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2 
3 1 ABSTRACT 
4 
5 

6 2 

7 

8 3 The application of enzymes offers an enormous potential in the improvement of existing 
9 
10 4 industrial procedures and in the establishment of new processes for obtaining high- 
11 
12 

5 added value products. Enzymes provide cleaner and more efficient industrial processes 
13 
14 

15 6 and contribute to the sustainability concept. In this sense, laccases are very versatile 
16 
17 7 biocatalysts currently used in food, textile and pulp and paper sectors among others. 
18 
19 8 During the last years, scientific efforts have been diverted to the exploitation of such 
20 
21 

9 interesting enzymes in novel fields like lignocellulosic biorefineries, biosensors or 

23 

24 10 enzymatic biofuel cells. 
25 
26 11 This review provides a general vision of the use of laccase enzymes describing their 
27 
28 

12 main characteristics and mode of action. Furthermore, their current uses in industrial 

30 

31 13 processes are summarized and the most novel potential application of laccases are 
32 
33 14 revealed. The increasing interest on laccases is also demonstrated by the research efforts 
34 
35 

15 on enzyme engineering as it is detailed in this review. 
36 
37 

38 16 
39 

40 17 
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1 

2 
3 1 1. INTRODUCTION 
4 
5 

2 Enzymes are used to provide clean and more efficient industrial processes, and to 

7 

8 3 contribute to the sustainable development concept. Enzymatic processes have 
9 
10 4 advantages over traditional chemical processes, including milder reaction conditions (in 
11 
12 

5 terms of temperature, pressure and pH) and superior specificity and selectivity, which 
13 
14 

15 6 results in a better use of resources and a lower generation of by-products and waste. 
16 
17 7 Among various enzymes described, laccases (benzenediol:oxygen oxidoreductases, EC 
18 
19 8 1.10.3.2) represent an interesting group due to their great potential for biotechnological 
20 
21 

9 and environmental applications.1-3 This is mainly due to the simple requirements of 

23 

24 10 laccases (usually substrate and oxygen) together with their apparent stability and lack of 
25 
26 11 inhibition when compared to other enzymes such as peroxidases (peroxidase reductases, 
27 
28 

12 EC 1.11.1.x), that can be inhibited by H2O2,4 and due to the possibility of being reused.5 

30 

31 13 Laccases are multicopper-containing oxidases with phenoloxidase activity. They 
32 
33 14 have been described for many years in plants, insects, bacteria and fungi6 and depending 
34 
35 

15 on the source, their physiological functions may differ. Laccases catalyze the oxidation 
36 
37 

38 16 of wide range of substituted phenols, anilines and aromatic thiols, and other aromatic 
39 
40 17 compounds coupled to the reduction of molecular oxygen to water.7 The catalytic site of 
41 
42 18 laccases involves four copper ions. On one hand, type-T1 copper, known as blue 
43 
44 

19 copper, is implicated in the oxidation of the reducing substrate, acting as the primary 

46 

47 20 electron acceptor. On the other hand, type-T2 copper together with two type-T3 coppers 
48 
49 21 form a tri-nuclear copper cluster where the transferred electrons reduce the molecular 
50 
51 

22 oxygen to water. Electrochemical potential of type-T1 copper is one of the most 

53 

54 23 significant properties of laccases, varying between 0.4−0.8 V.8 Plant and bacterial 
55 
56 24 laccases have comparatively low redox potential, whereas the highest values are 
57 
58 

25 generally described for fungal laccases.8 Nevertheless, substrates having redox potential 
59 
60 
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1 

2 
3 1 above 1.3 V, such as non-phenolic molecules, cannot be oxidized by laccases directly. 
4 
5 

2 In this sense, certain low molecular compounds, once previously oxidized by laccases, 

7 

8 3 can act as redox mediators (laccase-mediator systems, LMS), aiding laccases to oxidize 
9 
10 4 recalcitrant substrates.9 

11 
12 

5 Due to their oxidative versatility, low catalytic requirements, and ability to 
13 
14 

15 6 catalyze degradation or polymerization reactions, laccases have shown huge 
16 
17 7 applicability in different sectors (Figure 1). This review provides a brief overview of 
18 
19 8 laccase enzymes, from its role in nature, including plants growth, cuticle formation in 
20 
21 

9 insects, and lignocellulose degradation by microorganisms, among others, until their 

23 

24 10 potential industrial applications in lignocellulosic biorefinery, pulp and paper industry, 
25 
26 11 food and textile sectors, bioremediation, and biosensor applications. Besides, innovative 
27 
28 

12 approaches such as the use of laccase in enzymatic fuel cells for wearable devices will 

30 

31 13 be also commented. 
32 
33 14 The industrial use of laccase enzymes requires that enzyme properties are 
34 
35 

15 suitable to maximize their effectiveness. However, laccases are specifically designed for 
36 
37 

38 16 a different purpose than their industrial use. Therefore, different novel engineering 
39 
40 17 approaches have been developed for the optimization and improvement of the catalytic 
41 
42 18 efficiency of laccases. Here, novel biological engineering approaches combining 
43 
44 

19 directed evolution, rational design, and/or computational methods will also be 

46 

47 20 discussed. 
48 

49 21 
50 
51 

22 2. INTERESTING ROLES IN NATURE 

53 

54 23 As mentioned before, laccases are ubiquitous enzymes that have been found or isolated 
55 
56 24 from higher plants, insects, fungi and bacteria.6 In plants, laccase play a crucial 
57 
58 

25 biological role in lignification. Lignin is essential for plants because it confers integrity 
59 
60 
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1 

2 
3 1 and critical properties required for water transport and structural support.10 Plants form 
4 
5 

2 lignin from monolignols (p-hydroxyphenil, H; guaiacyl, G; and syringyl, S) that are 

7 

8 3 secreted from cells and activated by oxidation systems located in the cell wall during 
9 
10 4 lignin synthesis (Figure 2). Oxidative enzymes such as O2-dependent laccases and 
11 

12 
5 H2O2-dependent peroxidases initiate the assembling of monolignols in plant cell wall. In 

14 

15 6 this context, the characterization of multiple knockout mutants has led to the 
16 
17 7 identification of the role of laccases in the lignification of Arabidopsis thaliana.11,12 Due 
18 
19 8 to their important role in lignin formation, laccase and laccase-specific microRNA 
20 
21 

9 genes have been recently identified as interesting targets to modulate lignin content or 

23 

24 10 composition in lignocellulosic biomass.13-15 However, in spite of the increase number of 
25 
26 11 scientific publications, the mechanisms regulating the spatio-temporal patterning of 
27 
28 

12 lignin polymerization still remain unclear.10 

30 

31 13 Laccase enzymes also have an important role in plants that produce seeds. The 
32 
33 14 seed coat of many species contains hydrophobic lignin and laccase enzymes may 
34 
35 

15 contribute to release seeds from dormancy to stimulate germination.16 In this sense, 
36 
37 

38 16 recent studies have proposed the application of fungal laccases to stimulate seed 
39 
40 17 germination via enzymatic scarification. Enzymatic stimulation of germination implies 
41 
42 18 less risk of damage to the embryo, which is of utmost importance for conservation 
43 
44 

