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Abstract

The rapid advancement of Deep Learning (DL) has led to increasingly complex neu-
ral network architectures in Artificial Intelligence (AI), often increasing computational
requirements and environmental impact. This master’s thesis presents a novel methodol-
ogy for optimizing the architecture of Inception modules within Convolutional Neural
Networks (CNNs) that process data at multiple scales using the Coral Reef Optimiza-
tion (CRO) algorithm, a bio-inspired evolutionary approach. Aligning with Green AI
principles that emphasize efficiency and sustainability, we integrate a dynamic Inception
module capable of adjusting branches, depths, and filter sizes with the CRO algorithm
to effectively explore and exploit the architectural search space. To promote smaller,
resource-efficient architectures, we introduce a custom evaluation metric that balances
accuracy and model complexity by penalizing excessive parameters. Experimental results
on the MNIST dataset demonstrate that the optimized models achieve competitive per-
formance, reducing the number of parameters by up to 40% while maintaining accuracy
comparable to standard models. This work contributes to the development of sustainable
AI models and provides a foundation for future research in efficient neural architecture
optimization.
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Resumen

El rápido avance del Aprendizaje Profundo (Deep Learning, DL) ha llevado a arqui-
tecturas de redes neuronales en Inteligencia Artificial (IA) cada vez más complejas, lo
que frecuentemente aumenta los requerimientos computacionales y el impacto ambiental.
Este Trabajo Fin de Máster (TFM) presenta una metodología novedosa para optimizar
la arquitectura de los módulos Inception dentro de Redes Neuronales Convolucionales
(CNNs) que procesan datos a múltiples escalas, utilizando el algoritmo de Optimización
de Arrecifes de Coral (CRO), un enfoque evolutivo bioinspirado. En alineación con
los principios de IA Verde, que destacan la eficiencia y la sostenibilidad, integramos un
módulo Inception dinámico, capaz de ajustar ramas, profundidades y tamaños de filtro,
junto con el algoritmo CRO para explorar y explotar de manera efectiva el espacio de
búsqueda arquitectónica. Para promover arquitecturas más pequeñas y eficientes en re-
cursos, introducimos una métrica de evaluación personalizada que equilibra la precisión
y la complejidad del modelo, penalizando el exceso de parámetros. Los resultados ex-
perimentales en el conjunto de datos MNIST demuestran que los modelos optimizados
logran un rendimiento competitivo, reduciendo el número de parámetros hasta en un 40%
mientras mantienen una precisión comparable a los modelos estándar. Este trabajo con-
tribuye al desarrollo de modelos de IA sostenibles y proporciona una base para futuras
investigaciones en la optimización eficiente de arquitecturas neuronales.
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Contributions

This master’s thesis makes the following unique contributions to the field of neural network
optimization:

1. Development of an Efficient CNN Optimization Methodology: Proposed a
novel approach that combines the Coral Reef Optimization (CRO) algorithm with
dynamic Inception modules to optimize Convolutional Neural Network (CNN) ar-
chitectures efficiently, addressing both performance and resource constraints.

2. Integration of Non-Square Kernels in Inception Modules: Introduced and
utilized non-square convolutional kernels within the Inception architecture to cap-
ture features at different scales and orientations, enhancing the model’s representa-
tional capacity and improving classification performance.

3. Creation of a Custom Evaluation Metric: Developed a novel evaluation metric
that balances accuracy with model complexity by incorporating the logarithm of
the total number of parameters, promoting the selection of smaller, more efficient
architectures in line with Green AI principles.

4. Achievement of Highly Efficient Architectures with Broader Applicabil-
ity: Demonstrated that the optimized architectures obtained through the proposed
methodology are up to two orders of magnitude smaller than top-performing mod-
els while maintaining competitive accuracy. This significant reduction in model size
not only contributes to resource efficiency but also opens the door to applying this
approach to other problems with high computational demands. By enabling the op-
timization of neural networks for computationally intensive tasks, this work paves
the way for developing efficient AI solutions across various domains where resource
constraints and carbon footprint are a critical concern.
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1 Introduction

1.1 Background and Motivation

The field of Deep Learning (DL) has revolutionized Artificial Intelligence (AI), enabling
breakthroughs in various domains such as computer vision, natural language processing,
and speech recognition [1]. Convolutional Neural Networks (CNNs), a class of deep neu-
ral networks particularly effective for image data, have been instrumental in advancing
computer vision tasks, achieving remarkable performance in image classification, object
detection, and segmentation [2], [3].

As CNN architectures have evolved, there has been a tendency towards increasing
depth and complexity to enhance performance. Models like ResNet [3] and GoogLeNet
[4] have demonstrated that architectural innovations can lead to significant improvements
in accuracy. However, the pursuit of higher performance often comes at the expense of
increased computational resources and energy consumption. This trend raises concerns
about the environmental impact and sustainability of deploying large-scale deep learning
models, especially with the growing demand for AI applications.

Additionally, designing optimal neural network architectures is a complex task due to
the vast number of possible configurations. Traditional methods rely on manual tuning
and expert intuition, which may not explore the full range of potential architectures.
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1.2. Green AI and the Need for Efficient Models

1.2 Green AI and the Need for Efficient Models

The concept of Green AI has emerged in response to the escalating computational costs
and environmental impact associated with deep learning [5]. Green AI refers to AI re-
search that yields novel results while considering computational efficiency, promoting
environmentally friendly approaches.

The increasing computational demands of deep learning models have led to significant
energy consumption and carbon emissions, raising concerns about the sustainability of
AI development [6]. For instance, training a single large-scale model can emit as much
carbon dioxide as five cars over their lifetimes [6].

Green AI advocates for the development of AI models that are not only accurate but
also efficient in terms of computational resources and energy consumption. By emphasiz-
ing the reduction of energy usage and carbon footprint, Green AI encourages researchers
and practitioners to consider the environmental implications of their models.

Key principles of Green AI include:

• Energy Efficiency: Minimizing the energy required for training and inference to
reduce environmental impact [6].

• Transparency: Reporting the computational cost and carbon footprint of AI re-
search to promote awareness and accountability [5].

• Performance-Efficiency Trade-off : Balancing model accuracy with computa-
tional efficiency to achieve sustainable AI development [5].

By adopting these principles, the AI community can work towards reducing the envi-
ronmental impact of AI technologies and promoting sustainability.

