Implementation of the Disruption
Predictor APODIS in JET’s Real-Time Network Using the
MARTe Framework. Nuclear Science, IEEE Transactions on
(Volume:61 , Issue: 2) pp 741 - 744 ISSN 0018-9499
10.1109/TNS.2014.2309254

[11] López J.M. 2012 Implementation of the disruption predictor
APODIS in JET real-time network using the MARTe framework
Proc. 18th IEEE-NPSS Real Time Conf.
doi:10.1109/RTC.2012.6418168

[12] J.T. Alander. On optimal population size of genetic
algorithms. Proceedings CompEuro, Computer Systems and
Software Engineering, 6th Annual European Computer
Conference, 1992, pp. 65–70.

[13] J.E. Baker. Reducing bias and inefficiency in the
selection algorithm. Proceedings of the Second International
Conference on Genetic Algorithms and Their Applications,
1987, pp. 14–21

[14] K. A. De Jong, W.M. Spears. “An analysis of the interacting
roles of population size and crossover in genetic algorithms”.
Parallel Problem Solving from Nature. Lecture Notes in
Computer Science Volume 496, 1991, pp 38-47.

[15] A.Murari et al,Nucl. Fusion 53 (2013) 033006 (9pp)

