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Abstract: A model based on the known high correlation between photosynthetically active radiation
(PAR) and global horizontal irradiance (GHI) was implemented to estimate PAR from GHI
measurements in this present study. The model has been developed using satellite-derived GHI and
PAR estimations. Both variables can be estimated using Kato bands, provided by Satellite Application
Facility on Climate Monitoring (CM-SAF), and its ratio may be used as the variable of interest in
order to obtain the model. The study area, which was located in mainland Spain, has been split by
cluster analysis into regions with similar behavior, according to this ratio. In each of these regions,
a regression model estimating PAR from GHI has been developed. According to the analysis, two
regions are distinguished in the study area. These regions belong to the two climates dominating the
territory: an Oceanic climate on the northern edge; and a Mediterranean climate with hot summer in
the rest of the study area. The models obtained for each region have been checked against the ground
measurements, providing correlograms with determination coefficients higher than 0.99.

Keywords: photosynthetically active radiation; global horizontal irradiance; clustering analysis;
Kato bands

1. Introduction

Photosynthetically active radiation (PAR) is radiation with wavelengths of 400–700 nm in the
solar spectrum. Biomass and algae production, plant physiology, energy balance in ecosystems,
natural illumination of greenhouses, etc., require knowledge of this part of the solar spectrum.
Despite its importance, PAR measurement stations are very scarce and, thus, usually it is estimated
from empirical expressions relating it to solar global irradiance [1–7], which is measured more
frequently. PAR estimations can also be obtained from satellites. Liang et al. [8] developed a
method based on the look-up table approach for estimating PAR from Moderate-Resolution Imaging
Spectrometer (MODIS) data. Similarly, other authors [9] have derived PAR using Geostationary
Operational Environmental Satellite (GOES) data. On the other hand, Rubio et al. [10] estimated
global horizontal irradiance (GHI) from a satellite, before PAR was obtained using an empirical model
proposed by Alados-Arboledas et al. [11], which was developed from a database located at Almería.
Wandji et al. [12] described a technique for an accurate assessment of PAR under clear-sky conditions
using Kato bands [13] from libRadtran simulations. Kato bands are 32 bands of different widths which
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the solar spectrum can be divided into. In each of those bands, the absorption coefficient of different
gases is almost constant.

The width of Kato bands depends on the distribution and structure of the absorption bands.
These bands are also provided for the Satellite Application Facility on Climate Monitoring (CM-SAF),
which belongs to the European Organization for the Exploitation of Meteorological Satellites
(EUMETSAT); thus, PAR can be obtained, in a first approximation, using the bands included in
the part of the spectrum from 400 up to 700 nm. Indeed, of the 32 Kato bands available in the entire
solar spectrum, the interval of bands 7–16 includes the region corresponding to PAR (Table 1).

Table 1. Kato bands in the photosynthetically active radiation (PAR) region.

Kato Band Wavelength Region (µm)

7 0.408–0.452
8 0.452–0.518
9 0.518–0.540

10 0.540–0.550
11 0.550–0.567
12 0.567–0.605
13 0.605–0.625
14 0.625–0.667
15 0.667–0.684
16 0.684–0.704

Therefore, GHI and PAR can be estimated in a first approximation from satellite-derived Kato
bands. On the other hand, the linear relationship between both variables is usually the basis of the
empirical models used to obtain the PAR value [14] and, thus, PAR can be approximated from the
knowledge of the ratio between both variables and the GHI value. According to these considerations,
this ratio was the variable used for the analysis performed in this work. The spatial and temporal
variability of solar radiation advises a clustering analysis [15–18], which provides the groups within
which the variable of interest, namely, the ratio between both radiations, is coherent. Once the regions
with similar behavior in terms of the PAR/GHI ratio have been obtained by clustering analysis, a
linear regression model in each of these regions is developed. The performance of this model from
satellite-derived PAR and GHI estimations is the main novelty of this work. Thus, this model allows
for the estimation of PAR in any part of this region from GHI measurements carried out at this location.