19 purposes of rare plant or species difficult to cultivate.16 Besides, laccase-like enzymes 

46 

47 20 produced endogenously in plants have also been involved in browning reactions in 
48 
49 21 seeds due to the formation of quinones and oxidation of phenolic compounds17 as well 
50 
51 

22 as regulate seed size.18 

53 

54 23 Apart from plants, laccases also have interesting roles in animals, more 
55 
56 24 concretely in the phylum Arthropoda. Arthropods body is covered by a cuticle, mainly 
57 
58 

25 composed of chitin and proteins, that works as exoskeleton serving as barrier to 
59 
60 
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1 

2 
3 1 maintain homeostasis. Laccase catalyze the oxidation of catecholamines that is a crucial 
4 
5 

2 reaction for hardening the insect cuticle.19 

7 

8 3 Multicopper oxidases, among which laccases form the largest subclass, have 
9 
10 4 been also found to help pathogens to survive during an infection and are considered 
11 
12 

5 necessary determinants of virulence. The effect of laccases on virulence against 
13 
14 

15 6 mammals has been extensively studied using Cryptoccocus neoformans, which is highly 
16 
17 7 infectious in immunocompromised patients, as model organism.20,21 Melanin pigment 
18 
19 8 that requires laccases to be synthetized has shown to be one of the important virulence 
20 
21 

9 factors in this opportunistic pathogen. By contrast, the exceptional versatility of laccases 

23 

24 10 has also been demonstrated in a research work showing antimicrobial activity of 
25 
26 11 Pseudomonas putida laccase against several fungal plant pathogens.22 In this context, 
27 
28 

12 several antimicrobial effects have been identified in some laccase-catalyzed compounds 

30 

31 13 (e.g. cinnabarinic acid, iodovanillin, iodoethylvanillin)23-25. 
32 
33 14 Fungal laccases have also shown a significant role in stress management of 
34 
35 

15 fungi.19 As a matter of fact, multiple fold increase in laccase activity was observed when 
36 
37 

38 16 subjecting “white-rot” fungi to different stress factors.25 In addition these “white-rot” 
39 
40 17 basidiomycetes are able to depolymerize and mineralize lignin by an extracellular and 
41 
42 18 unspecific oxidative enzymatic system that include peroxidases and laccases.8 

43 
44 

19 Apart from the antimicrobial activities previously mentioned, laccases have 

46 

47 20 demonstrated great opportunities in the developments of anticancer drugs, antifungal 
48 
49 21 drugs and in the synthesis of melanin, prostaglandin and sedatives.26 For example, 
50 
51 

22 laccase from Deinococcus bacterium was applied for the oxidative coupling of 

53 

54 23 katarantine and vindoline to yield vinblastine, which is especially useful in treating 
55 
56 24 leukemia.27 Actinocin is another anti-cancer drug that could be synthesized using this 
57 
58 

25 laccase.27 Resveratrol, playing a role in the prevention of carcinogenesis has also been 
59 
60 
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1 

2 
3 1 selective oxidized on a preparative scale by laccase.28 In this sense, gaining knowledge 
4 
5 

2 on laccase mode of action is a valuable opportunity for the development of novel 

7 

8 3 antimicrobial therapies and formulation of new drugs in the pharmaceutical sector. 
9 

10 4 
11 
12 

5 3. LACCASES AS VERSATILE ENZYMES: TRADITIONAL AND NEW 
13 
14 

15 6 INDUSTRIAL APPLICATIONS 
16 
17 7 3.1. LIGNOCELLULOSIC BIOREFINERY 
18 
19 8 A sustainable economy based on lignocellulosic biorefineries for the production of 
20 
21 

9 sugars-based biofuels and chemicals represents a priority to replace the current fossil- 

23 

24 10 based industry. Lignocellulose, mainly composed by cellulose, hemicelluloses, and 
25 
26 11 lignin, constitutes a compact architecture difficult to disrupt. Lignin acts as a physical 
27 
28 

12 barrier that hinders the accessibility to carbohydrates, in addition to promoting 

30 

31 13 unspecific adsorption of hydrolytic enzymes during biomass conversion processes. 
32 
33 14 Laccases (LMS included) are capable of modifying and/or partially eliminating lignin 
34 
35 

15 from pretreated biomass, improving the subsequent enzymatic hydrolysis of 
36 
37 

38 16 carbohydrates and reducing hydrolytic enzymes loadings. This property constitutes a 
39 
40 17 powerful biotechnological tool for the complete utilization of lignocellulosic biomass. 
41 
42 18 Furthermore, laccases can also be applied for the detoxification of pretreated biomass 
43 
44 

19 by the selective oxidation of phenolic compounds (considered as inhibitors of hydrolytic 

46 

47 20 enzymes and fermentative microorganisms). 
48 
49 21 3.1.1. Delignification 
50 
51 

22 Most of the biorefinery schemes for lignocellulosic biomass conversion comprise a 

53 

54 23 pretreatment step followed by enzymatic hydrolysis of carbohydrates, resulting in 
55 
56 24 simple sugars that will be the basis for producing biofuels (ethanol and higher alcohols) 
57 
58 

25 and chemicals (organic acids, alkenes, lipids and other chemicals) via fermentation.29 

59 
60 
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1 

2 
3 1 The effectiveness of pretreatment technologies to improve the enzymatic hydrolysis has 
4 
5 

2 been attributed, among others, to the elimination and redistribution of lignin.30 

7 

8 3 However, most of the methods to overcome the lignin barrier (e.g. physical technologies 
9 
10 4 as milling; chemical methods especially alkali- and acid-based pretreatments; and 
11 
12 

5 physicochemical pretreatments as steam explosion) are very energy-intensive and 
13 
14 

15 6 involve harsh conditions (high temperatures and pressures) or even toxic and hazardous 
16 
17 7 chemicals. As alternative, biological delignification involves low energy demand, low 
18 
19 8 environmental impact, and high product yield.31 It comprises the selective degradation 
20 
21 

9 of lignin by the use mainly of “white-rot” basidiomycetes such as Phanerochaete 

23 

24 10 chrysosporium, Trametes versicolor, Ceriporiopsis subvermispora, Pycnoporus 
25 
26 11 cinnabarinus and Pleurotus ostreatus.31 Nevertheless, certain ascomycetes (the 
27 
28 

12 endophytes Ulocladium sp. and Hormonema sp.) and bacterial strains (Bacillus 

30 

31 13 macernas, Cellulomonas cartae and Zymomonas mobilis) have also shown good 
32 
33 14 delignification capabilities.32,33 

34 
35 

15 Laccases are lignin specific and show high reaction rates, reducing significantly 
36 
37 

38 16 the delignification process time without any consumption of biomass sugars compared 
39 
40 17 to microorganism populations.1 The direct lignin oxidation by laccases, restricted to 
41 
42 18 phenolic units (Figure 3), can lead to lignin elimination in lignocellulose. Different 
43 
44 

19 fungal laccases, including enzymes with low and high redox potential such as 

46 

47 20 Myceliophthora thermophila34 and P. cinnabarinus35 laccases, respectively; or bacterial 
48 
49 21 laccases from Streptomyces ipomoea have shown this ability.36,37 In addition to lignin 
50 
51 

22 removal, laccases can also modify properties of lignin, producing a reduction of 

53 

54 23 unspecific adsorption of hydrolytic enzymes.1 An increase in the porosity and surface 
55 
56 24 area of laccase-treated materials,38 as well as a reduction in lignin hydrophobicity,39 

57 
58 

59 

60 
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1 

2 
3 1 have been described as the main effects that Trametes hirsuta laccase can produce on 
4 
5 

2 lignin. 