1.3 GoogLeNet and the Inception Module

GoogLeNet, introduced by Szegedy et al. [4], marked a significant milestone in CNN
architecture design. The core innovation of GoogLeNet is the Inception module, which
allows the network to capture multi-scale features by performing parallel convolutions
with different filter sizes within the same layer.

The traditional Inception module processes input data through multiple branches, each
with different kernel sizes (e.g., 1×1, 3×3, 5×5), and concatenates the outputs along the
channel dimension. Additionally, a pooling operation (e.g., 3 × 3 max pooling) is often
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1. Introduction

included as one of the branches. This structure enables the network to capture both local
and global features at various scales, improving its ability to represent complex patterns.

Figure 1.1 illustrates the architecture of the traditional Inception module.

Figure 1.1: Architecture of the traditional Inception module as introduced in GoogLeNet
[4].

Over the years, several versions of the Inception architecture have been proposed, such
as Inception-v2, Inception-v3 [7], and Inception-v4 [8], each introducing refinements to
improve performance and efficiency.

The architectural changes introduced by Inception-v3 include:

• Factorized Convolutions: Inception-v3 replaces larger convolutions with smaller,
factorized ones. For example, instead of a 5× 5 convolution, it uses two consecutive
3 × 3 convolutions, reducing computational cost and allowing for deeper networks
[7]. Figures 1.2 and 1.3 illustrate the differences.
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1.3. GoogLeNet and the Inception Module

Figure 1.2: Original Inception module. Reproduced from [7].

Figure 1.3: Inception module where each 5 × 5 convolution is replaced by two 3 × 3
convolutions. Reproduced from [7].

4



1. Introduction

• Asymmetric Convolutions: Further computational efficiency is achieved by fac-
torizing convolutions into asymmetric convolutions. For instance, a 3×3 convolution
can be replaced with a 1× 3 convolution followed by a 3× 1 convolution, reducing
parameters and speeding up computation.

• Auxiliary Classifiers with Regularization: Inception-v3 includes auxiliary clas-
sifiers to mitigate the vanishing gradient problem. These classifiers incorporate
batch normalization and label smoothing to enhance regularization and aid conver-
gence:

1. Batch Normalization: Extensive use of batch normalization [9] accelerates
training and stabilizes the model by normalizing layer inputs, reducing internal
covariate shift.

2. Label Smoothing: Label smoothing [7] is introduced as a regularization
technique to prevent the model from becoming overly confident by assigning a
small probability to incorrect labels during training, improving generalization.

The evolution from the traditional Inception module to Inception-v3 reflects a shift
towards deeper and more efficient architectures. Despite these advancements, the design
of Inception modules has been largely manual. Researchers have selected the number of
branches, filter sizes, and other architectural parameters based on intuition and empirical
testing, without exhaustively exploring all possible configurations.

The manual design process limits the exploration of the vast architectural space. Given
the numerous combinations of branch numbers, filter sizes, and layer depths, many poten-
tially optimal configurations remain undiscovered. This limitation underscores the need
for automated methods to optimize the Inception module architecture efficiently, enabling
the discovery of novel configurations that could offer better performance or efficiency.

5
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1.4 Evolutionary Metaheuristic Algorithms and Coral

Reef Optimization

Metaheuristic algorithms are high-level strategies designed to solve complex optimization
problems by efficiently exploring large search spaces [10]. Inspired by natural processes,
these algorithms are particularly useful when traditional optimization techniques are in-
feasible due to problem complexity.

Evolutionary algorithms, a subset of metaheuristics, mimic natural evolution to evolve
solutions over successive generations [11]. They utilize mechanisms such as selection,
crossover, and mutation to explore the search space and have been successfully applied
across various fields.

The Coral Reef Optimization (CRO) algorithm is a bio-inspired evolutionary algorithm
that simulates the reproduction and settlement processes of corals in a reef ecosystem [12].
CRO balances exploration and exploitation while maintaining diverse solution configura-
tions within the search space.

In a natural coral reef ecosystem, corals reproduce both sexually and asexually, with
larvae competing for space to settle on the reef. Predation and environmental factors
influence coral survival, promoting biodiversity and adaptability.

The CRO algorithm models these processes as follows:

• Initialization: The reef is initialized with a population of corals (candidate solu-
tions), each occupying a space in a reef matrix.

• External Sexual Reproduction (Broadcast Spawning): Pairs of corals release
gametes into the water column, where fertilization occurs randomly. This process
is modeled by selecting pairs of corals to exchange genetic information through
crossover, creating new larvae (offspring) that combine traits from both parents,
enhancing exploration.

• Internal Sexual Reproduction (Brooding): Corals not involved in broadcast
spawning undergo brooding. Each coral produces a larva through mutation of its
own solution representation. The mutation process introduces variability by altering
architectural parameters, allowing the coral to explore new solutions close to its
current state.

• Asexual Reproduction (Budding): Some corals reproduce asexually through
budding, creating identical or slightly mutated copies of themselves. This process
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1. Introduction

allows exploitation of good solutions by preserving and slightly varying high-fitness
individuals.

• Larvae Settlement: New larvae attempt to settle in the reef, occupying free spaces
or replacing less fit corals based on fitness levels.

• Predation and Catastrophes: Low-fitness corals are probabilistically removed,
simulating predation and environmental events, preventing premature convergence
and maintaining diversity.

Figure 1.4 presents the flow diagram of the CRO algorithm, illustrating the sequence
of operations within the reef ecosystem.

Figure 1.4: Flow diagram of the CRO algorithm as introduced in [12]

By simulating these ecological processes, CRO effectively searches the solution space
for optimal or near-optimal solutions. Its ability to balance diversification (exploration)
and intensification (exploitation) makes it suitable for complex optimization tasks.
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Since its introduction, CRO has been successfully applied in various optimization prob-
lems. For instance, Durán-Rosal et al. [13] employed a statistically driven CRO algorithm
to achieve optimal size reduction of time series data, minimizing information loss.

In this project, we apply the CRO algorithm to optimize the architecture of the Incep-
tion module within CNNs. By encoding different architectural configurations as corals,
the algorithm explores a wide range of designs. The three reproduction processes allow
for diverse search strategies:

• Broadcast Spawning: Enhances exploration by combining genetic material from
different corals, potentially creating entirely new architectures.

• Brooding: Allows individual corals to explore variations of themselves through
mutation, refining solutions in their vicinity.