2. Data

The spectral-resolved irradiance [19] containing the Kato bands was the product required from
CM-SAF for this work. The CM-SAF includes the following atmospheric input information to retrieve
the surface incoming solar radiation: effective cloud albedo and clear sky index, aerosol, water vapor,
ozone, and surface albedo.

Solar surface irradiance on a horizontal plane is supplied by the MAGICSOL (Magic Solar
Irradiance) method, which only needs the satellite information from the broadband visible channel.
Thus, it can be implemented in different satellite generations [20]. On the other hand, MAGICSOL’s
method for clouds is based on the Heliosat algorithm [21], which determines the cloud index (n) using
reflection measurements given as normalized digital counts. This index measures the reflectance
detected on the sensor that is normalized by the dynamic range [22,23]. The following expression
provides this index:

n =
ρ − ρg

ρc − ρg
(1)

where ρ is the instantaneous planetary albedo, which is estimated from the digital count of the satellite
sensor; ρc is the cloud albedo estimated from the brightest pixel; and ρg is the ground albedo, estimated
from the darkest pixel.
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However, the spectral-resolved irradiance requires modifications of the original method [24,25].
Indeed, the spectral effect of clouds is treated using the spectral corrections of the broadband effective
cloud albedo, which is carried out by the application of the radiative transfer model.

The CM-SAF surface solar radiation datasets, which have a native spatial resolution of
0.05◦ × 0.05◦, have been already validated in previous studies [26,27]. Besides this, a spatial
distribution of the errors for these datasets was found in a previous study [28], where the surface solar
radiation estimates derived from SAFs were compared with gridded daily solar radiation estimates
obtained from station measurements of Joint Research Centre Monitoring Agricultural ResourceS
(JRC-MARS) database.

The area requested for this work covers from 44◦N to 35.3◦N latitude and 9.5◦W to 3.5◦E longitude,
where the study region (mainland Spain) is included. The spatial resolution was 0.1◦ × 0.1◦ and the
mean daily data during 1991–2011 (21 years) were used. After this, for the clustering analysis, the
data were grouped in months in order to reduce the high temporal resolution. This restricts the
computational complexity and avoids fluctuations that can introduce noise into a climatological study.

On the other hand, PAR and GHI daily ground measurements were taken in order to validate the
model obtained at three sites: Plataforma Solar de Almería (PSA-CIEMAT), from 24 February 2016
to 22 June 2017; Centro de Desarrollo de Energías Renovables (CEDER-CIEMAT), from 26 January
2016 to 20 August 2017; and Santiago de Compostela (Santiago-EOAS, [29]), from 1 January 2016 to 31
December 2017.

Regarding the two first stations, the PAR sensor, an Eko ML-020P model, was installed over a
horizontal plane on the top of a weather house at 3 agl m of altitude. There were also other sensors
installed for the characterization of solar radiation (global, direct, and diffuse). The placement of
instruments was free of obstacles, such as mountains, buildings, and trees. Therefore, any radiation
measurement at these sites can represent the conditions above the canopy layer. GHI was recorded
using a CM21 (Kipp & Zonen) pyranometer at the first two stations. Data from those stations were
monitored and collected continuously every 1 min (on average).

Regarding the Santiago-EOAS station, the PAR at ground level was measured at this
meteorological site over a horizontal plane at 1.5 agl m by using a multiband GUV-2511 radiometer.
This site is located at the top of a hill in a flat grassland terrain without any obstacle in the surrounding
area. Therefore, any radiation measurement at this site can represent the conditions above the canopy
layer. The 10 min average PAR solar radiation data were collected. On the other hand, GHI data from
MeteoGalicia were measured using a pyrradiometer PH.SCHENK Type 8111.

For this work, all data were transformed into daily data.

