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Abstract— New fusion research experiments will generate 
massive experimental data. In this context, fusion research 
appears in the scope of the big data where both search and 
access functions require new approaches and optimizations.  

One common data access functionality is decimation. It 
allows to retrieve a limited number of points of the total 
available. One classical mechanism of decimation is 
downsampling by an integer factor called step. It works by 
selecting a value every ‘step’ number of values. The main 
characteristic of classical decimation is that the selected values 
are uniformly distributed along the total. However, in case of 
time evolution experimental signals, the relevancy of data is not 
uniform. There are some intervals where the provided 
information is more complex and richer, and usually more 
interesting from the user point of view.  

This contribution presents a new data decimation 
technology for unidimensional time evolution signals where the 
limited number of accessed points are distributed following the 
criterion of data interest level. The new method implements, on 
one hand, a heuristic function which is able to determine the 
level of interest of an interval based on its data characteristics, 
and on the other hand, a selection algorithm where points are 
distributed based on weighted intervals.  
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I. INTRODUCTION 
 

New fusion energy research experiments will generate 
massive experimental data. For example, ITER (International 
Thermonuclear Experimental Reactor) will have above one 
million of variables coming from control signals and 
diagnostic systems. Some of these variables will produce data 
during long pulse (about 30 minutes) experiments, while other 
will generate data continuously. Just to have a clearer idea of 
the scenario, ITER estimates more than 30 GBytes/second of 
data flow during experiment pulses. In this context, traditional 
complete access to archived data is very expensive in 
computing resources and time, and new data access that will 
help researchers to locate and find useful data are required.  

In this work a new decimation method developed in 
CIEMAT (Spanish Energy Research Centre) for time 
evolution signal data is presented. The main objective of the 
new method is to obtain quickly low resolution and high 
similarity views of archived data. To achieve it, it is necessary 
to improve the classic 1-of-n decimation method that for high 

decimation factors produces very poor views of the original 
signal.  

II. THE SMART DECIMATION METHOD 
The new decimation method, as other decimation 

methods, receives as input both a variable that represents a 
time evolution signal data (S) to decimate, and the number of 
points (N) which are expected. The method produces as output 
a sequence of N points (time and value) that have been 
selected from original signal data (S). The main characteristic 
of the presented method is that the output points are not 
homogeneously distributed (as other decimation methods); 
they are distributed proportionally to the level of interest of 
the signal along the time. This means that output points are 
more concentrated in more interesting time areas of the signal. 

 
Fig  1 Architecture diagram of the smart decimation method. It includes 

two phases: Interest level analyzer and samples selector 
 

As it is shown in Fig  1, the method is implemented with a 
two-step algorithm. The first step measures the level of 
interest along the signal and it is implemented into the 
“Interest level analyser” component. The second step selects 
N values from the original signal based on the level of interest 
metadata and is implemented into the “Samples selector” 
component. These two steps are independent, so the interest 
level metadata can be created and archived while the original 
signal data are archived, and the selection of points will be 
performed for every data access with smart decimation. 

A. Interest level analyser 
The interest level analyser component is responsible of 

measuring the level of interest assigned to a portion of a time 
evolution signal. One valid approach to this objective is to use 
an algorithm that can measure the level of change in the 
behaviour of a time evolution signal. In our implementation 
we have used the core of an anomaly detention algorithm that 
has been successfully applied in the JET disruption detector 
named APODIS [1,2] which is based on the “Standard 
Deviation of Fourier Spectrum” method [3].   

The standard deviation of Fourier spectrum method, Fig  
2, processes a signal by regular intervals and calculates the 
anomaly level for every interval. The method has the 
following steps: 



1. Calculating the Fourier Spectrum components of the 
interval 

2. Removing the continuous component 

3. Removing the negative components 

4. Calculating the standard deviation of the remaining 
components 

 
Fig  2 Formula of the standard deviation of Fourier spectrum 

 

The output of this processing is a new signal metadata that 
represents the level of interest of the signal data along regular 
intervals. 

One of the main motivations to select this method is its 
successful as anomaly detection algorithm applied to fusion 
experiment data. An additional motivation is its compatibility 
with real time implementation. This method can analyse and 
produce metadata in real time while the processed signals are 
acquired, and it is not necessary to wait until the signal is 
complete. 

As it is shown in Fig  1, previous to the anomaly measurer, 
a noise filter has been included. It implements an exponential 
moving average algorithm [4], explained in Fig  3.  

 
Fig  3 Exponential moving average function 

 
The main characteristic of this low pass filter is that it has 

a past memory forget mechanism, so it preserves changes in 
the behaviour of the time evolution signal. It is also important 
to remark that this algorithm can be fully implemented in real 
time. 

B. No uniform samples selector 
The objective of this component is to distribute the 

selected samples proportionally to a set of weights that, in this 
case, corresponds to the interest level metadata that were 
measured and persisted previously at regular time intervals. 

In the description of the sample selection algorithm  the 
following elements are used: 

- Request interval: Interval of the decimated data request. 

