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Since year 2010, the APODIS architecture has prat@raccuracy predicting disruptions in JET tokamak
However, it has shown margins for improvementst fiadisputable after the enhanced performancesaetiin
posterior upgrades. In this article, a completeinaigation driven by Genetic Algorithms (GA) is apga to
APODIS architecture. The methodology considergpa#fisible combination of signals, signal featuremmdjty of
models, their characteristics and internal pararaefehis global optimization aims at creating thestbpossible
system with a reduced amount of required trainiaig.d

The results harbor no doubts about the reliabdityhe global optimization method, allowing to oetform the
ones of previous versions: 91,77 % of predicti@®24% with an anticipation higher than 10 ms) wit8,55 % of
false alarms. Beyond its effectiveness, it alsovigles the potential opportunity to develop a spautof future
predictors using different training datasets. Thalgsis of how their structures reassemble andveviol each test
may help to shed some light over the inner physidee phenomenon and to aid in the developmetitexiretical
models to prevent disruptions in the perspectivl BR.
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1. Introduction In case of just one model, the decision would be
. . . . straightforward. APODIS architecture, instead, nsake
Disruptions [1] can cause Serious damages tot5€ fi 00 simuitaneous predictions and they may disagre
wall .af‘d plasma facing components of tokamaks. A1q  getermine whether these 3 predictions are
promising safety procedure to minimize the harmythe ro.qanizing a disruption precursor or not, a sedagelr

may inflict is through their early prediction and i, 3 SyM classifier (Decision Function) is used.
subsequent activation of Mitigation Actions (MA)[2].

The prediction of disruptions is not a trivial taskhe The Kernel values [7] ( and C for RBF and C for the
non-linear relationship of a large set of plasma Linear) were set via series of systematic scans of
parameters that may evidence a phenomenon’s pogcurs reasonable range of parameters. The study deteimine
is complex to model and the theoretical simulatians  that, for that specific database, the optimal numife
not sufficiently accurate to reliably explain oregict models in the first layer should be Since its first
them [4]. These reasons have leaded the majority ofintroduction in 2010, this system has been subjette
disruption prediction research of the last yearsldta- upgrades in 2012 [8] and 2013 [9] (the latter ithesta
driven systems. Up to now, the data-driven archite online in the JET real time data network). Both nagigs
that provided the best detection rates in JET kasibhe  primarily consisted on revising the most adequateo$
one named APODIS [5]. APODIS was designed to signal values (and signal features) to analyzerderoto
analyze the whole evolution of each shot seeking fo predict disruptions. These upgrades have proven tha
possible disruption precursors. Based on a previousnotably better results can be reached with a chrefu
study [6], instead of using the raw measurements, aselection of these variables. Nevertheless, revisio
feature extraction procedure is automatically etettu should have also included the reassembling of the

over them to extract disruptive-relevant signatures architecture: a new combination of signals could fi
etter if, for example, the predictor has four neda

Features are vectors that contain the processeqyq first layer instead of three

information from several signals. These featuretorsc

are input to three SVM classifiers [7], using a RBF  The goal of this study is to perform this general
Kernel (Model 3, 2 and 1 in Figure 1) built to wark optimization in affordable computational times.

parallel and simultaneously over three consectitimve

windows.
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Figure 2.Modular scheme of the APODIS architecture.
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2. Database and signals

The database was collected from JET with the ITE-|
wall and includes 9 signals: 1) plasma current AP
[A]; 2) mode lock amplitude (ML) [T]; 3) plasma
internal inductance [Wb/A]; 4) line averaged densit
(ne) [m-3]; 5) stored diamagnetic energy time derivative
[W]; 6) total radiated power (Prad) [W]; 7) totalput
power [W]; 8) poloidal beta; toroidal magnetic @€IT].

signal features) to be considered: 18 values. They
complete a total of 42 values. An exhaustive amalys
(creating and testing each possible abovementioned

combination without considering permutations) is
defined by:

Zi:lcin

an_ o n

" (=i )

where:

n=number of possible values= 42 and=possible
groupings=1,2,3,...,42

Exploring all this possibilities, considering theich one
requires an estimated computational time of ~3 rsg€0
would take418380 years.

Genetic Algorithms (GA) can be applied to solve the
problem with elegant efficiency.

4. Genetic Algorithms

These signals are processed to extract from thenf+1- Introduction

disruptive-relevant features vectors in a similar
procedure as the one applied in the Online version
APODIS [9][10].