7 

8 3 Different pretreated lignocellulosic materials have been subjected to the LMS 
9 
10 4 action (Figure 3), with the chemical mediators 2'-azino-bis(3-ethylbenzothiazoline-6- 
11 
12 

5 sulfonic acid) (ABTS) and 1-hydroxybenzotriazole (HBT) being two of the most widely 
13 
14 

15 6 applied.1 As a result, a significant lignin degradation by decrease of both aromatic and 
16 
17 7 aliphatic lignin units has been reported with T. villosa-HBT system,40 increasing sugars 
18 
19 8 yields after enzymatic hydrolysis. The improvement of saccharification due to lignin 
20 
21 

9 modification by LMS has also been described with M. thermophila laccase and HBT, 

23 

24 10 triggering an increase in the amount of secondary OH groups and in the degree of lignin 
25 
26 11 condensation.41 Alternatively, low cost and environmentally natural mediators derived 
27 
28 

12 from lignin (methyl syringate) have also shown their potential in presence of M. 

30 

31 13 thermophila laccase for improving delignification and saccharification of woody 
32 
33 14 materials.34 

34 
35 

15 3.1.2. Detoxification 
36 
37 

38 16 Pretreatment of lignocellulosic biomass usually generates certain degradation 
39 
40 17 compounds (furan derivatives, weak acids, and phenols included) that are inhibitors of 
41 
42 18 the hydrolytic enzymes and fermentative microorganisms, compromising sugar 
43 
44 

19 production and conversion yields.30 Although different physical (e.g. filtration and 

46 

47 20 washing, vacuum evaporation, activated charcoal) and chemical (e.g. dithionite and 
48 
49 21 sulfite, Ca(OH)2) approaches have been proposed for minimizing the effect of such 
50 
51 

22 inhibitors,42 biological methods (microorganisms and their enzymes) offer benefits such 

53 

54 23 as lower energy necessities, milder reaction conditions, no chemical addition, and fewer 
55 
56 24 side-reactions.31 

57 
58 

59 

60 
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1 

2 
3 1 Laccases have been largely used to detoxify different pretreated materials, 
4 
5 

2 avoiding sugar consumption and reducing treatment times.1 These enzymes act 

7 

8 3 selectively oxidizing phenolic compounds (syringaldehyde, acetosyringone, vanillin, p- 
9 
10 4 cinnamic acids included) derived from lignin degradation without affecting furan 
11 
12 

5 derivatives and weak acids. Thus, the generated phenoxy-radicals polymerize between 
13 
14 

15 6 them leading to less toxic aromatic compounds (Figure 3). The most common laccases 
16 
17 7 used for this purpose derive from “white-rot” fungi (T. villosa, P. cinnabarinus, M. 
18 
19 8 thermophile and P. ostreatus).31 Nonetheless, certain bacterial laccases from S. ipomoea 
20 
21 

9 have also shown this ability.36 

23 

24 10 The phenolic removal by laccases boosts the fermentative performance of 
25 
26 11 different microorganisms involved in ethanol production.31 Generally, the direct 
27 
28 

12 addition of laccase to pretreated materials improves the fermentative performance of 

30 

31 13 Saccharomyces cerevisiae, xylose-fermenting S. cerevisiae strains and thermotolerant 
32 
33 14 strains such as Kluyveromyces marxianus CECT 10875, reporting improved yeast 
34 
35 

15 growth together with higher sugar consumption rate, ethanol productivity and ethanol 
36 
37 

38 16 yields.43-45 In addition to ethanol fermentative strains, other microorganisms such as 
39 
40 17 Clostridium acetobutilycum and Clostridium thermocellum, involved in acetone- 
41 
42 18 butanol-ethanol46 (ABE) and biohydrogen47 production, respectively, have also shown 
43 
44 

19 positive effects after laccase detoxification. 

46 

47 20 Laccase detoxification not only improves the fermentative performance of 
48 
49 21 different microorganisms, but can also have a positive influence on other aspects such 
50 
51 

22 as the water economy and operation conditions.1 After laccase detoxification, pretreated 

53 

54 23 materials may not be filtered and washed, therefore saving freshwater and diminishing 
55 
56 24 the amount of wastewater. Moreover, conversion processes can be performed at higher 
57 
58 

25 substrate loadings, increasing product concentrations and productivities. 
59 
60 
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1 

2 
3 1 3.2. PULP AND PAPER INDUSTRY 
4 
5 

2 Pulp and paper industry has been dealing with lignocellulosic biorefinery aspects since 

7 

8 3 its early stages, obtaining cellulosic pulps for paper production and generating other 
9 
10 4 high-value added products (e.g. cellulose derivatives, nanocellulose) and energy for 
11 
12 

5 pulp mills. The interest for the application of biotechnology in this sector started at 
13 
14 

15 6 targeting energy and chemical reagents savings in mechanical and chemical pulp 
16 
17 7 production, respectively, by the use of “white-rot” basidiomycetes such as P. 
18 
19 8 chrysosporium and C. subvermispora.48 Today, laccases and/or LMS are industrially 
20 
21 

9 applied in this sector with several purposes as depicted in Figure 1. 

23 

24 10 One of the most studied uses of biotechnology in the pulp and paper industry is 
25 
26 11 the pulp bleaching process.3,48 Bleaching focusses on removing and/or modifying 
27 
28 

12 compounds that give color to the pulps by means of chemical reagents such as chlorine 

30 

31 13 derivatives, without degrading the cellulose fibers.49 Lignin, major responsible for the 
32 
33 14 color of the pulps, must be transformed to reduce their light absorption characteristics, 
34 
35 

15 or oxidized, reduced or hydrolyzed, to make it soluble. The need to reduce 
36 
37 

38 16 organochlorine compounds generated during conventional bleaching processes has led 
39 
40 17 to the study of less polluting bleaching technologies. In this sense, laccase enzymes and 
41 
42 18 LMS have been extensively applied for environmentally friendly production of high- 
43 
44 

19 quality bleached cellulosic pulps avoiding the use of polluting compounds. 