- Selection interval: Interval that is being considered to 
make a decimated selection of samples in the current step 
of the algorithm. 

- Metadata interval: Interval in the original signal that 
corresponds to a metadata (interest level) value.   

The steps of the algorithm are: 

1. Selection interval = First metadata interval 

2. While (number of decimated samples < N) and 
(selection interval into request interval) 

a. Number of samples to consider in the 
selection interval = (sum of weights in 
selection interval / sum of weights in request 
interval) * number of decimated samples 
left.  

b. Selecting the number of samples from the 
original signal to consider into the selection 
interval 

c. Shifting the selection interval to the next 
metadata interval 

 

III. SOME RESULTS 
The new decimation method has been tested with TJ-II 

(flexible Heliac TJ-II stellerator located at CIEMAT) 
experiment data. To test it, a typical 1-of-n decimation 
function (take 1 and jump n) has been compared with the new 
decimation method. The comparation has been done over a set 
of commonly used signals from different diagnostics and with 
different characteristics of sampling rate and noise. The Table 
1 shows the list of used signals. 

Table 1 List of TJ-II signals that have been used in new comparation test 
Signal name Description Sapling rate 

BOL1 Bolometer signal 100 KHz 

DENCM0 Electron density 1 MHz 

ECE10 Electron Cyclotron 
Emission 100 KHz 

RX105 Soft Ray-X 78 KHz 

 
Because the sort length of TJ-II pulses (0,5 seconds), long 

signals have been built concatenating the data of a set of 
pulses. Specifically, experiment data from pulse 46000 until 
pulse 46100 have been considered. 

In order to obtain a comparative between the 1-of-n and 
the new decimation method, similarity between the original 
signal and decimated signal has been evaluated. To measure 
the similarity concept between two signals, two parameters 
have been taken into account: Euclidean distance and 
correlation coefficient. The Euclidean distance between two 
signals has been defined as the sum of the Euclidean distance 
between synchronous samples (samples with the same 
timestamp). Both analysed parameters, Euclidean distance 
and correlation coefficient, require having same time interval 
(same start and end timestamp), same number samples and 
synchronous samples (samples with the same timestamp). 
This is why, for this test, the decimated signals have been 
resampled to the timestamps of the original signal samples. 

Results of the comparative are presented in Table 2. They 
show very significant improvement in both coefficients for all 
tested signals.   

 



Table 2 Results of decimation comparation between 1-of-n and smart 
decimation methods 

Signal N. Samples D. Method E. Distance Corr. Coef. 

BOL1 6619136 1-of-n 107.5474 0.6727 
Smart 67.2390 0.8914 

DENCM0 13107200 1-of-n 161.0769 0.9969 
Smart 109.7335 0.9986 

ECE10 6205440 1-of-n 364.3474 0.5882 
Smart 227.3609 0.8837 

RX105 5049984 1-of-n 187.5517 0.7732 
Smart 99.0643 0.9421 

 
Apart from the test result numbers, the differences 

between the two compared decimation methods are more 
evident from a visual point of view. The Fig  4 and Fig  5 
present visual comparatives of the two decimation methods 
for 1000 decimated points in a portion of the signals BOL1 
and DENCM0 respectively. In both figures, the first graph 
shows the original signal, the second graph shows the plot of 
the 1-of-n decimated signal, the third graph shows the values 
of the interest level analysis and fourth graph shows the plot 
of the smart decimated signal. 
 

 
Fig  4 Visual comparative of 1-of-n and smart decimation method in a 
portion of BOL1 signal. The included graphs are (from top to down): original 
signal, 1-of-n decimated signal, levels of interest, smart decimated signal. 
 

 
Fig  5 Visual comparative of 1-of-n and smart decimation method in a 
portion of DENCM0 signal. The included graphs are (from top to down): 
original signal, 1-of-n decimated signal, levels of interest, smart decimated 
signal 

 
Both figures show some interesting results. Visually, the 

similarity between the original signal and the decimated signal 
is higher in case of smart decimation method (graphs 1 and 4) 
than 1-of-n method (graphs 1 and 2). Graphs 3 and 4 show 
how smart decimation works, concentrating decimation points 
in intervals with higher level of interest. Graphs 1 and 3 show 
how higher levels of interest in the original signal are located 
in intervals where the signal presents changes in its behaviour. 
In case of Fig  5, that corresponds to signal BOL1, it is 
interesting to remark the high level of noise in the original 
signal (graph 1). 

IV. CONCLUSION 
In order to improve fast and efficient data access to big data 
fusion experiments, a new smart decimation method for time 
evolution signals has been developed in CIEMAT. The 
method uses a signal anomaly analyser to calculate the level 
of interest by time intervals of the original signal and 
distributes decimation points based on it.   

The smart decimation method has been successfully tested 
with TJ-II experimental signals. The test results show a very 
significant improvement as compared to the classic 1-of-n 
decimation method, in the similarity of output decimated 
signals and original signals. The new method can help 
researchers to quickly get useful low-resolution views of 
archived big data fusion experiments and to locate signals and 
zones of their interest. 
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