• Budding: Exploits existing good solutions by cloning the fittest corals, preserving
their architecture for the next generation.

The settlement and predation mechanisms ensure that only the most promising archi-
tectures survive to subsequent generations, maintaining a balance between exploration of
new solutions and exploitation of known good ones.

This approach enables automated discovery of efficient Inception module configura-
tions that may not be apparent through manual design. Leveraging natural optimization
strategies of coral reef ecosystems, we aim to enhance CNN performance while adhering
to Green AI principles by promoting resource-efficient architectures.

8



1. Introduction

1.5 Research Objectives

The primary objective of this master’s thesis is to develop a methodology that integrates
the CRO algorithm with dynamic Inception modules to optimize CNN architectures effi-
ciently.

Specific goals include:

1. Develop a CRO-Based Optimization Framework: Create a framework utiliz-
ing the CRO algorithm to automatically optimize the Inception module architecture,
aiming to improve performance while reducing computational complexity.

2. Incorporate Non-Square Kernels: Introduce non-square convolutional kernels
within Inception modules to enhance the network’s ability to capture features at
different scales and orientations. Traditional Inception modules require all branches
to produce feature maps of the same spatial dimensions for concatenation. Incor-
porating non-square kernels poses a challenge in maintaining consistent dimensions,
as they can alter height and width differently. Overcoming this involves careful
design and padding strategies to ensure outputs align correctly. Successfully in-
tegrating non-square kernels enables the network to learn diverse and anisotropic
features, capturing patterns elongated in specific directions, improving recognition
of complex patterns and textures.

3. Design a Custom Evaluation Metric: Develop a novel evaluation metric bal-
ancing model accuracy with complexity, incorporating a penalty term based on the
logarithm of the number of parameters to promote efficient architectures in line with
Green AI principles.

4. Achieve Highly Efficient Architectures with Broader Applicability: Demon-
strate that the optimized architectures obtained are significantly smaller than top-
performing models while maintaining competitive accuracy. This reduction con-
tributes to resource efficiency and enables application of this approach to other
problems with high computational demands. By optimizing neural networks for
computationally intensive tasks, this work paves the way for efficient AI solutions
across domains where resource constraints are critical.
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2 Materials and Methods

This chapter details the methodologies and materials employed in this research to optimize
Convolutional Neural Network (CNN) architectures using the Coral Reef Optimization
(CRO) algorithm. We begin by discussing related works that laid the foundation for this
project. Then, we introduce the design of the dynamic Inception module, highlighting
how its parameters are adapted for optimization. We delve into the implementation of
the CRO algorithm, explaining how it is adapted to effectively search the architectural
space, with a focus on the representation of solutions within the algorithm. Visualization
techniques for the Inception modules are presented to aid in understanding the evolved
architectures. Finally, we introduce a novel custom evaluation metric that balances model
accuracy with complexity, aligning with Green AI principles.

2.1 Related Works

The current project builds upon previous studies that explored optimization techniques
for neural network architectures with a focus on Green AI principles. These works progres-
sively increased the flexibility and efficiency of Inception modules, laying the groundwork
for the methodology presented in this thesis.

2.1.1 Optimizing Neural Network Architectures with Population-

Based Incremental Learning

Vasco-Carofilis et al. [14] addressed the challenge of selecting optimal hyperparameters
in neural network design, particularly within complex modules like the Inception mod-
ule. They leveraged Population-Based Incremental Learning (PBIL) [15], an algorithm
that combines aspects of genetic algorithms and competitive learning. PBIL maintains

11
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a probability vector that guides the generation of a population of individuals, in this
case, configurations of neural network hyperparameters. Over multiple generations, the
probability vector is updated based on the performance of the top individuals, incremen-
tally converging towards a configuration that minimizes prediction error while optimizing
resource efficiency.

Key aspects of their methodology included:

• Binary Encoding and Gray Coding: Hyperparameters were encoded in binary
to facilitate evolutionary operations. To avoid Hamming cliffs, they employed Gray
coding, ensuring smooth transitions between hyperparameter values and preventing
premature convergence.

• Application to the Inception Module: PBIL was used to optimize the Inception-
A block, exploring kernel sizes, pooling layers, and filter configurations. The opti-
mization focused on minimizing redundant computations and evaluating only valid
configurations to reduce computational waste.

• Low-Carbon Footprint Optimization: The approach emphasized energy-efficient
AI, highlighting PBIL’s capacity to explore high-quality configurations without ex-
haustive searches, contributing to sustainable AI development.

Using the MNIST dataset as a benchmark, their optimized Inception-A block achieved
high accuracy with a reduced carbon footprint, validating the effectiveness of PBIL for
neural network optimization.

2.1.2 Improving PBIL Optimization of the Inception Module

García-Victoria et al. [16] built upon this work by proposing an enhanced methodology
to optimize the hyperparameters of the Inception-A block using PBIL. They introduced a
special codification scheme to avoid generating incompatible kernel sizes in the generated
individuals, ensuring that all candidate architectures were valid and could be effectively
evaluated.

Key contributions of their study included:

• Special Codification for Kernel Sizes: By implementing a codification method
that prevented incompatible kernel sizes from being generated, they ensured the
feasibility of all individuals in the population, thereby increasing the efficiency of
the optimization process.

12



2. Materials and Methods

• Single-Epoch Training for Optimization: To reduce computational cost and
carbon footprint, they evaluated each candidate model by training it for only a
single epoch during the hyperparameter optimization phase. This approach provided
sufficient feedback to the PBIL algorithm while significantly reducing execution
time.

• Enhanced Flexibility: The study allowed for greater flexibility in the Inception
module by optimizing a wider range of hyperparameters, further exploring the ar-
chitectural space.

Their work demonstrated that careful design of the encoding scheme and evaluation
strategy in PBIL could lead to more efficient optimization of complex neural network
modules, further aligning with Green AI objectives.

2.1.3 Implications for the Current Work

These previous studies laid the foundation for the current project by demonstrating the
effectiveness of evolutionary algorithms in optimizing neural network architectures while
considering computational efficiency and environmental impact. The advancements made
in optimizing the Inception module using PBIL, especially the special codification to avoid
invalid configurations and the use of single-epoch training for evaluation, highlighted the
potential of evolutionary strategies in reducing computational costs and improving model
performance.