46 

47 20 Different fungal laccases (from P. cinnabarinus, T. versicolor, and Pleurotus 
48 
49 21 eryngii) and synthetic mediators such as HBT and ABTS have been assayed by 
50 
51 

22 Camarero et al.,50 achieving delignification values of up to 90% using a totally chlorine 

53 

54 23 free approach consisting of laccase stage plus hydrogen peroxide bleaching. However, 
55 
56 24 due to high cost of synthetic mediators and the possible generation of toxic species from 
57 
58 

25 laccase-mediator reactions, their use is one of the critical factors for the use of laccases 
59 
60 
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1 

2 
3 1 in the bleaching sequences.51 Alternatively, natural compounds from lignin have also 
4 
5 

2 been proposed as mediators in laccase-aided bleaching sequences. As a matter of fact, 

7 

8 3 syringaldehyde, acetosyringone and p-coumaric acid have been used as natural 
9 
10 4 mediators in combination of P. cinnabarinus, T. villosa or M. thermophila laccases 
11 
12 

5 increasing the brightness of the pulps after peroxide bleaching.52,53 

13 
14 

15 6 As it is known, xylanases have been used in biobleaching sequences even at 
16 
17 7 industrial scale due to their capacity to enhance conventional bleaching. However, these 
18 
19 8 enzymes do not act directly on the lignin as it is the case of laccases. In this context, not 
20 
21 

9 only a typical LMS (M. thermophila laccase and acetosyringone as mediator) but also 

23 

24 10 xylanases have been used separately or in combination to bleach soda pulps from olive 
25 
26 11 tree pruning and oil palm.54,55 Saleem et al.56 even bleached wheat straw pulp using 
27 
28 

12 xylanase and laccase together with peroxidase enzyme. 

30 

31 13 Generally, the low thermostability and the acidic working pH of fungal laccases 
32 
33 14 are two other factors that compromise its use for bleaching processes.51 Instead, 
34 
35 

15 bacterial laccases are able to fulfill the conditions of temperature and pH required by the 
36 
37 

38 16 pulp and paper industry during the bleaching process, so their applicability may be 
39 
40 17 easier than the case of fungal laccases. As a matter of fact, both Streptomyces cyaneus 
41 
42 18 CECT 3335 and S. ipomoea CECT 3341 laccases were successfully used for the 
43 
44 

19 biobleaching of eucalypt pulps.57,58 

46 

47 20 Pitch control and deinking processes are other laccase applications in the field of 
48 
49 21 pulp and paper industry. In this context, P. cinnabarinus laccase in the presence of 
50 
51 

22 either synthetic or natural mediators has been used for controlling pitch deposits of 

53 

54 23 different woody and non-woody pulps, increasing the quality of final pulps and 
55 
56 24 reducing the pitch accumulation in circuits.59,60 Moreover, T. villosa laccase and HBT as 
57 
58 

25 mediator have been also employed for deinking secondary fibers.61 

59 
60 
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1 

2 
3 1 In addition to improve the quality of final product, as well as reducing the 
4 
5 

2 environmental impact of pulp and paper industry, laccases could increase the 

7 

8 3 sustainability and competitiveness of this industry by revalorizing lignin by-products 
9 
10 4 and obtaining cellulosic fibers with improved or new properties. The depolymerization 
11 
12 

5 ability of laccases could transform the lignin polymer into several phenolic and aromatic 
13 
14 

15 6 compounds significantly demanded by food, pharmaceutical and cosmetic industries.62 

16 
17 7 On the other hand, emerging materials such as engineering plastics, thickeners, fillers, 
18 
19 8 and adsorbents have been developed by laccase grafting co-polymerization of lignin by- 
20 
21 

9 products and acrylic compounds.63,64 Furthermore, wood composite boards have been 

23 

24 10 produced by cross-linking of phenolic compounds in lignin-based materials via 
25 
26 11 laccase;65 and modification of cellulosic fibers properties including hydrophobicity66 

27 
28 

12 and strength and optical properties like color67 has been achieved by laccase-assisted 

30 

31 13 grafting of phenolic or other compounds. Strikingly, antimicrobial and antioxidant 
32 
33 14 properties could be incorporated using this enzymatic strategy to produce cellulose- 
34 
35 

15 based materials for food packaging or sanitary use.68 

36 
37 

38 16 As discussed previously, depending on where the enzymatic stage takes place in 
39 
40 17 the pulp and paper industry, a selection of both appropriate laccases and mediators will 
41 
42 18 be necessary.51 

43 
44 

19 3.3. FOOD INDUSTRY 

46 

47 20 Laccase enzymes have also shown a high efficiency in multiple processes in the food 
48 
49 21 industry (Table 1). They can be used as additives to prevent oxidation reactions in food 
50 
51 

22 and beverages during fruit juice processing or baking, and to improve food sensory 

53 

54 23 parameters. In addition, laccases have also been tested for the determination of certain 
55 
56 24 compounds in beverages as well as for the bioremediation of food industry 
57 
58 

25 wastewater.69-72 

59 
60 



14 

 

 

6 

22 

29 

45 

52 

1 

2 
3 1 3.3.1 Wine and beer stabilization 
4 
5 

2 The application of laccase enzymes for wine stabilization (usually made with physical- 

7 

8 3 chemical adsorbents) implies the elimination of polyphenols avoiding decolorization 
9 
10 4 and flavor alteration. As early as 1986, Polyporus versicolor laccase was utilized to 
11 
12 

5 eliminate 50% of the polyphenols in the black must, obtaining a stable wine with good 
13 
14 

15 6 flavor.73 However, in order to not change the organoleptic properties of the wine the 
16 
17 7 elimination of polyphenols by laccases must be highly selective and laccase must be 
18 
19 8 stable at acid pH.69,74 

20 
21 

9 The use of laccases to stabilize beer has also been described by some authors 

23 

24 10 with successful results. Laccases from T. villosa and T. versicolor are able to eliminate 
25 
26 11 polyphenols and reduce undesirable oxygen at the end of beer processing avoiding the 
27 
28 

12 formation of haze and facilitating beer conservation.75,76 

30 

31 13 3.3.2 Fruit juice processing 
32 
33 14 The use of enzymes for the clarification of fruit juices has been studied for years with 
34 
35 

15 the aim of eliminating the hazes produced by the interactions between proteins and 
36 
37 

38 16 polyphenols. However, contradictory results have been published regarding laccase. 
39 
40 17 Sammartino et al.77 observed that the laccase-treated apple juice was less stable than the 
41 
42 18 one conventionally treated. Contrary, several authors assayed a filtration step after 
43 
44 

19 laccase treatment with good results. More concretely, the use of laccases (e.g. Polyporus 

46 

47 20 fomentarious laccase) followed by a cross-flow filtration has been shown as a promising 
48 
49 21 strategy for producing clear apple, pomegranate and sour cherry juice concentrates with 
50 
51 

22 high color and flavor stability.69,71,78 

53 

54 23 3.3.3 Baking 
55 
56 24 The ability of cross-linking polymers in laccases has been one of the reasons for their 
57 
58 

25 used in baking. The addition of laccase enzymes gives the dough strength and stability. 
59 
60 
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1 

2 
3 1 Furthermore, laccases increase dough volume and reduce stickiness improving its 
4 
5 

2 machinability.71 In this sense, Renzetti et al.79 reported the ability of a commercial 

7 

8 3 laccase for improving the bread making performance of oat flour due to the increased 
9 
10 4 softness, deformability and elasticity of oat batters. Moreover, the textural quality of oat 
11 
12 