3. Methodology

The methodology applied is based on the clustering analysis performed on the PAR/GHI ratio
estimations. The role of clustering is to identify regions with different cloud patterns throughout the
year and, thus, to develop specific models for each region that can be sensitive to the different cloud
dynamics of each region.

The clustering technique used for this study was k-means, which is one of the most widely used
methods. The k-means algorithm [30–32] is based on the minimization of the sum of squared distances
between the centroid of the group and each object of this group. k-means is implemented as follows:
(a) initial clusters are randomly selected; (b) distances between data and centroids of each cluster are
determined; (c) data are assigned to clusters so that their centroids are the nearest; (d) according to the
new data, new centroids are obtained for each cluster; and (e) the process is repeated until the sum of
distances between the data and centroids of clusters converges.

On the other hand, the optimal number of clusters for the clustering must be determined. Indeed,
the optimal number of clusters allows for identification of the most significant clusters. If a smaller
number of clusters was considered, certain zones with differing behavior would not be taken into
account. In contrast, considering too many clusters would make similarly behaving regions appear
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different. In this work, the optimal number was determined using the so-called silhouette method [33],
which validates the consistency within clusters.

After this, a linear regression model to obtain PAR from GHI, trained with satellite data, was
produced for each cluster. Finally, this model was validated with the available ground measurements
from three stations.

Next, the steps followed in the methodology, as well as the justification and limitations of the
applied method, are shown.

3.1. Steps Followed

The methodology includes the following steps:

• Step 1: Obtaining GHI and PAR Estimations

GHI and PAR estimations were obtained by summing the satellite-derived Kato bands. In the
case of PAR, the interval of bands is {7–16}. In the case of GHI, all bands provided for CM-SAF were
used, which had the interval {4–27}. The percentage of the radiation included in the three first bands,
which are not included in CM-SAF, can be considered to be negligible [34]. Regarding the five last
bands that were not included {28–32}, although the percentage included in this interval must be small,
an approximation was conducted considering a triangle whose base was the width of the interval and
height the radiation corresponding to Band 27. From these estimations, the PAR/GHI ratio is available
for the following analysis.

• Step 2: Clustering Analysis

The k-means algorithm was applied to the clustering analysis. As mentioned, the silhouette
method [33] was used in order to determine the optimal number of clusters. For each individual object
i of the cluster, the silhouette width value, s(i), is defined as

s (i) =
b(i)− a(i)

max (a(i), b(i))
(2)

where a(i) is the average dissimilarity of the object i regarding all other data within the same cluster;
b(i) is the lowest average dissimilarity of i regarding any neighbor cluster; and s(i) is in the interval
range of [−1,1]. If s(i) ≈ +1, then i is well matched within the group, as a(i) << b(i). In contrast, if s(i)
≈ −1, then i is mislabeled as a(i) >> b(i).When s(i) ≈ 0, i is between two groups because a(i) = b(i).
The quality of the whole structure of the cluster is measured by the average silhouette width (ASW),
which is defined as

ASW =
1
N

n

∑
i=1

s(i). (3)

Thus, the silhouette plots may be used to determine the natural number of clusters for a certain
dataset so the highest ASW shows the optimal number of clusters.

As indicated, the variable of interest for the analysis was the PAR/GHI ratio, which uses 12
features (12 months) at each grid point, so the distances between pairs of data were calculated
considering these 12 features.

• Step 3: Obtaining Regression Models

A regression linear model trained with only the satellite data within each region was produced.
The satellite-derived PAR and GHI values corresponding to the same grid point and same day were
the pairs of points used for the regression. Due to the temporal variability affecting the solar radiation,
a different model for each month (12 models for each region) was obtained.