Building upon these methodologies, the current work employs the CRO algorithm to
further enhance the architectural optimization of Inception modules in CNNs. The choice
of CRO was motivated by the student’s prior experience with the algorithm in his un-
dergraduate final degree project, where CRO was successfully applied to optimize neural
network weights and biases in an Extreme Learning Machine[17] model. CRO’s ability
to maintain diverse configurations of solutions within the same search space makes it
particularly suitable for optimizing complex neural network architectures. By integrat-
ing dynamic architectural design with evolutionary optimization and leveraging lessons
learned from previous PBIL implementations, this project aims to develop models that
are both effective and resource-efficient, advancing the application of nature-inspired al-
gorithms in deep learning.

13
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2.2 Dynamic Inception Module Design

2.2.1 Architecture Overview

Convolutional Neural Networks (CNNs) are a class of deep neural networks commonly
used for analyzing visual imagery. A key component of CNN architectures is the Inception
module, initially introduced in the GoogLeNet architecture [4]. The Inception module
allows the network to capture multi-scale features by processing the input through multiple
parallel paths, each applying convolutions with different kernel sizes (e.g., 1 × 1, 3 × 3,
5× 5), and then concatenating the outputs along the channel dimension. This structure
enables the network to extract features at various scales and increases the diversity of
features learned at each layer.

In our work, we implement a dynamic version of the Inception module, where archi-
tectural parameters are not fixed but are subject to optimization by the CRO algorithm.
By allowing parameters such as the number of branches, branch depths, and filter sizes to
vary, we enable exploration of a vast architectural space that could lead to more efficient
and effective network designs.

2.2.2 Parameterization of the Inception Module

Each Inception module is defined by the following parameters:

• Number of Branches: The total number of parallel convolutional paths. Increas-
ing the number of branches can enhance the module’s ability to capture diverse
features.

• Branch Depth: The number of layers (depth) in each branch. Deeper branches
can capture more abstract and complex features.

• Filter Sizes: The kernel sizes for convolutions in each layer, allowing for non-square
kernels (e.g., 3 × 5, 5 × 7). Varying filter sizes affects the receptive field of the
convolutions, enabling the detection of features of different shapes and orientations.

• Filter Channels: The number of output channels (filters) for each convolutional
layer, impacting the capacity of the network to learn various features.

• Pooling Layers: Optional inclusion of pooling layers within branches, which can
reduce spatial dimensions and help capture invariant features.

14



2. Materials and Methods

By varying these parameters, we create a diverse set of possible architectures that the
CRO algorithm can explore. This flexibility allows the optimization process to discover
configurations that balance performance and efficiency.

2.2.3 Implementation Details

The dynamic Inception module is implemented using PyTorch, an open-source machine
learning library widely used for developing and training neural network models. PyTorch
provides flexibility and ease of use, which is essential for implementing dynamic architec-
tures.

Branch Construction

Each branch in the Inception module is constructed as a sequence of layers:

1. Convolutional Layers: Each layer applies a convolution operation with specified
kernel sizes and channels. Padding is calculated to maintain spatial dimensions when
necessary, ensuring that feature maps from different branches can be concatenated.

2. Pooling Layers: Optionally added after convolutional layers to reduce spatial
dimensions and capture invariant features. Max pooling is used within our project.

Non-Square Kernels

Traditional convolutional layers often use square kernels (e.g., 3× 3). However, we incor-
porate non-square kernels to enable the network to capture features that vary more
prominently in one dimension than the other. This flexibility enhances the representa-
tional capacity of the network by allowing the detection of elongated or directional pat-
terns, which can be particularly useful for recognizing features like strokes in handwritten
digits.

Non-square kernels have been effectively used in previous works to capture directional
information [7], although their implementation was purely manual. By automating this
through the CRO algorithm, we can systematically explore a wider range of kernel shapes.

Forward Pass and Output Concatenation

During the forward pass:
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1. The input tensor is passed through each branch independently.

2. Outputs from all branches are adjusted to have matching spatial dimensions, if
necessary, using appropriate padding, stride adjustments, or adaptive pooling.

3. The adjusted outputs are concatenated along the channel dimension to form the
final output of the Inception module.

Ensuring consistent spatial dimensions across branches is crucial for the concatenation
step. We carefully design the convolutional and pooling layers to maintain alignment,
which is essential for the integrity of the network architecture.

2.2.4 Integration with the Overall Model

The dynamic Inception module is integrated into a CNN designed for the MNIST dataset
[18], which consists of 28 × 28 grayscale images of handwritten digits from 0 to 9. The
overall architecture of the CNN includes:

• Stem: Initial convolutional and pooling layers that process the raw input images
and extract basic features.

• Dynamic Inception Module: The core component of the network, whose archi-
tecture is optimized by the CRO algorithm.

• Head: Comprises global average pooling and fully connected layers that produce
the final classification output into the 10 digit classes.

Figure 2.1 illustrates the architecture with our proposed dynamic Inception module.
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Figure 2.1: Overall CNN architecture design for MNIST classification problem with Dy-
namic Inception Module.

The number of output channels from the Inception module is calculated based on the
output channels of each branch’s last layer, ensuring compatibility with subsequent layers
in the network.
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2.3 Coral Reef Optimization Algorithm

2.3.1 Overview

The CRO algorithm is a bio-inspired metaheuristic that simulates the natural processes
of coral reefs, including reproduction, settlement, and predation [12]. Metaheuristic algo-
rithms are high-level, problem-independent algorithmic frameworks that guide the search
process towards optimal solutions [19]. They are particularly effective for complex opti-
mization problems where traditional methods may be impractical due to the size or nature
of the search space.

In our implementation, we adapt the CRO algorithm to optimize the architecture
of Inception modules within CNNs. By encoding different architectural configurations as
corals, the algorithm efficiently searches the vast architectural space to find configurations
that balance performance with computational efficiency.

2.3.2 Solution Representation

In the context of the CRO algorithm, each coral in the reef represents a candidate so-
lution, a specific configuration of the dynamic Inception module within the CNN archi-
tecture. The representation of these solutions is crucial for the effective operation of the
algorithm, particularly during reproduction and mutation processes.

Each solution (coral) is encoded as a data structure that encapsulates all the parameters
defining the Inception module’s architecture. The key components of this representation
are:

• Number of Branches: An integer specifying how many parallel branches are
present in the Inception module.