Feature vectors contain 2 values per signal. Oatuffe
is the standard deviation of the Discrete Fourier

GA is a set of computer methods inspired by bialabi
evolution and aimed to perform user-defined tasks,
normally for the optimization of complex numerical
problems.

In nature, better adapted individuals have higlhances

Transform (discarding the CC component) computedtg survive and breed descendants. In this context,

over the past 32 ms of each signal [6]. The othatufre
is its amplitude value. This second feature diffgfrshe

adaptation means to reach, among others, the olgsct
of survival and reproduction. The adapted individwae

ones used previous APODIS versions (i.e. the meanaple to transfer to the next generation their genet

value of the amplitude calculated for that previ@gs
ms). This change aims at looking for fast variadidimat
could be smoothed if they are averaged. All sighalse
been processed following a strict real-time simafat

material and their offspring will inherit a combtin of
“well-adapted” parents’ genes. Oppositely, indiatiu
unable to survive and reproduce will not pass their
characteristics and therefore their configuration i

which means that it can be exactly reproduced undergestined to extinction.

online conditions [10][11].

Two sets of discharges have been gathered. D1inenta
1178 shots (144 disruptives) produced during thiéoge

GA uses this basic principle. Given a problem, a
population of possible solutions/individuals is ate.
To measure which individuals are better adapted, a

between January 2012 and July 2012. This dataset hametric called Fitness Function (FF), that scores

been used to train the prediction system. An indépet

individuals performances, is applied. According ffe

group of 467 discharges (158 disruptives) from July score, higher possibility to mate and have desagsda
2013 to September 2013 has been saved for testingassigned to individuals/solutions with better value

simulating real-time operation, the developed predi
performance.

Intentionally produced disruptions have been dibedr
from the database. Since they are designed anddidoc
occur at a predefined instant of a discharge, teyot
evolve as the unintentional ones and their analysiy
mislead a machine learning system. The predictibn o
intentionally provoked disruptions is not a pursigeal

in this study.

3. The computational problem

The proposed global optimization must include h# t
parameters involved in the predictor. These pararset
are: 1) 4 possible quantities of models in thet fmger;
2) 4 possible widths (in ms) of the models; 3) 8gible
values for )/; 4) 8 possible values fdE; 5) signal (and

Descendants are created as a combination of parents
characteristics/genes. Finally, and since descésdan

a combination of promising genes, it is expecteat th
newer generations will outperform the former orgse
procedure can be summarized in few steps:

1- Creation of a population of individuals (each
individual represents a possible solution to a mgive
problem).

2- Evaluation of each individual of the population
according the objectives of the problem. This resgito
have defined a metric to test how well each indigids
solving the problem (i.e. the FF).

3- Selection of parents (a higher probability tochesen
as parent is assigned to those individuals witlnérig-F
values).



4- Creation of children as a combination of parents N
genes (using genetic operators as crossover, mitati Bit | 1
reproductor).

DNA chain

5- Unless an ending condition is satisfied, iteraten
step 2, where the new population (created in s)ejs 4 Bit [ 1 | Gene
evaluated.

double helix

The power of GA to reduce computational resides in _—
these basic principles. Instead of exploring alé th

possible combinations, the most promising ones are
chosen and crossed to create new solutions prone to git | o | Gene
outperform the former ones.

String —

Nitrogenous
bases

Notice that the whole procedure requires encodaxthe _—
solution/individual as a set of interchangeable
characteristics/genes (to execute step 4). Thisans git | O
essential part to achieve good results with GA.

4.2. Codification in nature and GA equivalence Bit | 0

Every living organism carries a digital code (DNA o
RNA) that encloses all the information to createe(e
clone) such individual. In case an individual matits
DNA is crossed with the partners’ DNA melting iro
new set of instructions to create offspring. Oney @ Pc NoM W y c
encode an optimization problem using GA is to defin lﬁ e B

string as a computational imitation of the DNA edilin . | 1 | 1 | 0| 1 | o |

chromosomes. There, genes are emulated by bits (see
Figure 2) 2 3 4 5 18 19 20 21 22 23 24 25 26 27 28
|:| Signal amplitude

. std(DFT(32 ms))

Chromosome

Figure 2. Simplified illustration of parallelismgtween
DNA and its GA codifications.