5 bread was also enhanced. Manhivi et al.80 found that the total phenolic content of 
13 
14 

15 6 amadumbe dough decreased up to 93% when activity of T. versicolor laccase was 
16 
17 7 increased (0–3 U/g flour). Besides, rheological properties of laccase-treated dough were 
18 
19 8 improved due to laccase-catalyzed cross-linking of proteins and polysaccharide 
20 
21 

9 esterified with phenolics, and an increase in the elastic character of the dough was 

23 

24 10 obtained. 
25 
26 11 3.3.4 Food sensory parameters improvement 
27 
28 

12 One of the main priorities identified in the food industry is the good preservation of the 

30 

31 13 final products without physical and/or chemical deterioration. The use of laccase 
32 
33 14 enzymes can help to control the odor, enhance the taste or reduce the generation of 
34 
35 

15 some undesired compounds in some food products. In this sense, several patents based 
36 
37 

38 16 on laccases (e.g. Coriolus versicolor laccase) have been developed to reduce bitterness 
39 
40 17 and other undesirable tastes in cacao nibs and its products.81 Reduction of tannin 
41 
42 18 content in cocoa pod husk by P. ostreatus laccase has been described to improve its 
43 
44 

19 nutritive value when used as ingredient for animal feeds.82 Moreover, oils, food 

46 

47 20 products that contain oils and other products such as juices, soups, purées, can be 
48 
49 21 deoxygenated by laccases (e.g. T. villosa and T. versicolor laccases) and lignin 
50 
51 

22 derivatives to avoid the formation of undesirable volatile compounds as a result of the 

53 

54 23 reaction of such food products with oxygen.83-85 

55 
56 24 3.4. TEXTILE 
57 
58 

59 
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1 

2 
3 1 Laccases have also been widely used in the textile industry. Their applications in this 
4 
5 

2 sector include bioremediation of effluents, cotton bleaching, denim finishing, textile 

7 

8 3 dyeing and coating, and cleansing during cloth-washing to eliminate the odor on fabrics 
9 
10 4 and the detergents.86,87 

11 
12 

5 With a similar approach to the pulp and paper industry, laccases and LMS have 
13 
14 

15 6 been used in the textile finishing industry to bleach cotton and indigo-dyed denim fabric, 
16 
17 7 yielding in the later its abrasion effect. With this purpose, Pazarlioǧlu et al.88 reported 
18 
19 8 that T. versicolor laccase was more effective in denim finishing than other LMS, even in 
20 
21 

9 the absence of any mediator compound. In addition to bleaching processes, laccases offer 

23 

24 10 an alternative bio-based catalyst to synthesize novel dye chemicals and simultaneously 
25 
26 11 reduce the environmental footprint of the conventional dye synthetic processes. For 
27 
28 

12 instance, Kim et al.89  used a LMS (M. thermophila laccase and the mediators 

30 

31 13 K5[SiW11VVO40]·11H2O and H5[PMo10VV2O40]·13H2O) for the oxidative 
32 
33 14 polymerization of catechol, resulting in relatively high molecular weight polycatechol for 
34 
35 

15 dyeing of flax fabrics. This dyeing polymer provided better color fixation and color 
36 
37 

38 16 resistance when compared to other LMS systems (e.g. laccase-HBT) or laccase alone. 
39 
40 17 Pezzella et al.90 obtained new mixtures of synthesized dyes with P. ostreatus POXA1b 
41 
42 18 laccase by using resorcinol and 2,5-diaminobenzenesulfonic acid (DABSA) as substrates. 
43 
44 

19 The resulting mixtures were used for dyeing nylon and wool textiles with good and 

46 

47 20 comparable end quality. Besides coloration, these enzyme-based polymers also confer 
48 
49 21 additional properties including electrical conductivity, antimicrobial and antioxidant 
50 
51 

22 behavior in the applied textiles. Furthermore, in situ polymerization of phenolic 

53 

54 23 compounds may also be applied to improve substantivity of these new polymers onto the 
55 
56 24 fiber surface. Zhang et al.91 developed an in-situ enzyme dyeing method (polymerization 
57 
58 

25 of DABSA with T. versicolor laccase) obtaining wool fabrics with special pH-responsive, 
59 
60 
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1 

2 
3 1 color-changing and conductive properties. Su et al.92 coated textile fabrics (cotton, wool, 
4 
5 

2 and polyethylene terephthalate) with poly(catechol) and poly(p-phenylenediamine) using 

7 

8 3 native and PEGylated M. thermophila laccase. The resulting colored fabrics presented 
9 
10 4 high levels of coloration with additional conductive properties and good fastness behavior 
11 
12 

5 after washing. These fabrics also showed antimicrobial activity against gram-positive 
13 
14 

15 6 (Staphylococcus aureus) and gram-negative (Escherichia coli) microorganisms, and 
16 
17 7 exhibited antioxidant properties in terms of ABTS scavenging activity.93 

18 
19 8 3.5. BIOREMEDIATION 
20 
21 

9 Due to the intrinsic characteristics of laccase enzymes, they show numerous potential 

23 

24 10 applications in bioremediation and removal of environmental pollutants. 
25 
26 11 Among others, biologically active compounds from drugs, cosmetics or endocrine- 
27 
28 

12 disrupting chemicals are considered emerging contaminants that can severely affect the 

30 

31 13 environment and living beings. Some of these compounds may provoke disorders of the 
32 
33 14 nervous, hormonal and reproductive systems and even causing cancer. For this reason, 
34 
35 

15 their elimination from the environment is of paramount importance. Anti-inflammatory 
36 
37 

38 16 drugs, antiepileptic and antidepressants are present in high concentration in wastewater 
39 
40 17 and are challenging to be removed completely due to their physicochemical properties 
41 
42 18 and resistance towards biological attack.94,95 Laccase enzymes can catalyze oxidation- 
43 
44 

19 reduction reactions for efficiently biodegrade of some of these contaminants in a very 

46 

47 20 efficient way and have been widely studied to improve the biodegradation of 
48 
49 21 pharmaceutical contaminants (Table 2).96-99 The structure of the toxic compound will 
50 
51 

22 determine its toxicity degree and the appropriated laccase to be used for its degradation. 