• Step 4: Validation
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The regression models were validated with the ground measurements obtained for two years
(2016 and 2017) in the three sites previously indicated (PSA-CIEMAT, CEDER-CIEMAT, and
Santiago-EOAS). As mentioned, the linear relationship between PAR and GHI is usually the basis of
the empirical models used to obtain the PAR values. Thus, the coherence between both variables was
analyzed by checking this linear relationship and removing the data corresponding to extreme outliers.
These outliers are the points that are very far off from the regression line and the process to obtain
them was the following:

(a) Obtaining the regression line between PAR measured versus GHI measured;
(b) Obtaining the distances between the PAR measured values and PAR values obtained by the

regression line;
(c) Obtaining the interquartile range and the 25th and 75th percentiles of these distances; and
(d) Determining the points with a PAR measured that is either higher than the 75th percentile plus

three times the interquartile range or lower than the 25th percentile minus three times this
interquartile range. These points are the extreme values [35].

Once the data were filtered according to the former process, the GHI ground measurements were
introduced in the models obtained in Step 3 (Obtaining Regression Models) using the satellite-derived
estimates. After this, the obtained PAR values were compared with the measured PAR values at these
three stations.

3.2. Justification of Method

Satellite-derived irradiances (broadband and spectral) have uncertainties as a result of several
factors of different natures (systematic errors, approximations made in the model, etc.). In fact, CM-SAF
provides, apart from Kato bands, the global irradiance for the overall spectrum and this value is not
fully consistent with the approximation from the sum of Kato bands. Thus, it is very common to
correct and improve these retrievals by identifying bias and errors with the help of ground data.
The motivation to develop a PAR model from the satellite-derived data in which the more accurate
GHI ground measurements are used for its application is twofold: on the one hand, the improvement of
the retrieval provided by the satellite and on the other hand, the fact that Kato bands are not available
in the whole dataset of the CM-SAF product (CM-SAF only provides the Spectral-Resolved Irradiance,
containing the Kato bands, until 31 December 2011). Thus, this model will help to extend the usability,
allowing PAR computation from the whole period of global irradiance data in the CM-SAF database.

3.3. Limitations of Method

Two limitations can be found:

• The lack of more ground measurements prevents correcting the model using such measurements.
In fact, this work is supported by the Spanish Ministry of Economy, Industry and Competitiveness
(Project CGL2016-79284-P AEI/FEDER/UE), which is devoted to reducing this lack of
measurements via the installation of a network of stations.

• The assumption of the PAR/GHI ratio estimation provided by the satellite is accurate enough
and, thus, a model based on this ratio can be used to obtain PAR from ground GHI values.
This assumption is based on the fact that both satellite-derived radiation types are obtained by the
same method (summing Kato bands). However, there are no simultaneous ground and satellite
data that can be used to assess this accuracy.

4. Results and Discussion

4.1. Determination of the Optimal Number of Clusters According to the Silhouette Method

The silhouette width according to the number of clusters is shown in Figure 1.
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Figure 1. Average silhouette width versus number of clusters (from k-means).

The highest value of silhouette is obtained for two clusters and, thus, according to the (previously
mentioned) silhouette method, this value is the optimum number of clusters.

4.2. Clustering Analysis

Figure 2 shows the two regions based on the k-means algorithm, which uses the PAR/GHI ratio
as variable of interest.
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Figure 2. Clusters by the k-means algorithm (2 clusters).

The two regions are clearly different. One of them extends along the north of the Iberian Peninsula,
which also includes other punctual zones. The other region covers most of the territory.

In order to see the difference between both regions more clearly, complementary information
about the annual variability of the radiation was calculated. Table 2 shows the size and the mean
PAR/GHI values during different months for each cluster.
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Table 2. Number of points for the two clusters and mean PAR/global horizontal irradiance (GHI)
values for the different months (N: Number of points).

Region N January February March April May June July August September October November December

green 959 0.44 0.44 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.44 0.44
yellow 4515 0.43 0.43 0.42 0.43 0.42 0.42 0.42 0.42 0.42 0.43 0.43 0.43

The mean values of the small region (green) are slightly higher. In addition, the values
corresponding to winter months are also slightly higher than the values of other months.