In the case of this study, the structure is encpdsd
schematized in Figure 3. In the strings NoM defitles
Number of Models in the first layer (see Figure\WpM

is the gap (in ms) between the Models in the fagér.

The inclusion (or not) of any signal (light blue)
signal feature (std(DFT), in green) into the preglis
design is determined by the nonzero value (or zefrd¥
corresponding bit.

The codification of NoM has been set as:{"691};
{01 —-2}; {10’ —3}; {'11' —4}; for WoM: {00’ —8};
{01 —>16}; {10 —32}; {11'—64};, for y
{000’ —0.001};  {001'—0.005}; {010'—0.01};
{011’ —0.05}; {100’—0.1};{'101’ —0.5}; {110’ -1},
{1111’ —-10}; and forC: {000’ — 0.01}; {'001'— 0.1};
{0010’ —»1}; {011’ —5}; {100’ —10}; {101’ —50};
{110’ —-100}; {111’ —1000}.

Figure 3. An individual/predictor is defined by @sdification.

In this case the chosen quantity was 28 individuals
(equal to the length of each string). In this st2g,
strings with 28 randomly distributed ones and zenas
created.

4.4. Training predictor candidates

Each individual of the population is just a set28f
strings randomly filled with ones and zeros. Eatring
is not a disruption predictor as a DNA is not aimai.
They are the instructions to create one.

A Building Unit (BU) is a necessary program aimed
at transforming the instructions encoded in the
strings/individuals into a predictor. The BU, thémins

The example string depicted in Figure 3 defines thea predictor candidate by following the codified

instructions of a predictor that as plasma featuoald

use: 1) the std(DFT(32 ms)) of the Plasma Curre)(
and 2) the amplitude of the Mode Lock signal (MLt).
models in the first layer

would have 4

instructions. The training procedure is analogaushe
one detailed in previous APODIS versions [5][9][8].
After this procedure each individual/string became
trained predictor candidate able to be validatedek-

(NoM={'11’ —4}), each one of them separated 16 ms time simulations.

(WoM={'01' —16}), with a j/of 10 ({{111'—10}) and a

Cvalue of 1 ({{010—1}).
4.3 Creation of thefirst population

Each individual of the population is initially cted

as a string of randomly selected ones and zeros. On
parameter to be set is the number of individuals pe
generation (size of the population). Even if some
publications are meant to estimate an appropriate

quantity [12], this value is usually problem-depend

45. Validation of candidates using the Fitness
Function

The same set of discharges (D1l) was used for
training and validation. A fundamental problem esisn
these cases. A ML-based system may learn “by heart”
what have happened before (over-fitting) instead of
creating models with generalization capabilitiesotder
to avoid over-fitting, each individual is twice itnad
(BU of previous section) and tested in independens.



Different training and testing samples are seleetach
time (2-fold cross-validation method). This methizd
performed twice, obtaining 4 results per predictor
candidate. The results are averaged to obtaininbeRFF
value per candidate. The FF consist of the resilthe
candidates during the validation according a preslp
established score system: for each predictor catalifl
points were assigned per disruption predicted betwe
10 ms Before the Disruption (BF) and 1 second BF (t
avoid premature alarms); 2 points in case the Bsyste
detects a disruption but with less than 10 ms of
anticipation; 3 points in case, correctly, no alaisn
triggered in a non-disruptive shot. This score ayst
steers the course of the evolution towards the type
predictor aimed to obtain. Notice that it can bailga
modified to obtain different types of predictors.gie
increasing the points per non-triggering alarmssafie
shots would lead to more cautious systems, withefow
rates of false alarms but higher rates of missaedrs).

After this evaluation a FF each individual has
attached their FF score. The parent selection rdettet
uses these scores was the one proposed by Baker [13

1. Alist with the 28 candidates is sorted accaydin
their FF values.

2. FF values are normalized between 0 (lower)
and 1 (higher).

3. A random number between 0 and 1 is chosen
(e.g. 0.65).

4. Candidates with normalized FF higher than the
random number are selected as parents.

In the case that the random value is different ffam
just a fraction of the candidates are chosen. It is
necessary to select 28 parents in this methodhédset
cases, above mentioned steps 3 and 4 are repeasted u
the number of selected candidates is 28.Noticeftbat
these 28 parents, some candidates may be copiethkev
times.