53 

54 23 Besides, different factors such as redox potential, reaction temperature, or pH, play a 
55 
56 24 key role in the degradation of contaminants.95,100,101 

57 
58 

59 
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1 

2 
3 1 Becker and co-workers studied the degradation of 38 antibiotics and concluded 
4 
5 

2 that the phenolic and amine group in amoxicillin could be the reason for the better 

7 

8 3 removal of this antibiotic with laccase.102 These authors also stated that the presence of 
9 
10 4 methyl or carboxyl groups in enrofloxacin and pipemidic acid could facilitate their 
11 
12 

5 removal with laccase despite lacking phenol or amine group. Besides, in spite of the 5–6 
13 
14 

15 6 phenolic groups present in tetracyclines used in the mentioned study, only a medium 
16 
17 7 removal by laccase treatment was observed.102 

18 
19 8 The biodegradation of the organochlorine pesticide dichlorophen was successfully 
20 
21 

9 evaluated using the Coriollopsis gallica laccase immobilized on mesoporous 

23 

24 10 nanostructures showing a significant reduction in the cytotoxic and genotoxic effects 
25 
26 11 after laccase treatment.103 Other chlorine-derived compounds (chlorolignins, 
27 
28 

12 chlorophenols, and chloroaliphatics included) contained in bleaching effluents from 

30 

31 13 pulp and paper industry have also been removed by chemical and laccase combination, 
32 
33 14 including fungal (e.g. Pleurotus sajor and Rhizopus oryzae) and bacterial (e.g. Bacillus 
34 
35 

15 tequilensis SN4) laccases.104 

36 
37 

38 16 Dye-derived products from textile processing are often carcinogenic and affect 
39 
40 17 the biological and photosynthesis processes in the aquatic environment.105,106 Effluent 
41 
42 18 treatment by laccases or LMS has been considered a green alternative for the 
43 
44 

19 degradation of dyes with diverse chemical structure, usually showing degradation yields 

46 

47 20 of about 100% at mild reaction conditions (pH close to neutral and temperatures of 20- 
48 
49 21 50 °C).107 Wastewater from the brewing, distillery, and olive industries also have a high 
50 
51 

22 environmental impact due to their high phenolic content, high soluble organic matter 

53 

54 23 content, and dark colour.71 In this sense, Strong and Burgess108 showed the capacity of a 
55 
56 24 laccase from Trametes pubescens to remove color and the total phenolic compounds 
57 
58 

25 from different distillery wastewater. Similarly, Berrio et al.109 showed that an 
59 
60 
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1 

2 
3 1 immobilized laccase from P. coccineus was able to produce both degradation and 
4 
5 

2 polymerization of the phenolic compounds present in olive mill wastewater. 

7 

8 3 3.6. BIOSENSING 
9 
10 4 Biosensors are analytical devices developed for the detection of compounds, and 
11 
12 

5 analysis of parameters of biological interest. The unique redox properties of laccases, 
13 
14 

15 6 especially those produced from fungi, make them interesting tools to be applied for 
16 
17 7 bioelectrochemical purposes in biosensor devices.110 The potential of prokaryotic 
18 
19 8 laccases in electrochemistry has been not fully understood yet. However, bacterial 
20 
21 

9 laccases seem to exhibit better stability than fungal laccases in response to changes in 

23 

24 10 some parameters such as temperature and pH.111 

25 
26 11 Laccase biosensors have been recently developed to monitor some toxic and/or harmful 
27 
28 

12 chemicals like phenolic compounds.112-114 They have also been tested for immune 

30 

31 13 assays, hormone monitoring in clinical diagnosis and the quantitative analysis of 
32 
33 14 beverages.115,116 Regarding the latter, several types of laccase biosensors have been 
34 
35 

15 developed to determine for instance the tannins in wine117 or polyphenols in tea 
36 
37 

38 16 infusions and other beverages.118,119 

39 
40 17 Laccases have been also utilized as components in biosensors to detect pesticide 
41 
42 18 and other harmful compounds released in nature or present in food. T. versicolor laccase 
43 
44 

19 has been used for in situ total phenol estimation in tap water.120 Besides, an 

46 

47 20 electrochemical sensor based on F,N-doped carbon dots was recently employed for 
48 
49 21 detection of catechol in tap water and lake water.121 Catechol was also detected using 
50 
51 

22 laccase immobilized on titania (TiO2), TiO2/Nafion and only Nafion.122 In this case, the 

53 

54 23 biosensor based on TiO2/Nafion/laccase presented the best electro-chemical properties 
55 
56 24 with regard to sensitivity, stability and detection limit. Different carbamates, some of 
57 
58 

59 
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1 

2 
3 1 them acting as endocrine disruptor compounds, have been successfully detected in food 
4 
5 

2 samples by means of laccase biosensors.123,124 

7 

8 3 Recently, Coelho et al.125 have developed a laccase biosensor for the determination of 
9 
10 4 dopamine in pharmaceutical injection and synthetic biological samples, showing a good 
11 
12 

5 selectivity even in the presence of uric acid and ascorbic acid, as well as other phenolic 
13 
14 

15 6 compounds. 
16 
17 7 Another very innovative use of laccase is their utilization in bioelectrochemical devices 
18 
19 8 such enzymatic biofuel cells (EBFCs). EBFCs convert biofuel into electrical energy, by 
20 
21 

9 utilizing the chemical energy of the biochemical pathways catalyzed by enzymes such 

23 

24 10 as electro-catalysts, instead of metal catalysts.126 EBFCs have been used in implantable 
25 
26 11 devices in the healthcare industry for powering devices like pacemakers,127 and laccase- 
27 
28 

12 based EBFCs have been even proposed as wearable electronic devices such as smart 

30 

31 13 watches, fitness bands and wearable ECG detectors.128 

32 
33 14 The immobilization of laccase enzymes on the surfaces of different materials to 
34 
35 

15 constitute a biosensing platform is however, a critical factor in the development of 
36 
37 

38 16 bioelectrochemical sensing devices. In this sense, copper oxide nanoparticles113, 
39 
40 17 nanocomposites containing molybdenum disulphide117, graphene quantum dots115 and 
41 
42 18 ionic liquid membranes129 have become compatible matrices for laccase immobilization 
43 
44 

19 in biosensing devices. 

46 

47 20 
48 
49 21 4. NOVEL ENGINEERING APPROACHES ON LACCASE 
50 
51 

22 As reviewed in the aforementioned sections, many industries have benefit from laccases 

53 

54 23 and LMS in a broad variety of processes. To fulfill process requirements and increase 
55 
56 24 their enzymatic performance it may be of utmost importance to subject these catalysts to 
57 
58 

25 protein engineering for making them active and stable under specific process 
59 
60 
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1 

2 
3 1 conditions.130,131 Table 3 summarizes some of the engineering approaches leading to 
4 
5 

2 improved catalytic activity of laccases under certain specific conditions. 