The division obtained has also physical meaning since it is consistent with the global climatology
of Spain [27,36,37]. Indeed, in the northern edge of the territory, the climate is Oceanic, with continuous
clouds and precipitation over the year. However, in the rest of the territory, the Mediterranean climate
with hot summer is dominant. The climate of a region is obviously related to the solar radiation
reaching Earth’s surface and, thus, the clustering achieved must agree with these climatological
features. The north edge in Figure 2 is clearly associated with the Oceanic climate where abundant
clouds decrease the solar activity [38]. This activity increases in the rest of the territory, which is
characterized by a Mediterranean climate. However, we must recall that the variable used for the
study was the PAR/GHI ratio, and not the solar radiation. This ratio depends on the attenuation,
which affects the different bands of the solar spectrum. Regarding the spectral attenuation caused by
clouds, the scattering is nonselective [39] and, thus, there are no important differences between the
behavior of this ratio in cloudy and noncloudy zones. The case of absorption is different as water has
absorption mainly in the infrared region [40], which affects the attenuation of the global radiation, but
not the attenuation in the PAR band. Thus, in cloudy zones, an increase in the PAR/GHI ratio can
be expected.

Regarding the punctual zones of the green region, they belong to important mountain ranges
where cloudiness is abundant, which is the same as in the zone associated with the Oceanic climate.

4.3. Regression Model

The model obtained according to Step 3 (Obtaining Regression Models) of the methodology from
the satellite-derived PAR and GHI values is the following:

PAR = a GHI + b (4)

where a and b take the values shown in Table 3.

Table 3. Values of slope and intercept for the model.

January February March April May June July August September October November December

Green
cluster

a 0.41 0.41 0.40 0.41 0.39 0.39 0.39 0.40 0.41 0.42 0.41 0.42
b 0.99 1.76 2.75 2.88 7.61 8.69 10.18 6.38 4.50 1.68 1.36 0.65

Yellow
cluster

a 0.42 0.42 0.41 0.41 0.38 0.39 0.36 0.39 0.39 0.41 0.41 0.41
b 0.35 0.49 1.37 2.15 10.94 9.37 18.05 8.63 7.12 2.25 1.45 1.25

4.4. Validation

The former regression model was validated with ground measurements obtained at three
stations. Two of these stations are included within the larger cluster (yellow): PSA-CIEMAT and
CEDER-CIEMAT. The other station, Santiago-EOAS, belongs to the small cluster. Once the lags
were deducted, the numbers of points (days) for the study were: 483 from PSA-CIEMAT, 549
from CEDER-CIEMAT, and 368 from Santiago-EOAS. These stations are also shown in Figure 2.
These ground measurements were filtered according to Step 4 (Validation) of the methodology. At this
end, the regression lines between PAR ground measurements and GHI ground measurements were
obtained (Figure 3).
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Figure 3. PAR measured versus GHI measured for validation stations: (a–c) correspond to
PSA-CIEMAT, CEDER-CIEMAT, and Santiago-EOAS stations, respectively.

Figure 3 clearly shows the good linear relationship between both variables. Only one data point
of PSA-CIEMAT had to be removed according to the coherence filter applied due to some punctual
incidence on the ground sensors. The ground-measured and filtered GHI values at these places were
introduced in Equation (4) and the obtained PAR values were compared with the ground-measured
PAR values. This comparison can be appreciated in the corresponding correlograms (Figure 4).
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Figure 4. Correlograms for validation stations: (a–c) correspond to PSA-CIEMAT, CEDER-CIEMAT,
and Santiago-EOAS stations, respectively.

The statistics obtained from the correlograms: determination coefficients (R2), slopes, and
intercepts, as well as the mean bias errors (MBE) and the root mean square errors (RMSE) have
been included in Table 4, in order to assess the goodness degree of the model at the places with
ground measurements.
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Table 4. Statistics of validation.