4.6 Cross-over and mutation

The objective of parents’ selection is to crosdrthe
promising genes/bits (the better their FF, the &ighe
chances to be selected) to create children.

posterior generation, the replacing populationsdairesn
by GA by mixing the most fitted configurations.

The whole process is repeated (from Subsection 4.4)
until an ending condition is fulfiled (50 iteratis,
enough to achieve acceptable results in this case).

The candidate with the higher FF of all generations
was selected as final predictor (GA-APODIS). The
characteristics of GA-APODIS resulting in this
optimization were: 2 models with a WoM of 32 ms in
the first layer; value equal to 0,001 and a C vabfie
1;using as signals the ML and Prad and as sigaalifes
the ML, IPLA and ne. The whole procedure to attain
GA-APODIS required ~4 hours of computational time.

Parent 2 CIM 2
1 0 0 1_
1 1 1 1
1 0 1 0
[ ==l Randomly [~ et
0| |1] selected |Of |1
1 0 cross-over 1 0
1 1 o 1 1
0_ 1 1 0
0 1 1 0
1] [0 of [a]
Parent 1 Child 1

Figure 4.Schematization of the 2 points cross-operation.
5. Application in simulated real-time and results

APODIS-Online (7 signals and 7 signal features) and
the GA-APODIS were trained using D1. The testing
results displayed in this section were obtainetb¥ahg
a strict real-time simulation, inspecting the evioln of
each discharge contained in the independent testing
dataset (see section 2). The summary of the tests i
shown in Table 1. There, ‘ideal’ refers to the alar
triggered at least 10 ms before the disruption rott
earlier than 1 second; ‘correct’ are all the onetésated
at least with 10 ms of anticipation; ‘late’ are thees
detected with less than 10 ms in advance; ‘toted’ the

From the 28 parents, 14 pairs are selected randomly‘correct’ plus ‘late’ alarms; ‘premature’ are alam

Their genes/bits are mixed using the 2 point comss-
operation. As it is schematized in Figure 4, twod@m

flagged too early (i.e. > 1 second before the gison

occurrence) and ‘false’ are alarms activated in

points are chosen from parents’ codes. The sectiongischarges that did not end in a disruption.

delimited by these points are interchanged. As
consequence, two children are created.

Also, mutation possibility has been implemented. It
consists of flipping a bit's value in children. Ehi
operation is useful to increase the diversity & gene
pool and to avoid local minimal. Following the De
Jong's criteria [14]the mutation probability was ae a
0.036%.

In this stage, a new population of 28 individuals
(children) is created. The first iteration begarthwa
random assignation of string values. However, iargv

Results reveal that GA-APODIS considerably
outperformed APODIS-Online (trained with the same
database). However, they are similar to the onésirodd
with the APODIS-Online version (trained with a wide
database of 8407 discharges). Regarding the distib
of the predictions, it is interesting to notice ttithe
equilibrium of the GA-APODIS follows, as expected,
the guidelines established by the scoring system. A
considerable reduction of the premature alarms waét%
achieved according to the reward of 5 points (dhtize
prediction is not premature). The consequence was a



~2% higher amount of false alarms in comparisorh wit
APODIS-Online configurations.

6. Summary and discussion

A global optimization methodology for disruption

terms of prediction rates in case of using mediuze s
databases for the training. The GA-APODIS predjdtor
this case and for this particular database requiredurs

of computational time, which includes the 50 itenas

of the programmed GA. A scoring system, easily

predictors based on APODIS architecture has beenmodifiable, steered the course of the evolutiondials

developed. It provides considerable improvements in

Ideal [%] Correct [%]

APODIS-Online
(trained with a wide
database)

APODIS-Online
(trained with
database D1)
APODIS-GA
(trained with
database D1)

88,6

66,45 7341

86,08 89.24

Late[%]

2,53

12,65

2,53

Premature

Total [%] %]

False [%]

91,13 7,5 1,62

86,076 6,96 131

91,77 3,16 3,55

Table 1. Summary of results

the desired predictor. Triggering faster alarms goy
other particular expected response of the predictan
be fostered just by rewarding with higher scoreshea
behavior in the optimization. This flexibility is a
formidable tool to be considered and should beatqad

in future works.

In the perspective of ITER, the unavailability of
disruption databases at the beginning of its oferaian
be an issue for the creation of data-driven systems
avoid disruptions. The introduced procedure shoind,
the near future, be put under thorough testing&ining
several predictors with different sets of dischargehe
reassembling in the architecture, the chosen set
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