7 

8 3 According to the oxidative versatility and low catalytic requirements, fungal 
9 
10 4 high-redox potential laccases (HRPL) are the most interesting biocatalysts for the 
11 
12 

5 different industry sectors. Nevertheless, “white-rot” fungi are less prone to genetic 
13 
14 

15 6 manipulation. For this reason, heterologous expression of HRPLs has been mainly 
16 
17 7 investigated in yeasts (e.g. Kluyveromyces lactis, Pichia methanolica, Pichia pastoris, 
18 
19 8 S. cerevisiae, Yarrowia lipolytica) that grow as individual colonies, do not produce 
20 
21 

9 endogenous laccases, and secrete the recombinant products directly into the 

23 

24 10 extracellular medium.130 With the aim of boosting the expression levels of the 
25 
26 11 corresponding recombinant enzymes, heterologous expression of laccase is usually 
27 
28 

12 combined with the use of strong promoters, multicopy vectors, and effective signal 

30 

31 13 peptides. The optimization of codon usage, the simultaneous cloning of chaperones 
32 
33 14 needed for protein folding, and the post-translational modifications (e.g. glycosylation, 
34 
35 

15 disulfide bonds) are also required approaches in some cases to obtain functional 
36 
37 

38 16 heterologous laccase. Heterologous expression of laccase can also be improved by 
39 
40 17 directed evolution. For instance, Bulter et al.131 subjected M. thermophila laccase to ten 
41 
42 18 rounds of error-prone PCR and in vivo shuffling, improving both heterologous 
43 
44 

19 expression (8-fold) and total activity. Such enhancement was attributed to two 

46 

47 20 mutations in the native signal propeptide and one mutation in the C-terminus. 
48 
49 21 Laccases have also been subjected to both rational and directed evolution 
50 
51 

22 engineering strategies targeting at modulating the redox potential, pH activity profile, 

53 

54 23 thermostability, halide tolerance, and substrate specificity to obtain highly efficient 
55 
56 24 enzymes under specific operational conditions. These engineering methods have been 
57 
58 

25 previously reviewed in detail by Pardo and Camarero132 and Mate and Alcalde130. 
59 
60 
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1 

2 
3 1 Rational methods involving site-directed mutagenesis allow obtaining new recombinant 
4 
5 

2 enzymes by replacing specific residues according to previous structural information of 

7 

8 3 the enzyme. In this context, Wang et al.133 investigated the D501G variant of Bacillus 
9 
10 4 amyloliquefaciens laccase, exhibiting better stability and catalytic efficiency during 
11 
12 

5 decolorization of indigo carmine. Khodakarami et al.134 constructed several mutants 
13 
14 

15 6 increasing the activity towards ABTS and substrate specificity to both ABTS and 
16 
17 7 siringalzadine. Site-direct mutagenesis has also been combined with computational 
18 
19 8 methods to predict substrate binding and electron transfer on each variant. With a 
20 
21 

9 computer-aided engineering method, Santiago et al.135 introduced two point mutations 

23 

24 10 (N207S/N263D) in the active site of a chimeric laccase, improving oxidation of aniline 
25 
26 11 and N,N-dimethyl-p-phenylenediamine (DMPD) substrates. Semi-rational approaches 
27 
28 

12 such as saturation mutagenesis have also been applied to construct all potential mutant 

30 

31 13 variants (or a representative selection of amino acids) from a single or multiple 
32 
33 14 (combinatorial saturation) targeted codons.136 

34 
35 

15 Both rational and semi-rational mutagenesis methods have been often applied to 
36 
37 

38 16 substitute amino acids located in the substrate binding pocket or in the proximity of the 
39 
40 17 catalytic copper sites. However, directed evolution studies have identified alternative 
41 
42 18 mutations in non-catalytic-related positions which have shown to be beneficial for the 
43 
44 

19 overall enzyme activity. By combining both semi-rational and directed evolution 

46 

47 20 strategies, Scheiblbrandner et al.137 screened new variants of Botrytis aclada laccase to 
48 
49 21 increase its stability and activity at pH 6.5. Following this approach, 4 enzyme variants 
50 
51 

22 (3 variants with mutations around the T1 copper and the variant T383I) were obtained 

53 

54 23 with increased specific activity at pH 7.5 and increased thermostability. Another 
55 
56 24 interesting approach for enzyme engineering is the so-called KnowVolution strategy.138 

57 
58 

25 Having directed evolution, saturation mutagenesis, and computer assisted methods as 
59 
60 
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1 

2 
3 1 basis, KnowVolution identifies improved enzyme variants in only 4 steps and ensures 
4 
5 

2 the molecular understanding of improved enzyme properties. Using this strategy, Novoa 

7 

8 3 et al.139 have engineered Melanocarpus albomyces laccase (variant L365E/L513M) 
9 
10 4 increasing its activity towards 2,6‐dimethoxyphenol at pH 9.8. 
11 
12 

5 Enzyme variants with the desired functions can also be obtained through 
13 
14 

15 6 chimeragenesis and/or enzyme resurrection. The latter allows the heterologous 
16 
17 7 expression of non-specialized ancestral enzymes with promiscuous activities, which 
18 
19 8 favors the subsequent enzyme evolution under desired process conditions.140 In this 
20 
21 

9 case, genes are reconstructed from sequence databases by phylogenetic/inference 

23 

24 10 methods based on bioinformatics. On the other hand, chimeragenesis combines DNA 
25 
26 11 fragments with certain sequence identity (without considering the genetic background) 
27 
28 

12 to produce chimeric enzymes with new properties.141 For instance, Pardo et al.142 used 

30 

31 13 chimeragenesis to obtain a chimeric laccase from the already evolved variants OB1 
32 
33 14 (obtained from Coriolopsis sp. PM1 laccase) and 3PO (obtained from P. cinnabarinus 
34 
35 

15 laccase), by exchanging D2 domain from OB1 for that of 3PO. The resulting laccase 
36 
37 

38 16 showed high stability to temperature, pH, and organic solvents, while retaining the 
39 
40 17 capacity to oxidize substrates with high-redox potential. Mateljak et al.143 used the 
41 
42 18 SCHEMA-RASPP structure guided recombination in vivo to generate a family of 
43 
44 

19 thermostable chimeric laccases from three fungal laccase orthologs with about 70% 

46 

47 20 protein sequence identity. 
48 
49 21 As an alternative to biological engineering methods, enzymes with improved 
50 
51 

22 activities and properties have also been attained by subjecting laccase enzymes to low- 

53 

54 23 frequency rotating magnetic field (10–50 Hz) or by pre-incubation with organic solvents 
55 
56 24 (including acetone, methanol, ethanol, dimethyl sulfoxide, and dimethyl 
57 
58 

25 formamide).144,145 
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2 

3 1 
4 
5 

2 5. CONCLUSIONS AND REMARKS 

7 

8 3 The versatility and interesting traits present in laccases discussed herein point at the 
9 
10 4 huge potential of using laccases for industrial applications. Besides, the wide number of 
11 
12 

5 recent research publications on this topic is a clear probe of the increasing interest on 
13 
14 

15 6 these biocatalysts. 
16 
17 7 Laccase enzymes have a crucial role in nature and their application in some industrial 
18 
19 8 sectors such as pulp and paper, food processing or textile industry is not new. 
20 
21 

9 Notwithstanding, they are progressively gaining attention in new niches such as 

23 

24 10 lignocellulosic biorefineries that are crucial to gradually replace the present industry 
25 
26 11 based on fossil fuels to promote a sustainable economy. Within the biorefinery context, 
27 
28 

12 laccases could constitute a powerful tool for the complete utilization of lignocellulosic 

30 

31 13 biomass by means of delignification and detoxification strategies. 
32 
33 14 Laccases are also offering new opportunities to treat emerging contaminants that can 
34 
35 

15 severely affect the environment and consequently living beings and they can be 
36 
37 

38 16 explored as source of anticancer and antifungal drugs among others. Besides, new 
39 
40 17 applications of laccase that were unexplored not long time ago are currently being 
41 
42 18 investigated as it is the case of EBFCs for health-care applications in pacemakers or 
43 
44 