• Branches Parameters: A list of dictionaries, where each dictionary contains the
parameters for one branch:

– Depth: The number of layers (convolutional and pooling) in the branch.

– Filter Sizes: A list of tuples, each representing the height and width of the
convolutional kernels at each layer (e.g., (3, 5)).

– Filter Channels: A list of integers specifying the number of output channels
(filters) at each layer.

– Use Pooling: A boolean indicating whether a pooling layer is included in the
branch.
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Example of Solution Representation

As an illustrative example, consider a coral representing an Inception module with three
branches. The representation might be as follows:

• Number of Branches: 3

• Branches Parameters:

1. Branch 1:

– Depth: 2

– Filter Sizes: [(3, 3), (5, 5)]

– Filter Channels: [32, 64]

– Use Pooling: True

2. Branch 2:

– Depth: 3

– Filter Sizes: [(1, 7), (7, 1), (3, 3)]

– Filter Channels: [16, 16, 32]

– Use Pooling: False

3. Branch 3:

– Depth: 1

– Filter Sizes: [(1, 1)]

– Filter Channels: [64]

– Use Pooling: False

This representation captures all necessary information to construct the correspond-
ing Inception module within the CNN architecture. By encoding the solutions in this
structured manner, we enable efficient manipulation of the architectures during the opti-
mization process.

2.3.3 Algorithm Implementation

CRO operates on a virtual reef represented as a two-dimensional grid of size N × M .
Each cell in the grid can be occupied by a coral (candidate solution) or remain empty.
The initial population of corals is randomly generated and placed in the reef based on an
initial occupation ratio ρ0.

Key parameters of the algorithm include:

19



2.3. Coral Reef Optimization Algorithm

• ρ0: Initial occupation ratio of the reef, representing the fraction of the reef initially
occupied.

• Fb: Fraction of corals involved in external sexual reproduction (broadcast spawning).

• Fa: Fraction of corals involved in asexual reproduction (budding).

• Pa: Probability of a coral reproducing asexually during budding.

• Fd: Fraction of corals subject to depredation (predation), which removes less fit
individuals.

• Pd: Probability of depredation occurring.

• κ: Maximum number of attempts a larva makes to settle in the reef.

• Mutation Rate: Probability of mutations occurring during brooding, introducing
variability.

• Maximum Generations: Maximum maximum of generations the algorithm evolves.

• Maximum no improvement: Optional number of generations without an update
on the best coral to early stop the evolution.

2.3.4 Initialization

The reef is initialized by randomly generating a population of corals (candidate solutions)
based on the initial occupation ratio ρ0. For each coral, the solution representation is
constructed by:

1. Selecting a random number of branches, typically between 2 and 4.

2. For each branch:

• Randomly determining the depth (number of layers), within a predefined range
(e.g., 1 to 4 layers).

• Assigning random filter sizes for each layer, chosen from a set of possible kernel
sizes (e.g., heights and widths of 1, 3, 5, 7, or 9).

• Assigning random numbers of filter channels for each layer, typically within a
reasonable range (e.g., 4 to 64 filters).

• Randomly deciding whether to include a pooling layer in the branch, with a
uniform probability.
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Each randomly generated solution is evaluated using the custom fitness function (de-
scribed in Section 2.5) to assign an initial fitness value.

2.3.5 Reproduction Mechanisms

CRO models three main reproduction mechanisms to generate new candidate solutions:

Broadcast Spawning (External Sexual Reproduction)

A fraction Fb of the corals participates in broadcast spawning. Pairs of corals re-
lease gametes into the water column, where fertilization occurs randomly. This process
is modeled by selecting pairs of corals to exchange genetic information through crossover
operations, producing new larvae. The crossover involves combining architectural param-
eters from both parents to create offspring with mixed traits, enhancing exploration of
the search space.

Crossover Operation:

The crossover between two parent solutions involves:

1. Determining the number of branches for the offspring, randomly chosen within the
range of the parents’ branch counts.

2. For each branch in the offspring:

• Randomly selecting a corresponding branch from one of the parents.

• Deep copying the selected branch’s parameters (depth, filter sizes, filter chan-
nels, use of pooling) into the offspring.

Brooding (Internal Sexual Reproduction)

Corals not involved in broadcast spawning undergo brooding. Each coral produces a
larva through mutation of its own solution representation. The mutation process intro-
duces variability by altering architectural parameters, allowing the coral to explore new
solutions close to its current state.

Mutation Operation:

The mutation involves:

• With a certain probability, given by the mutation rate, modifying various architec-
tural parameters:

21



2.3. Coral Reef Optimization Algorithm

– Changing the depth of branches.

– Altering filter sizes at specific layers, selecting new kernel sizes from the pre-
defined set.

– Adjusting the number of filter channels at specific layers.

– Flipping the boolean flag for the use of pooling layers.

• Additionally, with a random probability:

– Adding a new branch to the Inception module, with randomly generated pa-
rameters.

– Removing an existing branch, if the number of branches is above a minimum
threshold.

The mutation process allows the exploration of new architectural configurations, which
might lead to better performance.

Example of Genetic Operations

Consider two parent solutions with the following branch counts:

• Parent 1: 3 branches

• Parent 2: 4 branches

During crossover, the offspring might be assigned a branch count of 3 (randomly chosen
between 3 and 4). For each of the 3 branches, the offspring randomly selects and copies
the branch parameters from one of the parents.

During mutation, a coral might have one of its branches modified by changing the filter
size at a particular layer from (3, 3) to (5, 5), or it might have a new branch added to its
architecture.

Budding (Asexual Reproduction)

A fraction Fa of the fittest corals is considered for budding, a form of asexual reproduction
where offspring are clones of the parent. However, budding occurs only if a random
probability check satisfies the asexual reproduction probability Pa. This mechanism helps
preserve high-quality solutions within the population while introducing stochasticity.

The budding process involves:
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1. Selecting the top Fa fraction of corals based on fitness.

2. For each selected coral:

• Generating a random number between 0 and 1.

• If the random number is less than Pa, the coral reproduces via budding, pro-
ducing an identical larva.

2.3.6 Larvae Settlement and Reef Update

The larvae produced during reproduction attempt to settle in the reef. Each larva has up
to κ attempts to find a suitable location:

1. Settlement Attempt: A random position in the reef is selected.

2. Settlement Criteria:

• If the position is empty, the larva settles there.