Station R2 Slope Intercept MBE RMSE

(W/m2) (W/m2) (%) (W/m2) (%)

PSA 0.998 0.999 −2.223 −2.356 −2.3 2.827 2.8
CEDER 0.998 0.996 0.934 0.598 0.7 1.912 2.2

Santiago-EOAS 0.994 0.889 3.043 −4.741 6.8 7.247 10.4

In all cases, the correlation is very high (determination coefficients are higher than 0.99). However,
the stations of the center and south zone (PSA-CIEMAT and CEDER-CIEMAT) show better behavior
compared to the station of the north zone (Santiago de Compostela), especially in the case of
CEDER-CIEMAT. According to the results of Santiago-EOAS (MBE = −4.741 and slope = 0.889),
the model slightly underestimates the PAR in the north region. This underestimation could be due to a
low estimation of the satellite-derived PAR/GHI relation. However, since there are no simultaneous
ground and satellite data to assess the accuracy in the estimation of this relation, the mean value of
the PAR/GHI ratio has been obtained from the ground measurements and compared with the mean
values corresponding to the north zone (Table 2). The relation from the ground measurements (0.46) is
slightly higher than these means, which are in the range of 0.43–0.44, and this helps to understand
the underestimation observed. On the other hand, the errors shown in Table 4 can also be due to
the satellite-derived GHI error itself. Indeed, according to a previous study [28], higher errors in
GHI are appreciated in the northern zone of Spain, which is consistent with the findings of another
study [27], in which a similar behavior to those shown in Table 4 was observed. Indeed, in that study,
the satellite-derived GHI estimates were compared with the ground measurements at three stations of
Spain (sited at north zone, center, and Mediterranean coast) and according to the results, the highest
errors were located at the northern station and the lowest at the center station.

5. Conclusions

A model based on the known linear relationship between GHI and PAR was implemented to
estimate PAR from GHI measurements in this present study. The model has been developed using
satellite-derived GHI and PAR estimations, which is the main novelty of this work. These estimations
were achieved using the Kato bands provided for CM-SAF. The ratio between both variables was
considered as the variable of interest in order to split the study area into regions within which the
relation between PAR and GHI was similar. This consideration seems suitable since the division
obtained provided two regions in accordance with the climatological features of mainland Spain.
Indeed, the different regimes of clouds and precipitation characteristics of each climate affect the
ratio of PAR/GHI in a different way. On the one hand, the northern area, along with some small and
punctual zones, is associated with the Oceanic climate. On the other hand, the rest of the territory has
a dominant Mediterranean climate. In addition, a separation across different months was included
in order to consider the different seasonal behavior. In fact, according to Table 2, in both zones, the
values corresponding to the winter months are slightly higher than the values of other months.

The validation of the model carried out with the three stations (two included within the south
in the yellow zone) show correlograms with very high determination coefficients (higher than 0.99),
as well as slopes that are practically equal to 1 for the largest region. According to all statistics of
validation, the behavior of the model is better in this region, as the model slightly underestimates the
PAR in the north region. This underestimation could be due to a previous underestimation of the
relation of PAR/GHI from the satellite. Indeed, according to Table 2, the monthly mean values of the
north region (green) fluctuate between 0.43 and 0.44, while this relation measured at the station has a
mean value of 0.46. On the other hand, the errors in the spatial distribution shown in this table can
also be due to the satellite-derived GHI error distribution itself as the highest errors are located in the
northern zone and the lowest are in the center zone of the country.
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On the other hand, the proposed method could be used for obtaining PAR historical values from
the satellite-derived GHI estimates. The model coefficients have been derived using a long series of
daily data (21 years) and, thus, they should show high temporal stability, at least, for periods with
available satellite data.

Finally, according to the results of the work, there is the need for a PAR station network in order
to allow for the usual correction of the satellite-derived solar radiation estimations.
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