19 wearable electronic devices such as smart watches, fitness bands and wearable ECG 

46 

47 20 detectors. 
48 
49 21 However, to implement laccases in novel industrial applications and increase their 
50 
51 

22 effectiveness in current industrial uses it may be of great importance to subject these 

53 

54 23 enzymatic catalysts to protein engineering for making them active and stable under 
55 
56 24 specific process conditions. In this context, cutting-edge research on laccase encloses 
57 
58 
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1  

2 

3 

4 
1 novel approaches for enzyme improvement such as chimeragenesis, enzyme 

5 

6 2 resurrection or KnowVolution. 
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Food sector Enzyme source Role Reference 

 
 

 

Wine and beer 

P. versicolor Wine stabilization by polyphenols 

elimination 

73 

T. villosa Phenol oxidation to avoid haze 

formation in beer 

75 

T. versicolor Clarification and flocculation of 

crude beer by reduction of 

undesirable oxygen 

75 

 

Fruit juice 

P. fomentarious Elimination of hazes for producing 

apple, pomegranate and sour cherry 

juice concentrates 

69, 71, 78 

 
 
 

 

Baking 

Commercial laccase (NS 26021, 

Novozymes) 

Improvement of the bread making 

performance of oat flour due to the 

increased softness, deformability and 

elasticity of oat batters 

79 

T. versicolor Phenolic content reduction of 

amadumbe dough, improving 

rheological properties of laccase- 

treated dough 

80 

 
 

 

Food sensory 

parameters 

C. versicolor Reduction of bitterness in cacao nibs 81 

P. ostreatus Reduction of tannin in cocoa pod 

husk improving its nutritive value 

82 

T. villosa and T. versicolor Deoxygenation of oils, food products 

that contain oils and others such as 

juices, soups, and purées avoiding 

undesirable volatile compounds 

83, 84, 85 

 



35 

 

 

 

1   

2  

3 
4 

1 

5 2 Table 2. Biodegradation strategies of persistent pharmaceutical laccase or LMS 
6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

  
 

Enzyme Pharmaceutical Strategy Biodegradation Reference 

source  compound   efficiency 

S. mutabilis Sulfadiazine 50°C, pH 6.0, 1 h 73% 97 

Sulfathiazole with 1mM HBT 90% 

 as mediator  

T. pubescens Triclosan 25 °C, pH 7 57% 146 

Diclofenac 52% 

Naproxec 69% 

Salicilic acid 94% 

T. versicolor Triclosan 26 °C, pH 7 90% 96 

Diclofenac 24% 

T. versicolor Amoxicillin 25 °C, pH 6, 24 h 90% 102 

Ampicillin 0.07m/s 90% 

Penicillin flow, in a  90% 

Pipemidic acid  membrane reactor  60% 

famethoxazole  with 99% 

syringaldehyde as 
 mediator  

24  T. versicolor Sulfapyridine 25 °C, pH 4.5, 8 h 100 % 147 

25  Sulfathiazole 135 rpm 
26  A. oryzae Ciprofloxacin 60 °C, pH 6, 5 h, 51% 148 

27  200 rpm with 

28  ultrasound (75 W, 

29  22 kHz, 50% 

30   duty cycle)  

31  P. sanguineus Triclosan 25 °C, pH 5 92% 149 

32  T. atroviride 4-Chlorophenol 30 °C, pH 4.5 30% 150 

33 3     

34      

35 4     
36 

37 5 

38 6 
39 
40 7 
41 

42 8 

43 

44 

45 10 
46 

47 11 
48 

49 12 

50 13 
51 

52 14 
53 

54 15 
55 

56 

57 17 
58 

59 18 
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3 
4 Table 3. Novel engineering approaches on laccase and improvements achieved 

5 
6 Engineering strategy Enzyme source Improvements Reference 
7 Rational mutagenesis 
8 
9 

10 

11 

12 

13 

14 

B. amyloliquefaciens - Better stability and catalytic efficiency 

 - 3.5 times higher decolorization of indigo carmine  

Bacillus HRO3 - T415I, 4-fold increased catalytic efficiency towards ABTS 

- T418I and T415G, 1.5-fold increased catalytic efficiency towards 

ABTS 

- T415I and T418I, increased substrate specificity to ABTS and 

 syringaldazine  

Coriolopsis sp. PM1 - Improved oxidation of aniline and N,N-dimethyl-p- 

 

130 

 

 

 

 

134 

 

 

 

 
135 

15  phenylenediamine  
16 Combined directed evolution 

17 and rational mutagenesis 
18 

B. aclada - T831, 2.6-fold increased half-life thermostability 
- D236E, I424G, L499F increased specific activity by 5-fold at pH 

7.5 

 

137 

19 M. albomyces - Higher activity (3-fold) towards DMP at pH 9.8 139 

20 Chimeragenesis 

21 

22 

23 
24 

OB1 (from Coriolopsis sp. PM1) and 

3PO (from P. cinnabarinus) 

- Laccase chimera with higher activity in the presence of ethanol or 

methanol 

- Superior half-lives at 50–70 °C 

- Improved stability at acidic pH and similar catalytic efficiency for 

DMP 

 

 

 

142 

25  - Capacity to solubilization of Kraft lignin  

26 OB1, Lac3 Trametes sp. (based on 

27 
Trametes sp. AH28–2) and 3PO 

- 5-fold half-life thermal inactivation at 70ºC 

- Several laccase chimeras with stability at acidic pH 
143 

28 
Rotating magnetic field T. versicolor - 10% higher activity 144 

 

Pre-incubation in organic 

30 
solvents 

31 
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37 

38 

39 

40 
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42 

Cerrera sp. RSD1, T. versicolor, 
Agaricus bisporus, M. thermophila 

- 1.5- to 4-fold higher activity 145 
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Figure 1. Areas of industrial application of laccase and laccase-mediator systems 
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Figure 2. The lignification process in plant cells. After being transported to the cell wall, monolignols (p- 
hydroxyphenil, H; guaiacyl, G; and syringyl, S, phenylpropanoid units included) are oxidized to radicals by 
laccases or peroxidases after which they undergo purely chemical radical coupling reactions to polymerize 

to lignin polymer 
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44 Figure 3. Role of laccase or laccase-mediator systems (LMS) towards phenolic and non-phenolic lignin units 

45 and soluble phenols. Catalytic reactions include ether bond degradation, C–C degradation and aromatic ring 

46 
cleavage as main delignification reactions, while oxidative polymerization is the main detoxification reaction 
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24 
25 Figure 4. Scheme of laccase and LMS applications in pulp and paper industry: 1) pitch control and bleaching; 

26 2) removal of chlorine-derived compounds contained in bleaching effluents; 3) co-polymerization of lignin 

waste with acrylic compounds or formaldehyde for production of fillers, plastics, thickeners, etc.; 4) 
depolymerization of lignin waste to chemicals; and 5) grafting of phenolic compounds or others on cellulosic 

28 pulps for new or improved properties such as hydrophobicity, strength color, antimicrobial, 

29 antioxidant 
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