• If the position is occupied by a coral with lower fitness, the larva replaces the
existing coral.

• If the position is occupied by a coral with equal or higher fitness, the larva fails
to settle in this attempt.

3. Failed Attempt Handling:

• The larva’s settlement attempt counter (κ decreases by one, updating the re-
maining attempts parameter.

• If the larva’s counter is greater than zero after the failing attempt, it remains
in the larvae pool for future settlement attempts in subsequent generations.

• If the larva’s counter reaches zero, it is discarded, simulating mortality due to
environmental challenges.

The larvae pool is a collection of larvae that have not yet settled and have remaining
settlement attempts. By retaining larvae the algorithm ensures that potentially valuable
solutions are not prematurely discarded due to random chance.
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2.3.7 Predation

To simulate natural predation and maintain diversity, a fraction Fd of the weakest corals
is probabilistically removed from the reef. This process prevents premature convergence
and allows exploration of new regions in the search space.

The predation mechanism involves:

1. Sorting the corals based on fitness, identifying the least fit individuals.

2. For each identified coral:

• Generating a random number between 0 and 1.

• If the random number is less than Pd, the coral is removed from the reef,
creating space for new larvae to settle.

Adjusting the predation probability allows control over the selective pressure in the
ecosystem. A higher predation probability can increase diversity but may also disrupt the
retention of good solutions.

2.3.8 Fitness Evaluation

The fitness of each coral (solution) is evaluated using the custom fitness function de-
scribed in Section 2.5, where the accuracy measured is the classification accuracy on the
MNIST validation dataset. During the optimization process, we partially train each
candidate model for a single epoch to estimate its potential without incurring excessive
computational costs.

Partial training allows us to estimate the performance of each candidate model with-
out the computational expense of fully training it. This approach is common in neural
architecture search [20], where the goal is to evaluate many architectures efficiently.

2.3.9 Algorithm Termination

The CRO algorithm runs for a predefined maximum number of generations or until a
convergence criterion is met, such as no improvement in the best solution over several
generations.

Computational Resource Considerations: Due to limited computational resources,
we configured the algorithm with moderate reef sizes, population counts, and a reasonable
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number of generations. Despite these limitations, the implementation is designed to be
scalable and can be extended to larger configurations and more complex systems when
more computational power is available.

2.4 Visualization of Inception Modules

Visualizing the architectures of the Inception modules aids in understanding the con-
figurations discovered by the CRO algorithm. It provides insights into how different
architectural choices impact performance and helps interpret the optimization process.

2.4.1 Visualization Methodology

We utilize the Graphviz library [21] to create graphical representations of the Incep-
tion modules. Graphviz is an open-source graph visualization software that represents
structural information as diagrams of abstract graphs and networks.

The visualization process involves:

1. Graph Construction: For each Inception module, we construct a directed acyclic
graph (DAG) where nodes represent layers (e.g., convolutional layers, pooling lay-
ers), and edges represent the flow of data between layers.

2. Branch Representation: Each branch of the Inception module is represented as
a sequence of nodes connected by edges, clearly delineated from other branches.

3. Layer Details: Each node is annotated with details such as layer type (e.g.,
Conv2D, MaxPooling), kernel size, number of filters (channels).

4. Output Concatenation: The outputs of all branches are connected to a single
node representing the concatenation operation, illustrating how the module com-
bines the features extracted by each branch.

The visualizations are saved as images and organized by generation, allowing for track-
ing the evolution of architectures over time. Additionally, the best solutions (coral ar-
chitectures) are saved separately whenever there is an update of the best reef solution,
enabling rapid comparison of architectural differences.

Figure 2.2 presents an example of a visualized Inception module architecture generated
by the CRO algorithm.
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Figure 2.2: Visualization of an Inception module architecture after CRO algorithm com-
pletion.

The figure illustrates the diversity in branch configurations, including varying depths,
filter sizes, and the inclusion of pooling layers.

2.5 Custom Evaluation Metric

2.5.1 Rationale

To align with Green AI principles [5], we design a novel custom evaluation metric that
balances model accuracy with computational efficiency. The metric penalizes models with
a higher number of parameters, encouraging the selection of architectures that achieve
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good performance with lower complexity. This approach is essential because larger models
consume more computational resources, leading to increased energy consumption and
environmental impact.

While previous works have considered model size and computational cost in archi-
tecture search [22], our metric uniquely incorporates a logarithmic penalty term on the
number of parameters, providing a balance between encouraging smaller models and main-
taining high accuracy.

2.5.2 Metric Definition

The fitness function F used to evaluate each model is defined as:

F = Accuracy − α× log(Number of Parameters) (2.1)

Where:

• Accuracy: The classification accuracy of the model on the MNIST validation
dataset.

• α: A scaling factor that controls the strength of the penalty for model complexity.

• Number of Parameters: The total number of trainable parameters in the model.

The complexity penalty term introduces a logarithmic penalty based on the model
size. The logarithmic function ensures that the penalty increases with the number of
parameters but does not dominate the fitness score for larger models unless they are
significantly more complex.

The scaling factor α balances the trade-off between accuracy and complexity. A higher
value of α places more emphasis on reducing model size, potentially at the expense of
accuracy, while a lower value prioritizes accuracy over size reduction.

2.5.3 Justification

Traditional evaluation metrics often focus solely on accuracy, potentially leading to the
selection of overly complex models. By incorporating a complexity penalty, our custom
metric promotes the discovery of models that offer a better balance between performance
and efficiency, adhering to the principles of sustainable AI development.
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The novelty of our custom metric lies in its ability to guide the optimization process
towards efficient architectures that are competitive in performance but significantly less
resource-intensive. By integrating this metric into the CRO algorithm, we enable the
discovery of models that are not only accurate but also align with Green AI objectives.

To the best of our knowledge, the specific formulation of the fitness function with a log-
arithmic penalty on the number of parameters in the context of CRO-based optimization
of Inception modules is novel and has not been previously reported in the literature.
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3 Experimental Results

This chapter presents the experimental results of applying the Coral Reef Optimization
(CRO) algorithm to optimize dynamic Inception modules within Convolutional Neural
Networks (CNNs) for the MNIST digit classification task. The primary focus is to evaluate
the effectiveness of the proposed methodology in balancing classification accuracy and
model complexity, adhering to Green AI principles outlined in Chapter 1.

3.1 Experimental Setup

3.1.1 Dataset Selection and Justification

The MNIST dataset [18] was selected for this study due to several compelling reasons:

• Ease of Implementation: MNIST is widely recognized for its simplicity and
standardized format, allowing for straightforward preprocessing and rapid experi-
mentation.

• Benchmarking and Comparability: The dataset serves as a common benchmark
within the machine learning community. Extensive literature provides a wealth of
baseline results, facilitating direct comparison of new models with state-of-the-art
approaches.

• Educational Value: MNIST provides an excellent platform to validate novel
methodologies before scaling to more complex datasets. It allows researchers to
focus on architectural innovations and optimization techniques without the compu-
tational overhead associated with larger datasets.
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The availability of public leaderboards, such as those compiled by Papers with Code,
enables the assessment of model performance against top-performing architectures. This
comparability is crucial for evaluating the effectiveness of our CRO-optimized models
within the context of existing research.

3.1.2 Coral Reef Optimization Parameters

The CRO algorithm parameters are configured based on previous studies [13], [23] to
ensure effective exploration and exploitation of the architectural search space. The pa-
rameters are as follows:

• Reef Size: 20×10 grid, resulting in a population of 200 corals (candidate solutions).

• Initial Occupation Ratio (ρ0): 0.8, meaning 80% of the reef is initially occupied.

• Broadcast Fraction (Fb): 0.98, proportion of corals involved in broadcast spawn-
ing.

• Asexual Fraction (Fa): 0.05, proportion of corals reproducing asexually.

• Asexual Probability (Pa): 0.001, probability of a coral reproducing by budding.

• Predation Fraction (Fd): 0.05, fraction of corals subject to predation.

• Predation Probability (Pd): 0.01, probability of a coral being removed due to
predation.

• Maximum Generations: 100.

• Maximum No Improvement (max_no_improve): 40, the number of generations
without improvement before early stopping.

• Larvae Settlement Attempts (κ): 3.

• Mutation Probability: 0.2.

• Fitness Function: The custom evaluation metric defined in Section 2.5, balancing
accuracy and model complexity.
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3.1.3 Training Protocol

We followed a standard training methodology based on [24], [25]. The following training
parameters are used:

• Optimizer: Adam optimizer [26], known for its adaptive learning rate and efficient
handling of sparse gradients.

• Learning Rate: 0.001.

• Batch Size: 128, which balances computational efficiency and gradient estimation
accuracy.

• Model’s Complexity Penalty (α): 0.1

• Number of Epochs:

– Partial Training: Each candidate model was partially trained for 1 epoch
during the CRO optimization process. This partial training provided a quick
estimation of each model’s potential while minimizing computational cost and
carbon footprint. Training each candidate for only one epoch significantly
reduced the resources required, as evaluating every individual extensively would
imply a large energy consumption.

– Full Training: The best model identified by the CRO algorithm was intended
to be fully trained for up to 300 epochs. However, an early stopping mech-
anism with a patience of 40 epochs was implemented to prevent overfitting and
unnecessary computations. Training would stop if there was no improvement
in validation accuracy for 40 consecutive epochs.

• Loss Function: Categorical cross-entropy, suitable for multi-class classification
tasks.

The use of early stopping in both the CRO optimization and the final model training
aligns with the goal of reducing computational demands and environmental impact. It
ensures that resources are allocated efficiently by halting processes that are no longer
yielding improvements.
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3.1.4 Computational Environment

The experiments were conducted on a system with the following specifications:

• CPU: Intel Core i9-13900H

• GPU: NVIDIA RTX 4070, GDDR6 8GB

• RAM: 16×2 GB DDR5

• Operating System: Ubuntu 22.04.5 LTS

• Software Frameworks:

– Python 3.10.12

– PyTorch 2.5.0
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3.2 Results and Discussion

The CRO algorithm was executed with early stopping based on the max_no_improve
parameter set to 40. The optimization process stopped at generation 73, indicating that
there was no improvement in the best coral’s fitness from generation 33 onwards. This
early termination saved computational resources by avoiding unnecessary iterations.

Figure 3.1 illustrates the convergence of the average and best fitness values over gen-
erations. The initial generations showed rapid improvements due to high diversity in
architectural configurations. After generation 33, the best fitness value plateaued, and no
further improvements were observed up to generation 73.

Figure 3.1: Convergence of average and best fitness values over generations with early
stopping at generation 73.

The consistent improvement in fitness demonstrates the CRO algorithm’s effectiveness
in navigating the architectural space and optimizing the Inception module configurations.

3.2.1 Evolution of Architectural Configurations

The evolution of the Inception module architectures over generations is depicted in Figures
3.2 to 3.8. Early generations featured a wide variety of configurations with differing
numbers of branches, branch depths, filter sizes, and inclusion of pooling layers. This
diversity was crucial for extensive exploration of the search space.
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(a) Best Coral Architecture at Generation 1 (b) Best Coral Architecture at Generation 2

Figure 3.2: Evolution of the Best Coral Architectures at Generations 1 and 2.

(a) Best Coral Architecture at Generation 3 (b) Best Coral Architecture at Generation 6

Figure 3.3: Evolution of the Best Coral Architectures at Generations 3 and 6.
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(a) Best Coral Architecture at Generation 7 (b) Best Coral Architecture at Generation 9

Figure 3.4: Evolution of the Best Coral Architectures at Generations 7 and 9.

(a) Best Coral Architecture at Generation 14 (b) Best Coral Architecture at Generation 15

Figure 3.5: Evolution of the Best Coral Architectures at Generations 14 and 15.
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(a) Best Coral Architecture at Generation 22 (b) Best Coral Architecture at Generation 25

Figure 3.6: Evolution of the Best Coral Architectures at Generations 22 and 25.

(a) Best Coral Architecture at Generation 26 (b) Best Coral Architecture at Generation 32

Figure 3.7: Evolution of the Best Coral Architectures at Generations 26 and 32.
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Figure 3.8: Best Coral Architecture at Generation 33 (Final)

As the algorithm progressed, certain architectural patterns emerged:

• Branch Depth: Branches with depths of 3 or 4 layers were more prevalent.

• Filter Sizes: Non-square filters such as (5 × 7) and (9 × 3) became common,
enhancing the model’s ability to capture directional features.

• Pooling Layers: The inclusion of pooling layers was favored in all branches, con-
tributing to dimensionality reduction and overfitting prevention.

3.2.2 Best Coral Architecture

The best-performing architecture, referred to as the CRO-Optimized Model, is detailed
in Table 3.1.

Table 3.1: Architecture of the Best Coral Discovered by CRO

Branch Depth Filter Sizes Filter Channels Pooling

Branch 0 4 [(3,3), (3,1), (9,9), (3,3)] [32, 39, 52] Yes
Branch 1 4 [(3,3), (3,1), (9,9), (3,3)] [32, 39, 52] Yes
Branch 2 4 [(5,7), (9,3), (9,9), (3,3)] [32, 11, 48] Yes
Branch 3 4 [(5,7), (9,3), (9,9), (3,3)] [32, 11, 48] Yes
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The CRO-Optimized model underwent full training with an initial setting of up to 300
epochs. An early stopping mechanism with a patience of 40 epochs was applied to prevent
overfitting. The training process halted at epoch 52, with the best validation accuracy
achieved at epoch 12. Figure 3.9 shows the training and validation accuracy over epochs.

Figure 3.9: Training and validation accuracy over epochs for the CRO-Optimized Model.
The best validation accuracy was achieved at epoch 12.

3.2.3 Performance Comparison

To assess the model’s effectiveness, it was compared against top-performing models on
the MNIST dataset. The results are summarized in Table 3.2.

Table 3.2: Performance Comparison with Top-Performing Models on MNIST

Model Parameters Accuracy (%)

BranchingMerging CNN + Homogeneous Vector Capsules [24] 1514187 99.87
Inception-CRO, best module (ours) 805370 98.92
SOPCNN (only a single model) [27] 1882602 99.5

Our CRO-optimized single Inception module model achieved an accuracy comparable
to these top-performing models but with a significantly reduced number of parameters,
(up to 50% less compared to some models). This efficiency underscores the model’s
suitability for deployment in environments where computational resources are limited.
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This master’s thesis presented a novel methodology that combines the Coral Reef Op-
timization (CRO) algorithm with dynamic Inception modules to efficiently optimize the
architectures of Convolutional Neural Networks (CNNs). The primary goal was to bal-
ance classification accuracy with model complexity, aligning with Green AI principles
that emphasize sustainability and efficiency in AI development.

The research demonstrated several key findings:

• Effective Navigation of Architectural Search Space: The CRO algorithm
effectively explored and exploited the vast architectural search space, identifying
models that balance high accuracy with low complexity. Specifically, the CRO-
Optimized Model achieved a test accuracy of 98.92% on the MNIST dataset with
approximately 800 thousand parameters, significantly fewer than comparable mod-
els.

• Incorporation of Non-Square Kernels: Introducing non-square convolutional
kernels enhanced the model’s ability to capture diverse and directional features,
contributing to performance gains. This innovation allowed the network to recognize
complex patterns within the data more effectively.

• Custom Evaluation Metric for Efficiency: The development of a custom eval-
uation metric that penalizes model complexity successfully promoted smaller ar-
chitectures without significant loss in accuracy. This metric incentivized the CRO
algorithm to favor models that are not only accurate but also resource-efficient.

• Alignment with Green AI Principles: The methodology reduced computa-
tional demands and potential energy consumption by implementing early stopping
mechanisms and efficient training protocols, along with the bio-inspired evolution-
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ary algorithm. This approach demonstrates that high-performance models can be
developed sustainably.

4.1 Broader Implications

The findings of this study have broader implications for the field of deep learning and
sustainable AI:

• Framework for Sustainable Neural Network Optimization: The integration
of evolutionary algorithms like CRO with dynamic architectural components pro-
vides a viable framework for optimizing neural networks in a resource-conscious
manner. This approach can be adapted to various architectures and tasks, promot-
ing efficiency across the AI industry.

• Demonstration of High Performance with Low Complexity: The success of
the CRO-Optimized model illustrates that it is possible to achieve state-of-the-art
performance without resorting to excessively large and computationally intensive
models. This finding challenges the notion that larger models are inherently better
and encourages the development of compact, efficient architectures.

• Contributions to Green AI Initiatives: By emphasizing energy efficiency and
reduced computational costs, this research contributes to Green AI initiatives aimed
at minimizing the environmental impact of AI technologies. It highlights the im-
portance of considering sustainability as a core component of AI development.

4.2 Limitations

While the study achieved its objectives, several limitations should be acknowledged:

• Dataset Complexity: The experiments were conducted on the MNIST dataset,
which is relatively simple compared to more complex datasets like CIFAR-10 or
ImageNet. The scalability of the methodology to more challenging tasks remains to
be explored.

• Hyperparameter Sensitivity: The performance of the CRO algorithm is sensi-
tive to its hyperparameters. Finding the optimal settings may require additional
experimentation and domain expertise.
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4.3 Future Work

Building on the findings and acknowledging the limitations, potential extensions of this
research include:

• Application to Complex Datasets: Extending the methodology to more com-
plex datasets such as CIFAR-10, CIFAR-100, or ImageNet to assess scalability and
effectiveness in more challenging contexts. This would test the robustness of the
approach and its applicability to real-world problems.

• Hyperparameter Tuning and Cross-Validation: Implementing automated hy-
perparameter tuning methods, such as grid search or Bayesian optimization, to
optimize parameters like the early stopping criteria for both the CRO and final neu-
ral network training. Cross-validating the alpha coefficient in the custom evaluation
metric, which controls the penalty applied to the architecture’s complexity, can help
in finding the optimal balance between accuracy and efficiency. This systematic ap-
proach can enhance the overall performance and reliability of the models.

• Multi-Objective Optimization: Incorporating additional objectives into the fit-
ness function, such as inference speed, memory usage, or energy consumption, to
perform a more comprehensive optimization that aligns with practical deployment
considerations.

• Green AI Metrics Integration: Including direct measurements of environmental
impact, such as carbon footprint and energy efficiency metrics, to quantify the
sustainability benefits of the optimized models and further align with Green AI
goals.

• Robustness and Generalization Studies: Evaluating the robustness of the opti-
mized models against adversarial attacks, noise, or data distribution shifts to ensure
reliability in diverse operating conditions.

• Automated Hyperparameter Tuning: Implementing automated methods for
tuning CRO hyperparameters to reduce dependency on manual settings and enhance
the algorithm’s adaptability.
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